Brazilian Test for Tensile Failure of Anisotropic Shale under Different Strain Rates at Quasi-static Loading
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials and Sample Preparation
2.2. Experimental Apparatus
2.3. Anisotropic Brazilian Test
3. Experimental Results
3.1. Determination of Elastic Parameters
3.2. Tensile Strength of Anisotropic Shale
3.3. Fracture Pattern Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rybacki, E.; Meier, T.; Dresen, G. What controls the mechanical properties of shale rocks?—Part II: Brittleness. J. Petrol. Sci. Eng. 2016, 144, 39–58. [Google Scholar] [CrossRef]
- Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. What controls the mechanical properties of shale rocks?—Part I: Strength and Young’s modulus. J. Petrol. Sci. Eng. 2015, 135, 702–722. [Google Scholar] [CrossRef]
- Vejbaek, O.V.; Jakobsen, E.; Lamb, R.; Troelsen, B.; Denmark, H.; Bazan, L.W.; Brown, E.K.; Tran, P.; Meyer, B.R. Influence of tensile strength and production effects on hydraulic fracturing in low porosity carbonates: The South Arne case. In Proceedings of the SPE European Formation Damage Conference and Exhibition, Noordwijk, The Netherlands, 5–7 June 2013. SPE 165117. [Google Scholar]
- Mokhtari, M.; Alqahtani, A.A.; Tutuncu, A.N. Failure behavior of anisotropic shales. In Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 23–26 June 2013; American Rock Mechanics Association: Alexandria, VA, USA, 2013. [Google Scholar]
- Mokhtari, M.; Bui, B.T.; Tutuncu, A.N. Tensile failure of shales: Impacts of layering and natural fractures. In Proceedings of the SPE Western North American and Rocky Mountain Joint Meeting, Denver, CO, USA, 17–18 April 2014; Society of Petroleum Engineers: Richardson, TX, USA, 2014. [Google Scholar]
- Fjaer, E.; Holt, R.M.; Horsrud, P.; Raaen, A.M.; Risnes, R. Petroleum Related Rock Mechanics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2008; p. 59. [Google Scholar]
- Hou, P.; Gao, F.; Yang, Y.G.; Zhang, Z.Z.; Zhang, X.X. Effect of bedding orientation on failure of black shale under Brazilian tests and energy analysis. Chin. J. Geotech. Eng. 2016, 38, 930–939. [Google Scholar]
- Fatahi, H. Simulation of shale mechanical properties in PFC2d and calibration of them against lab results for tensile, uni-axial and confined compression tests. In Proceedings of the SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, 27–29 October 2014; Society of Petroleum Engineers: Richardson, TX, USA, 2014. [Google Scholar]
- Chong, Z.; Li, X.; Hou, P.; Chen, X.; Wu, Y.C. Moment tensor analysis of transversely isotropic shale based on the discrete element method. Int. J. Min. Sci. Technol. 2017, 27, 507–515. [Google Scholar] [CrossRef]
- Wu, M.B.; Liu, Y.H. Experimental study on dynamic properties of the Longman limestone. Chin. J. Rock Mech. Eng. 1996, 15, 415–429. (In Chinese) [Google Scholar]
- Zhao, J.; Li, H.B. Experimental determination of dynamic tensile properties of a granite. Int. J. Rock Mech. Min. Sci. 2000, 37, 861–866. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P.K.; Suorineni, F.; Su, K. A study on the dynamic behavior of the Meuse/Haute–Marne argillite. Phys. Chem. Earth 2007, 32, 907–916. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Liu, B.; Li, J.R.; Li, S.Q.; Xia, X. Direct tension test for rock material under different strain rates at quasi-static loads. Rock Mech. Rock Eng. 2013, 46, 1247–1261. [Google Scholar] [CrossRef]
- Wang, Q.Z. The flattened Brazilian disc specimen used for determining elastic modulus, tensile strength and fracture toughness of brittle rocks: Experimental results. Int. J. Rock Mech. Min. Sci. 2004, 41, 357–358. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Jia, X.M.; Kou, S.Q.; Zhang, Z.X.; Lindqvist, P.-A. The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: Analytical and numerical results. Int. J. Rock Mech. Min. Sci. 2004, 41, 245–253. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Li, W.; Xie, H.P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup. Mech. Mater. 2009, 41, 252–260. [Google Scholar] [CrossRef]
- Dai, F.; Huang, S.; Xia, K.W.; Tan, Z.Y. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech. Rock Eng. 2010, 43, 657–666. [Google Scholar] [CrossRef]
- Birkimer, D.L. A possible fracture criterion for the dynamic tensile strength of rock. In Proceedings of the 12th U.S. Symposium on Rock Mechanics (USRMS), Rolla, MO, USA, 16–18 November 1970; pp. 573–590. [Google Scholar]
- Cho, S.H.; Ogata, Y.; Kaneko, K. Strain-rate dependency of the dynamic tensile strength of rock. Int. J. Rock Mech. Min. Sci. 2003, 40, 763–777. [Google Scholar] [CrossRef]
- Cadoni, E. Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech. Rock Eng. 2010, 43, 667–676. [Google Scholar] [CrossRef]
- Yan, F.; Feng, X.T.; Chen, R.; Xia, K.W.; Jin, C.Y. Dynamic tensile failure of the rock interface between tuff and basalt. Rock Mech. Rock Eng. 2012, 45, 341–348. [Google Scholar] [CrossRef]
- Price, D.G.; Knill, J.L. A study of the tensile strength of isotropic rocks. In Proceedings of the 1st Congress of the International Society for Rock Mechanics, Lisbon, Portugal, 25 September–1 October 1966; pp. 439–442. [Google Scholar]
- Li, D.; Wong, L.N.Y. The Brazilian disc test for rock mechanics applications: Review and new insights. Rock Mech. Rock Eng. 2013, 46, 269–287. [Google Scholar] [CrossRef]
- International Society for Rock Mechanics (ISRM); Commission on Standardization of Laboratory and Field Tests. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 99–103. [Google Scholar]
- Chen, C.S. Characterization of Deformability, Strength, and Fracturing of Anisotropic Rocks Using Brazilian Tests. Ph.D. Thesis, Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO, USA, 1966. [Google Scholar]
- Hondros, G. The evaluation of Poisson’s ratio and modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust. J. Appl. Sci. 1959, 10, 243–268. [Google Scholar]
- Claesson, J.; Bohloli, B. Brazilian test: Stress field and tensile strength of anisotropic rocks using an analytical solution. Int. J. Rock Mech. Min. Sci. 2002, 39, 991–1004. [Google Scholar] [CrossRef]
- Saint-venant, B. Sur la distribution des e´lasticite´s autour de chaque point d’un solide ou d’un milieu de contexture quelconque, particulierement lorsqu’il est amorphe sans etre isotrope. J. Math. Pures Appl. 1863, 69, 247–254. (In French) [Google Scholar]
- Chong, K.P.; Boresi, A.P. Strain rate dependent mechanical properties of new albany reference shale. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1990, 27, 199–205. [Google Scholar] [CrossRef]
Group No. | E (GPa) | E’ (GPa) | v | v’ | G’ |
---|---|---|---|---|---|
S-0-90_(1) | 35.9 | 23.12 | 0.35 | 0.32 | 10.12 |
S-0-90_(2) | 34.2 | 22.22 | 0.33 | 0.32 | 9.704 |
Mean value | 35.05 | 22.67 | 0.34 | 0.32 | 9.91 |
Strain Rate(s) | β = 0° | β = 30° | β = 60° | β = 90° | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Equation (2) | Equation (1) | Error (%) | Equation (2) | Equation (1) | Error (%) | Equation (2) | Equation (1) | Error (%) | Equation (2) | Equation (1) | Error (%) | |
8 × 10−5 | 4.25 | 4.18 | 1.63 | 3.53 | 2.82 | 19.90 | 7.85 | 6.29 | 17.50 | 9.09 | 10.08 | 11.55 |
4 × 10−4 | 7.36 | 7.24 | 7.96 | 6.37 | 10.4 | 8.33 | 10.75 | 11.91 | ||||
2 × 10−3 | 10.57 | 10.39 | 10.51 | 8.41 | 13.69 | 12.99 | 14.03 | 15.48 | ||||
1 × 10−2 | 4.25 | 9.40 | 9.04 | 7.24 | 12.92 | 10.34 | 25.57 | 28.22 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, C.; Hu, Y.; Mao, T. Brazilian Test for Tensile Failure of Anisotropic Shale under Different Strain Rates at Quasi-static Loading. Energies 2017, 10, 1324. https://doi.org/10.3390/en10091324
Wang Y, Li C, Hu Y, Mao T. Brazilian Test for Tensile Failure of Anisotropic Shale under Different Strain Rates at Quasi-static Loading. Energies. 2017; 10(9):1324. https://doi.org/10.3390/en10091324
Chicago/Turabian StyleWang, Yu, Changhong Li, Yanzhi Hu, and Tianqiao Mao. 2017. "Brazilian Test for Tensile Failure of Anisotropic Shale under Different Strain Rates at Quasi-static Loading" Energies 10, no. 9: 1324. https://doi.org/10.3390/en10091324
APA StyleWang, Y., Li, C., Hu, Y., & Mao, T. (2017). Brazilian Test for Tensile Failure of Anisotropic Shale under Different Strain Rates at Quasi-static Loading. Energies, 10(9), 1324. https://doi.org/10.3390/en10091324