Using Thermostats for Indoor Climate Control in Office Buildings: The Effect on Thermal Comfort
Abstract
:1. Introduction
- Drivers: a set of drivers (or events or triggers) comprises the stimulating factors (such as indoor and outdoor conditions, day of the week, building properties, etc.) that provoke energy-influencing occupant behaviour;
- Needs: needs are the requirements of the occupants that need to be met in order to ensure satisfaction with their environment (e.g., thermal and visual comfort);
- Actions: actions are interactions of occupants with their environment and controllable systems, as well as activities (e.g., changing clothes, drinking water, etc.) that occupants undertake to satisfy their needs;
- Systems: this is the set of controllable building elements (e.g., windows, blinds, thermostats, etc.) available to the user to interact with and restore/maintain comfort.
2. Thermal Comfort Evaluation in Buildings
Fanger’s Predicted Mean Vote Model
3. Methodology
3.1. Simulation Model of the TUC Building
3.2. Simulation Model of the ZUB Building
4. Results and Analysis
4.1. TUC Building
4.2. ZUB Building
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pichler, M.; Droscher, A.; Schranzhofer, H.; Kontes, G.; Giannakis, G.; Kosmatopoulos, E.; Rovas, D. Simulation-assisted building energy performance improvement using sensible control decisions. In Proceedings of the 3rd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Seattle, WA, USA, 1 November 2011. [Google Scholar]
- Oldewurtel, F.; Parisio, A.; Jones, C.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef]
- Zavala, V.M. Real-Time Optimization Strategies for Building Systems. Ind. Eng. Chem. Res. 2012, 52, 3137–3150. [Google Scholar] [CrossRef]
- Ghahramani, A.; Zhang, K.; Dutta, K.; Yang, Z.; Becerik-Gerber, B. Energy savings from temperature set-points and deadband: Quantifying the influence of building and system properties on savings. Appl. Energy 2016, 165, 930–942. [Google Scholar] [CrossRef]
- Kontogianni, E.; Giannakis, G.; Kontes, G.; Rovas, D. Comparing the Impact of Different Thermal Comfort Constraints on a Model-Assisted Control Design Process. In Proceedings of the 11th REHVA World Congress, Prague, Czech Republic, 16–19 June 2013. [Google Scholar]
- Morales-Valdés, P.; Flores-Tlacuahuac, A.; Zavala, V.M. Analyzing the effects of comfort relaxation on energy demand flexibility of buildings: A multiobjective optimization approach. Energy Build. 2014, 85, 416–426. [Google Scholar] [CrossRef]
- Fisk, W.J. Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Ann. Rev. Energy Environ. 2000, 25, 537–566. [Google Scholar] [CrossRef]
- Akimoto, T.; Tanabe, S.I.; Yanai, T.; Sasaki, M. Thermal comfort and productivity-Evaluation of workplace environment in a task conditioned office. Build. Environ. 2010, 45, 45–50. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO7730:2005: Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- European Committee for Standardization (CEN). EN15251: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings—Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; CEN: Brussels, Belgium, 2007. [Google Scholar]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). ANSI/ASHRAE Standard 55-2010: Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2010. [Google Scholar]
- Donaisky, E.; Oliveira, G.H.; Freire, R.Z.; Mendes, N. PMV-based predictive algorithms for controlling thermal comfort in building plants. In Proceedings of the IEEE International Conference on Control Applications, CCA 2007, Singapore, 1–3 October 2007. [Google Scholar]
- Freire, R.Z.; Oliveira, G.H.; Mendes, N. Predictive controllers for thermal comfort optimization and energy savings. Energy Build. 2008, 40, 1353–1365. [Google Scholar] [CrossRef]
- Cigler, J.; Prívara, S.; Váňa, Z.; Žáčeková, E.; Ferkl, L. Optimization of predicted mean vote index within model predictive control framework: Computationally tractable solution. Energy Build. 2012, 52, 39–49. [Google Scholar] [CrossRef]
- Drgona, J.; Kvasnica, M.; Klauco, M.; Fikar, M. Explicit stochastic MPC approach to building temperature control. In Proceedings of the 52nd Annual Conference on Decision and Control (CDC), Florence, Italy, 10–13 December 2013. [Google Scholar]
- Kontes, G.; Valmaseda, C.; Giannakis, G.; Katsigarakis, K.; Rovas, D. Intelligent BEMS design using detailed thermal simulation models and surrogate-based stochastic optimization. J. Process Control 2014, 24, 846–855. [Google Scholar] [CrossRef]
- Katsigarakis, K.; Kontes, G.; Giannakis, G.; Rovas, D. Sense-Think-Act Framework for Intelligent Building Energy Management. Comput. -Aided Civ. Infrastruct. Eng. 2016, 31, 50–64. [Google Scholar] [CrossRef]
- Mařík, K.; Rojíček, J.; Stluka, P.; Vass, J. Advanced HVAC control: Theory vs. reality. In Proceedings of the 18th IVAC World Congress, Milano, Italy, 28 August–2 September 2011. [Google Scholar]
- Moon, J.W.; Han, S.H. Thermostat strategies impact on energy consumption in residential buildings. Energy Build. 2011, 43, 338–346. [Google Scholar] [CrossRef]
- Hoyt, T.; Arens, E.; Zhang, H. Extending air temperature set-points: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 2015, 88, 89–96. [Google Scholar] [CrossRef]
- Ma, Y.; Kelman, A.; Daly, A.; Borrelli, F. Predictive Control for Energy Efficient Buildings with Thermal Storage: Modeling, Stimulation, and Experiments. IEEE Control Syst. 2012, 32, 44–64. [Google Scholar] [CrossRef]
- Atam, E.; Helsen, L. Control-Oriented Thermal Modeling of Multizone Buildings: Methods and Issues: Intelligent Control of a Building System. IEEE Control Syst. 2016, 36, 86–111. [Google Scholar] [CrossRef]
- D’Oca, S.; Fabi, V.; Corgnati, S.P.; Andersen, R.K. Effect of thermostat and window opening occupant behavior models on energy use in homes. Build. Simul. 2014, 7, 683–694. [Google Scholar] [CrossRef]
- Li, C.; Hong, T.; Yan, D. An insight into actual energy use and its drivers in high-performance buildings. Appl. Energy 2014, 131, 394–410. [Google Scholar] [CrossRef]
- Azar, E.; Menassa, C.C. Evaluating the impact of extreme energy use behavior on occupancy interventions in commercial buildings. Energy Build. 2015, 97, 205–218. [Google Scholar] [CrossRef]
- IEA Annex 66. Definition and Simulation of Occupant Behavior in Buildings. Available online: www.annex66.org (accessed on 8 September 2017).
- Hong, T.; D’Oca, S.; Turner, W.J.; Taylor-Lange, S.C. An ontology to represent energy-related occupant behavior in buildings. Part I: Introduction to the DNAs framework. Build. Environ. 2015, 92, 764–777. [Google Scholar] [CrossRef]
- Gunay, H.B.; O’Brien, W.; Beausoleil-Morrison, I.; Bursill, J. Development and implementation of a thermostat learning algorithm. Sci. Technol. Built Environ. 2017, 1–14. [Google Scholar] [CrossRef]
- Haldi, F.; Robinson, D. On the behaviour and adaptation of office occupants. Build. Environ. 2008, 43, 2163–2177. [Google Scholar] [CrossRef]
- Haldi, F.; Robinson, D. Interactions with window openings by office occupants. Build. Environ. 2009, 44, 2378–2395. [Google Scholar] [CrossRef]
- Yun, G.Y.; Tuohy, P.; Steemers, K. Thermal performance of a naturally ventilated building using a combined algorithm of probabilistic occupant behaviour and deterministic heat and mass balance models. Energy Build. 2009, 41, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Yong, F.Y.; Frei, M.; Schlueter, A. Occupant centered lighting control for comfort and energy efficient building operation. Energy Build. 2015, 94, 100–108. [Google Scholar] [CrossRef]
- Ghahramani, A.; Jazizadeh, F.; Becerik-Gerber, B. A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points. Energy Build. 2014, 85, 536–548. [Google Scholar] [CrossRef]
- Romero, A.; Tellado, B.; Tsitsanis, T. MOEEBIUS energy performance optimization framework in buildings for urban sustainability. In Proceedings of the 41st IAHS World Congress, Albufeira, Portugal, 13–16 September 2016. [Google Scholar]
- Baker, L.; Hoyt, T. Control for the People: How Machine Learning Enables Efficient HVAC Use Across Diverse Thermal Preferences. In Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 13–18 August 2016. [Google Scholar]
- Kang, D.H.; Mo, P.H.; Choi, D.H.; Song, S.Y.; Yeo, M.S.; Kim, K.W. Effect of MRT variation on the energy consumption in a PMV-controlled office. Build. Environ. 2010, 45, 1914–1922. [Google Scholar] [CrossRef]
- Marino, C.; Nucara, A.; Pietrafesa, M. Mapping of the indoor comfort conditions considering the effect of solar radiation. Solar Energy 2015, 113, 63–77. [Google Scholar] [CrossRef]
- Lehmann, B.; Dorer, V.; Koschenz, M. Application range of thermally activated building systems tabs. Energy Build. 2007, 39, 593–598. [Google Scholar] [CrossRef]
- Gwerder, M.; Lehmann, B.; Tödtli, J.; Dorer, V.; Renggli, F. Control of thermally-activated building systems (TABS). Appl. energy 2008, 85, 565–581. [Google Scholar] [CrossRef]
- Gwerder, M.; Tödtli, J.; Lehmann, B.; Dorer, V.; Güntensperger, W.; Renggli, F. Control of thermally activated building systems (TABS) in intermittent operation with pulse width modulation. Appl. Energy 2009, 86, 1606–1616. [Google Scholar] [CrossRef]
- Feng, J.D.; Chuang, F.; Borrelli, F.; Bauman, F. Model predictive control of radiant slab systems with evaporative cooling sources. Energy Build. 2015, 87, 199–210. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Vanloese, Denmark, 1970. [Google Scholar]
- Ma, Y.; Borrelli, F.; Hencey, B.; Coffey, B.; Bengea, S.; Haves, P. Model predictive control for the operation of building cooling systems. IEEE Trans. Control Syst. Technol. 2012, 20, 796–803. [Google Scholar]
- Azer, N.; Hsu, S. The prediction of thermal sensation from simple model of human physiological regulatory response. ASHRAE Trans. 1977, 83, 88–102. [Google Scholar]
- Gagge, A. An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans. 1971, 77, 247–262. [Google Scholar]
- International Organization for Standardization. ISO8996:1989: Ergonomics of Thermal Environments—Determination of Metabolic Heat Production; International Organization for Standardization: Geneva, Switzerland, 1989. [Google Scholar]
- Schiavon, S.; Lee, K.H. Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Build. Environ. 2013, 59, 250–260. [Google Scholar] [CrossRef]
- Schiavon, S.; Hoyt, T.; Piccioli, A. Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. Build. Simul. 2014, 7, 321–334. [Google Scholar] [CrossRef]
- Crawley, D.; Lawrie, L.; Winkelmann, F.; Buhl, W.; Huang, Y.; Pedersen, C.; Strand, R.; Liesen, R.; Fisher, D.; Witte, M.; et al. EnergyPlus: creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Walton, G. AIRNET: A Computer Program for Building Airflow Network Modeling; US Dept. of Commerce, National Institute of Standards and Technology, National Engineering Laborary, Center for Building Research, Building Environment Division: Washington D.C., WA, USA, 1989.
- Woods, J.; Winkler, J.; Christensen, D. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings. NREL/TP-5500-57441; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 1 January 2013. [Google Scholar]
- Droscher, A.; Schranzhofer, H.; Santiago, J.; Constantin, A.; Streblow, R.; Muller, D.; Exizidou, P.; Giannakis, G.; Rovas, D. Integrated Thermal Simulation Models for the Three Buildings. In PEBBLE Deliverable 2.1; Technical University of Crete (TUC): Chania, Greece, 2010. [Google Scholar]
- Klein, S.; Beckman, W.; Duffie, J. TRNSYS—A Transient Simulation Program. ASHRAE Trans. 1976, 82, 623–633. [Google Scholar]
- Giannakis, G.; Pichler, M.; Kontes, G.; Schranzhofer, H.; Rovas, D. Simulation speedup techniques for computationally demanding tasks. Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013. [Google Scholar]
- Verein Deutscher Ingenieure. Berechnung der Kühllast Klimatisierter Räume (VDI-Kühllastregeln); Verein Deutscher Ingenieure: Dusseldorf, Germany, 1977. [Google Scholar]
- Judkoff, R.; Neymark, J. International Energy Agency Building Energy Simulation Test (BESTEST) and Diagnostic Method; Technical Report; National Renewable Energy Lab: Golden, CO, USA, 1995. [Google Scholar]
- Neymark, J.; Judkoff, R.; Knabe, G.; Le, H.T.; Dürig, M.; Glass, A.; Zweifel, G. Applying the building energy simulation test (BESTEST) diagnostic method to verification of space conditioning equipment models used in whole-building energy simulation programs. Energy Build. 2002, 34, 917–931. [Google Scholar] [CrossRef]
- Maasoumy, M.; Vincentelli, A.S. Comparison of control strategies for energy efficient building HVAC systems. In Proceedings of the Symposium on Simulation for Architecture & Urban Design, Tampa, FL, USA, 13–16 April 2014. [Google Scholar]
- Remund, J.; Kunz, S.; Lang, R. METEONORM-Global meteorological database for solar energy and applied climatology. In Solar Engineering Handbook, Version 4.0; Meteotest: Bern, Switzerland, 1999. [Google Scholar]
- Rovas, D.; Kontes, G.; Valmaseda, C.; Giannakis, G.; Chacel, O.; Macek, K.; Fisera, R.; Rojicek, J.; Hottges, K.; Menzel, K.; Floeck, M. BaaS Advanced Use Cases. BAAS Deliverable 5.1b. 2014. [Google Scholar]
- Olesen, B.W. Radiant floor heating in theory and practice. ASHRAE J. 2002, 44, 19–26. [Google Scholar]
- Daum, D.; Haldi, F.; Morel, N. A personalized measure of thermal comfort for building controls. Build. Environ. 2011, 46, 3–11. [Google Scholar] [CrossRef]
- Ghahramani, A.; Tang, C.; Becerik-Gerber, B. An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling. Build. Environ. 2015, 92, 86–96. [Google Scholar] [CrossRef]
- Malavazos, C.; Tsatsakis, K.; Tsitsanis, A. Towards a “context aware” flexibility profiling mechanism for the energy management environment. In Proceedings of the MedPower Conference, Athens, Greece, 2–5 November 2014. [Google Scholar]
- Sadeghi, S.A.; Awalgaonkar, N.M.; Karava, P.; Bilionis, I. A Bayesian modeling approach of human interactions with shading and electric lighting systems in private offices. Energy Build. 2017, 134, 185–201. [Google Scholar] [CrossRef]
- Lee, S.; Bilionis, I.; Karava, P.; Tzempelikos, A. A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Build. Environ. 2017, 118, 323–343. [Google Scholar] [CrossRef]
- Pang, X.; Wetter, M.; Bhattacharya, P.; Haves, P. A framework for simulation-based real-time whole building performance assessment. Build. Environ. 2012, 54, 100–108. [Google Scholar] [CrossRef]
Category | Thermal Comfort Indices | Operative Temperature (°C) | Max Air Velocity (m/s) | |||
---|---|---|---|---|---|---|
PPD (%) | PMV | Summer | Winter | Summer | Winter | |
A | ≤6 | [−0.2, +0.2] | 24.5 ± 1.0 | 22.0 ± 1.0 | 0.12 | 0.10 |
B | ≤10 | [−0.5, +0.5] | 24.5 ± 1.5 | 22.0 ± 2.0 | 0.19 | 0.16 |
C | ≤15 | [−0.7, +0.7] | 24.5 ± 2.5 | 22.0 ± 3.0 | 0.24 | 0.21 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontes, G.D.; Giannakis, G.I.; Horn, P.; Steiger, S.; Rovas, D.V. Using Thermostats for Indoor Climate Control in Office Buildings: The Effect on Thermal Comfort. Energies 2017, 10, 1368. https://doi.org/10.3390/en10091368
Kontes GD, Giannakis GI, Horn P, Steiger S, Rovas DV. Using Thermostats for Indoor Climate Control in Office Buildings: The Effect on Thermal Comfort. Energies. 2017; 10(9):1368. https://doi.org/10.3390/en10091368
Chicago/Turabian StyleKontes, Georgios D., Georgios I. Giannakis, Philip Horn, Simone Steiger, and Dimitrios V. Rovas. 2017. "Using Thermostats for Indoor Climate Control in Office Buildings: The Effect on Thermal Comfort" Energies 10, no. 9: 1368. https://doi.org/10.3390/en10091368
APA StyleKontes, G. D., Giannakis, G. I., Horn, P., Steiger, S., & Rovas, D. V. (2017). Using Thermostats for Indoor Climate Control in Office Buildings: The Effect on Thermal Comfort. Energies, 10(9), 1368. https://doi.org/10.3390/en10091368