Geostatistical Three-Dimensional Modeling of a Tight Gas Reservoir: A Case Study of Block S6 of the Sulige Gas Field, Ordos Basin, China
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Method
- Wi—Weight coefficient of each subdivided zone;
- D—Mean well density of the target area, wells/km2;
- Di—Mean well density of the subdivided zone, wells/km2;
- N—Number of wells;
- S—Area, km2.
3. Results
3.1. Sandstone and Mudstone Modeling for Subdivided Zones
3.2. Variogram Parameter Computations and Applications
3.3. Model Evaluation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zou, C.N.; Zhai, G.M.; Zhang, G.Y.; Wang, H.J.; Zhang, G.S.; Li, J.Z.; Wang, Z.M.; Wen, Z.X.; Ma, F.; Liang, Y.B.; et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Pet. Explor. Dev. 2015, 42, 13–25. [Google Scholar] [CrossRef]
- Schmoker, J.W. Resource-assessment perspectives for unconventional gas systems. AAPG Bull. 2002, 86, 1993–1999. [Google Scholar]
- Holden, L.; Hauge, R.; Skare, Ø.; Skorstad, A. Modeling of fluvial reservoirs with object models. Math. Geosci. 1998, 30, 473–496. [Google Scholar]
- Lynds, R.; Hajek, E. Conceptual model for predicting mudstone dimensions in sandy braided-river reservoirs. AAPG Bull. 2006, 90, 1273–1288. [Google Scholar] [CrossRef]
- Deutsch, C.V. A sequential indicator simulation program for categorical variables with point and block data: BlockSIS. Math. Geosci. 2006, 32, 1669–1681. [Google Scholar] [CrossRef]
- Pyrcz, M.J.; Boisvert, J.B.; Deutsch, C.V. ALLUVSIM, A program for event-based stochastic modeling of fluvial depositional systems. Math. Geosci. 2009, 35, 1671–1685. [Google Scholar] [CrossRef]
- Zheng, R.C.; Zhou, Q.; Wang, H.; Li, F.J. The sequence architecture and sandbody prediction of the second member of Shanxi formation in Changbei Gas Field, Ordos Basin. Geol. J. China Univ. 2009, 15, 69–79. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Y.H.; Liu, H.; Wang, P.K.; Pang, S.J.; Zhao, C.C. The application of seismic waveform classification technique for sandstone prediction in shallow-water basin. Prog. Geophys. 2013, 28, 2618–2625. [Google Scholar]
- Chaki, S.; Verma, A.K.; Routray, A.; Mohanty, W.K. Well tops guided prediction of reservoir properties using modular neural network concept, a case study from western onshore, India. J. Pet. Sci. Eng. 2014, 123, 155–163. [Google Scholar] [CrossRef]
- Dong, G.Y.; He, Y.B.; Leng, C.P.; Gao, L.F. Mechanism of sand body prediction in a continental rift basin by coupling paleogeomorphic elements under the control of base level. Pet. Explor. Dev. 2016, 43, 579–590. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhang, J.L.; Wang, R.S.; Wang, J.K.; Yu, J.T.; Sun, Z.Q.; Wang, G.Q.; Guo, J.Q.; Liu, S.S.; Zhang, P.H. Facies architectural analysis and three-dimensional modeling of Wen79 fault block, Wenliu oilfield, Dongpu depression, China. Arab. J. Geosci. 2016, 9, 714. [Google Scholar] [CrossRef]
- Yin, X.D.; Lu, S.F.; Wang, P.F.; Wang, Q.M.; Wang, W.; Yao, T.Y. A three-dimensional high-resolution reservoir model of the Eocene Shahejie formation in Bohai Bay Basin, integrating stratigraphic forward modeling and geostatistics. Mar. Pet. Geol. 2017, 82, 362–370. [Google Scholar] [CrossRef]
- Jia, A.L.; Tang, J.W.; He, D.B.; Ji, Y.K.; Cheng, L.H. Geological modeling for sandstone reservoirs with low permeability and strong heterogeneity in sulige gas field. China Pet. Explor. 2007, 1, 12–16. [Google Scholar]
- Chen, F.X.; Lu, T.; Da, S.P.; Xu, X.R.; Tang, L.P. Study on sedimentary facies of braided stream and its application in geological modeling in sulige gas field. Pet. Geol. Eng. 2008, 22, 21–24. [Google Scholar]
- Chen, F.X.; Wang, Y.; Zhang, J.; Yang, Y. He8 reservoir’s favorable development blocks in Sulige gas field, Ordos Basin. Nat. Gas Geosci. 2009, 20, 95–99. [Google Scholar]
- Zhao, Y.; Li, J.B.; Zhang, J.; Zhang, Q. Methodology for geologic modeling of low-permeability fluvial sandstone reservoirs and its application: A case study of the Su-6 infilling drilling pilot in the Sulige gas field. Nat. Gas Ind. 2010, 30, 32–35. [Google Scholar]
- Yang, R.C.; Wang, Y.L.; Fan, A.P.; Han, Z.Z.; Ma, D.X.; Wang, X.P.; Gao, F.L. Reservoir geological modeling of Z30 block in Sulige gas field, Ordos Basin. Nat. Gas Ind. 2012, 23, 1148–1154. [Google Scholar]
- Han, J.C.; Wang, X.B.; Sun, Z.X.; Li, Z.Y. Simulation of fluvial sedimentary microfacies using multiple-point geostatistics. Spec. Oil Gas Reserv. 2011, 18, 48–51. [Google Scholar]
- Wu, T.; Fu, B. Application of the multiple-point method to geological modeling in the Sulige gas field. Geol. Explor. 2016, 52, 0985–0991. [Google Scholar]
- Guo, Z.; Sun, L.D.; Jia, A.L.; Lu, T. 3-D geological modeling for tight sand gas reservoir of braided river facies. Pet. Explor. Dev. 2015, 42, 83–91. [Google Scholar] [CrossRef]
- Journel, A.G.; Isaaks, E.H. Conditional indicator simulation: Application to a Saskatchewan uranium deposit. Math. Geosci. 1984, 16, 685–718. [Google Scholar] [CrossRef]
- Goovaerts, P. Comparative performance of indicator algorithms for modeling conditional probability distribution functions. Math. Geosci. 1994, 26, 385–410. [Google Scholar] [CrossRef]
- Zhang, J.L.; Dong, Z.R.; Li, D.Y. A Reservoir Assessment of the Qingshankou Sandstones (The Upper Cretaceous), Daqingzijing Field, South Songliao Basin, Northeastern China. Pet. Sci. Technol. 2014, 32, 274–280. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhang, J.L.; Wang, J.K.; Li, C.L.; Yu, J.T.; Zhang, G.X.; Fan, Z.L.; Wei, G.Q.; Sun, Z.Q.; Xue, H.H.; et al. Geostatistical modeling for fine reservoir description of Wei2 block of Weicheng oilfield, Dongpu depression, China. Arab. J. Geosci. 2015, 8, 9101–9115. [Google Scholar] [CrossRef]
- Hou, J.G.; Xu, S.Y. Stochastic simulation methods analysis of channel sandstone reservoir. Pet. Explor. Dev. 1998, 25, 62–64. [Google Scholar]
- Yin, Y.S.; Wu, S.H.; Zhang, C.M.; Li, S.H.; Zhang, S.F. Integrative prediction of microfacies with multiple stochastic modeling methods. Acta Pet. Sin. 2006, 27, 68–71. [Google Scholar]
- Wang, J.P.; Ren, Z.L.; Shan, J.F.; Zhu, Y.J. He8 and Shan1 members’ depositional system research. Geol. Sci. Technol. Inf. 2011, 30, 41–48. [Google Scholar]
- Tang, M.M.; Zhang, J.L. Fracture Modeling and Application Based on fracture Mechanics; Martinus Nijhoff Publishers: Leydent, The Netherlands, 2010. [Google Scholar]
- Rabczuk, T.; Belytschko, T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput. Methods Appl. Mech. Eng. 2007, 196, 2777–2799. [Google Scholar] [CrossRef]
- Zhuang, X.; Huang, R.; Rabczuk, T.; Liang, C. A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage. Math. Probl. Eng. 2014, 2014, 179169. [Google Scholar] [CrossRef]
- Ma, X.; Hao, R.F.; Lai, X.A.; Zhang, Y.M.; Ma, Z.G.; He, M.F.; Xiao, Y.X.; Bi, M.; Ma, X.X. Field test of volume fracturing for horizontal wells in Sulige tight sandstone gas reservoirs, NW China. Pet. Explor. Dev. 2014, 41, 810–816. [Google Scholar] [CrossRef]
- Wang, J.K.; Zhang, J.L.; Xie, J.; Ding, F. Initial gas full-component simulation experiment of Ban-876 underground gas storage. J. Nat. Gas Sci. Eng. 2014, 18, 131–136. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Lian, H.; Rabczuk, T.; Bordas, S. Modelling hydraulic fractures in porous media using flow cohesive interface elements. Eng. Geol. 2017, 225, 68–82. [Google Scholar] [CrossRef]
Zones | S (km2) | N | D (wells/km2) |
---|---|---|---|
A | 65.70 | 34 | 0.52 |
B | 16.50 | 33 | 2.00 |
C | 104.70 | 51 | 0.49 |
D | 95.10 | 47 | 0.49 |
E | 85.80 | 63 | 0.73 |
F | 82.90 | 17 | 0.21 |
Six zones | 450.70 | 245 | - |
The whole area | 956.70 | 390 | 0.41 |
Lithofacies | Variogram Ranges | Variogram Type | |||
---|---|---|---|---|---|
Major Direction | Minor Direction | Vertical Direction | Azimuth (°) | ||
Interlayer A | 1347.1 | 661.4 | 9.5 | 10 | Spherical model |
Interlayer B | 1185.3 | 965.4 | 3.9 | 7 | Spherical model |
Sandstone | 1176.7 | 782.6 | 8.5 | 9 | Spherical model |
Zone | Facies | Variogram Ranges | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H8S1 | H8S2 | H8X1 | H8X2 | S1-1 | S1-2 | S1-3 | ||||||||||||||||
Maj | Min | Ver | Major | Min | Ver | Maj | Min | Ver | Maj | Min | Ver | Maj | Min | Ver | Maj | Min | Ver | Maj | Min | Ver | ||
A | Interlayer A | 2521.9 | 2471.1 | 8.8 | 2911.8 | 2475.2 | 7.4 | 2436 | 2049.6 | 9.2 | 2255.6 | 2064.5 | 9.1 | 3080.9 | 1629.2 | 8.8 | 2155.1 | 1791.9 | 7.5 | 2505.6 | 2096.2 | 7.9 |
Interlayer B | 2326.5 | 2114.0 | 2.9 | 2107.1 | 1758.3 | 2.2 | 1775 | 1420.4 | 3.4 | 2176.0 | 1607.1 | 3.4 | 2399.2 | 1767.4 | 2.7 | 1742.4 | 1400.0 | 4.7 | 2327.2 | 2194.1 | 5.9 | |
Sandstone | 2021.7 | 1911.0 | 5.4 | 2825.6 | 1842.6 | 7.0 | 3022 | 1917.4 | 6.6 | 2824.0 | 1944.8 | 7.6 | 2973.6 | 1840.7 | 7.7 | 2543.9 | 1993.1 | 5.4 | 2228.8 | 1920.1 | 7.1 | |
B | Interlayer A | 1347.1 | 661.4 | 9.5 | 1877.6 | 998.7 | 9.3 | 1196 | 784.1 | 7.5 | 1078.3 | 860.1 | 7.6 | 1016.3 | 982.6 | 7.7 | 1373.2 | 907.3 | 9.6 | 1392.8 | 1201.9 | 5.3 |
Interlayer B | 1185.3 | 965.4 | 3.9 | 1091.6 | 411.7 | 3.0 | 593 | 401.3 | 2.7 | 926.6 | 669.7 | 2.5 | 988.7 | 895.2 | 3.3 | 907.2 | 587.5 | 5.0 | 1191.2 | 680.9 | 4.6 | |
Sandstone | 1176.7 | 782.6 | 8.5 | 1073.1 | 830.9 | 5.5 | 1262 | 1050.9 | 4.9 | 1017.1 | 761.0 | 6.1 | 1138.3 | 958.7 | 6.5 | 1162.2 | 829.0 | 5.7 | 1144.8 | 846.9 | 8.2 | |
C | Interlayer A | 2795.2 | 2197.0 | 7.9 | 2978.5 | 2192.3 | 13 | 1144 | 1276.4 | 7.1 | 2072.7 | 1256.3 | 8.7 | 3046.8 | 1551.8 | 8.4 | 2513.0 | 1835.4 | 7.9 | 2984.4 | 2110.1 | 9.8 |
Interlayer B | 2240.5 | 2453.5 | 4.5 | 2419.9 | 1703.6 | 3.3 | 2517 | 2234.7 | 3.3 | 1416.2 | 1358.2 | 3.5 | 1978.9 | 1539.6 | 3.3 | 2357.3 | 1586.3 | 4.8 | 2426.1 | 1766.4 | 3.7 | |
Sandstone | 2227.9 | 1634.5 | 5.5 | 2076.6 | 1755.2 | 5.0 | 2760 | 2238.3 | 5.4 | 2955.5 | 2109.5 | 7.4 | 2388.9 | 2215.1 | 8.2 | 1841.6 | 1587.0 | 6.4 | 2503.1 | 1802.3 | 4.0 | |
D | Interlayer A | 2258.2 | 1877.7 | 8.0 | 1889.8 | 1876.4 | 8.3 | 2775 | 1662.0 | 6.8 | 2019.8 | 1956.7 | 5.8 | 2852.4 | 1651.5 | 9.6 | 1920.4 | 1575.1 | 8.9 | 3060.5 | 2338.0 | 6.9 |
Interlayer B | 1412.8 | 810.3 | 4.1 | 1749.8 | 1321.4 | 4.7 | 2641 | 999.7 | 2.7 | 1267.9 | 886.3 | 3.5 | 2526.5 | 1893.3 | 4.3 | 2200.9 | 714.4 | 4.9 | 2666.7 | 2586.9 | 4.1 | |
Sandstone | 2127.2 | 1311.6 | 4.9 | 2427.1 | 1974.2 | 7.4 | 2628 | 2192.8 | 5.8 | 2649.9 | 2026.5 | 7.3 | 1607.4 | 706.6 | 7.4 | 2055.3 | 1855.6 | 6.1 | 2012.6 | 1042.9 | 3.4 | |
E | Interlayer A | 2217.1 | 1338.1 | 6.9 | 2588.4 | 844.8 | 7.8 | 1708 | 1098.1 | 7.8 | 1978.7 | 1239.4 | 6.4 | 2175.0 | 1372.7 | 7.5 | 1845.2 | 1301.5 | 7.5 | 2223.2 | 1564.8 | 8.4 |
Interlayer B | 2038.2 | 1942.1 | 3.0 | 1204.6 | 895.0 | 4.2 | 1074 | 835.0 | 2.9 | 1783.4 | 967.5 | 3.3 | 1749.1 | 1073.7 | 5.5 | 1663.8 | 881.9 | 5.7 | 2151.8 | 1050.5 | 6.4 | |
Sandstone | 2025.2 | 1593.7 | 6.6 | 1315.3 | 1058.5 | 5.4 | 2338 | 2115.1 | 6.1 | 2219.4 | 1109.1 | 4.2 | 1556.2 | 1067.5 | 6.5 | 1880.3 | 741.9 | 5.6 | 1872.4 | 1003.0 | 2.7 | |
F | Interlayer A | 2582.5 | 2306.9 | 5.9 | 3038.2 | 2246.6 | 6.7 | 2123 | 1945.9 | 6.7 | 2663.0 | 1701.5 | 5.5 | 1744.7 | 1483.1 | 6.1 | 2453.6 | 2414.6 | 8.4 | 2713.3 | 1951.2 | 5.2 |
Interlayer B | 2177.9 | 1582.5 | 2.0 | 2654.2 | 1845.7 | 5.7 | 2095 | 1790.7 | 4.1 | 2190.0 | 1674.0 | 6.2 | 1610.5 | 948.3 | 6.3 | 2406.1 | 2309.1 | 3.8 | 2209.8 | 1737.8 | 1.5 | |
Sandstone | 2292.9 | 1349.1 | 5.3 | 2642.9 | 2079.1 | 4.5 | 1889 | 1154.7 | 7.7 | 2692.8 | 1694.2 | 7.0 | 1440.7 | 998.1 | 5.5 | 2402.7 | 2154.3 | 6.3 | 1576.0 | 1229.9 | 2.3 |
Facies | Variogram Range | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H8S1 | H8S2 | H8X1 | H8X2 | |||||||||
Maj | Min | Ver | Maj | Min | Ver | Maj | Min | Ver | Maj | Min | Ver | |
Interlayer A | 2492.3 | 2089.6 | 7.8 | 2609.1 | 2050.7 | 9.4 | 2050.2 | 1610.9 | 7.5 | 2143.5 | 1677.0 | 7.4 |
Interlayer B | 1979.7 | 1741.2 | 3.6 | 2077.2 | 1542.4 | 3.8 | 2213.3 | 1520.8 | 3.2 | 1644.0 | 1271.6 | 3.8 |
Sandstone | 2132.1 | 1550.2 | 5.4 | 2333.6 | 1811.1 | 6.1 | 2622.8 | 2004.1 | 6.1 | 2725.6 | 1909.1 | 7.1 |
S1-1 | S1-2 | S1-3 | ||||||||||
Interlayer A | 2752.0 | 1567.9 | 8.5 | 2191.8 | 1765.3 | 8.2 | 2794.5 | 2102.0 | 7.8 | |||
Interlayer B | 2153.6 | 1578.7 | 4.0 | 2115.0 | 1310.7 | 4.8 | 2411.9 | 2025.0 | 4.2 | |||
Sandstone | 2095.2 | 1451.4 | 7.4 | 2111.3 | 1745.0 | 6.0 | 2127.7 | 1466.6 | 4.3 |
Classification | Evaluation Formula | Evaluation Criterion | |
---|---|---|---|
Sandstone | Mudstone | ||
I | Ps = Lsm/Lsi | Pm = Lmm/Lmi | Ps ≥ 0.8 and Pm ≥ 0.8 |
II | 0.6 ≤ Ps < 0.8 (Sandstone dominated); 0.6 ≤ Pm < 0.8 (Mudstone dominated) | ||
III | Others |
Average frequency | |||
---|---|---|---|
I | II | III | |
Models (PS) | 8.2 | 26.6 | 15.2 |
Models (PSs) | 7.5 | 25.6 | 16.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, L.; Wang, R. Geostatistical Three-Dimensional Modeling of a Tight Gas Reservoir: A Case Study of Block S6 of the Sulige Gas Field, Ordos Basin, China. Energies 2017, 10, 1439. https://doi.org/10.3390/en10091439
Zhang J, Liu L, Wang R. Geostatistical Three-Dimensional Modeling of a Tight Gas Reservoir: A Case Study of Block S6 of the Sulige Gas Field, Ordos Basin, China. Energies. 2017; 10(9):1439. https://doi.org/10.3390/en10091439
Chicago/Turabian StyleZhang, Jinliang, Longlong Liu, and Ruoshan Wang. 2017. "Geostatistical Three-Dimensional Modeling of a Tight Gas Reservoir: A Case Study of Block S6 of the Sulige Gas Field, Ordos Basin, China" Energies 10, no. 9: 1439. https://doi.org/10.3390/en10091439
APA StyleZhang, J., Liu, L., & Wang, R. (2017). Geostatistical Three-Dimensional Modeling of a Tight Gas Reservoir: A Case Study of Block S6 of the Sulige Gas Field, Ordos Basin, China. Energies, 10(9), 1439. https://doi.org/10.3390/en10091439