Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications
Abstract
:1. Introduction
1.1. Background and Motivation of the Study
1.2. Towards Higher Energy Density Batteries: Lithium-Ion and Lithium Sulfur Batteries
1.3. Life Cycle Assessment (LCA) and Its Application for Traction Batteries
2. Goal and Scope
3. Life Cycle Inventory Analysis
3.1. Energy Density, Mass and Mass Distribution at Stack, Cell and Pack Level
3.2. Cell Manufacturing and Battery Assembly
3.3. Use Phase
3.4. Recycling and End-of-Life
4. Results and Discussion
5. Main Findings and Implications
5.1. Use of Water-Base Solvents
5.2. Thickness of the Lithium Foil and Alternative Anodes
5.3. Limitations and Future Work
5.4. More Detailed Research on the Effect of Lithium Metal
5.5. Manufacturing Energy for LSB
5.6. Estimating the Effect of Avoided Burden Due to Recycling
5.7. Extending the Scope to Other Mobility Systems Such as Aviation
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
LCA | Life Cycle Assessment |
LIB | Lithium-ion battery |
LSB | Lithium-sulfur battery |
NMP | N-Methyl-2-pyrrolidone |
IEA | International Energy Agency |
GHG | green-house gas |
EVs | electric vehicles |
GWP | global warming potential |
ICEVs | internal combustion engine vehicles |
NMC | lithium manganese cobalt oxide |
LMO | lithium manganese oxide |
LFP | lithium iron phosphate |
PVDF | polyvinylidene difluoride |
HVAC | heating, ventilation and air conditioning |
WLTP | worldwide harmonized light vehicles test procedures |
Nomenclature
GWP | global warming potential (kg CO2-eq) |
FDP | fossil depletion potential (kg oil-eq) |
ODP | ozone depletion potential (kg CFC-11-eq) |
POFP | photo oxidation formation potential (kg NMVOC) |
PMFP | particulate matter formation potential (kg PM10-eq) |
TAP | terrestrial acidification potential (kg SO2-eq) |
FEP | freshwater eutrophication potential (kg P-eq) |
MEP | marine eutrophication potential (kg N-eq) |
FETP | freshwater toxicity potential (kg 1.4-DCB-eq) |
METP | marine toxicity potential (kg 1.4-DCB-eq) |
TETP | terrestrial eutrophication potential (kg 1.4 DCB-eq) |
HTP | human toxicity potential (kg 1.4-DCB-eq) |
MDP | metal depletion potential (kg N-eq) |
Subscripts
inf. | infinite |
100 | 100 years |
Wt. % | weight percent |
References
- Karagulian, F.; Belis, C.A.; Dora, F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). CO2 Emissions from Fuel Combustion (Highlights 2015 Edition); International Energy Agency: Paris, France, 2015. [Google Scholar]
- International Energy Agency (IEA). Global EV Outlook 2016 beyond One Million Electric Cars; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Sims, R.; Schaeffer, R.; Creutzig, F.; Cruz-Núñez, X.; D’Agosto, M.; Dimitriu, D.; Figueroa Meza, M.J.; Fulton, L.; Kobayashi, S.; Lah, O.; et al. Transport. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2014, 18, 252–264. [Google Scholar] [CrossRef]
- Dunn, J.B.; Gaines, L.; Kelly, J.C.; James, C.; Gallagher, K.G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 2015, 8, 158–168. [Google Scholar] [CrossRef]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1–26. [Google Scholar] [CrossRef]
- Sun, H.H.; Choi, W.; Lee, J.K.; Oh, I.H.; Jung, H.G. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio. J. Power Sources 2015, 275, 877–883. [Google Scholar] [CrossRef]
- Hayner, C.M.; Zhao, X.; Kung, H.H. Materials for Rechargeable Lithium-Ion Batteries. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 445–471. [Google Scholar] [CrossRef] [PubMed]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 243. [Google Scholar] [CrossRef]
- Kim, H.C.; Wallington, T.J.; Arsenault, R.; Bae, C.; Ahn, S.; Lee, J. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Environ. Sci. Technol. 2016, 50, 7715–7722. [Google Scholar] [CrossRef] [PubMed]
- Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H. Life Cycle Environmental Assessment of Li-iion and Nickel Metal Hydride Batteries for Plug-in Hybrid and Battery Electric Vehicles. Supporting Information. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef] [PubMed]
- Ellingsen, L.A.-W.; Majeau-Bettez, G.; Singh, B.; Srivastava, A.K.; Valøen, L.O.; Strømman, A.H. Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. J. Ind. Ecol. 2014, 18, 113–124. [Google Scholar] [CrossRef]
- Panchal, S.; Mathewson, S.; Fraser, R.; Culham, R.; Fowler, M. Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach. SAE Int. J. Altern. Powertrains 2015, 4, 293–307. [Google Scholar] [CrossRef]
- Panchal, S.; Mcgrory, J.; Kong, J.; Fraser, R.; Fowler, M.; Dincer, I.; Agelin-Chaab, M. Cycling degradation testing and analysis of a LiFePO4 battery at actual conditions. Int. J. Energy Res. 2017, 41, 2565–2575. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.H.; Zu, C.; Su, Y.S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef] [PubMed]
- Samaniego, B.; Carla, E.; O’Neill, L.; Nestoridi, M. High specific energy Lithium Sulfur cell for space application. E3S Web Conf. 2017, 16, 8006. [Google Scholar] [CrossRef]
- Manthiram, A.; Chung, S.-H.; Zu, C. Lithium-Sulfur Batteries: Progress and Prospects. Adv. Mater. 2015, 27, 1980–2006. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.J.; Villevieille, C.; Streich, D.; Trabesinger, S.; Novák, P. Rechargeable Batteries: Grasping for the Limits of Chemistry. J. Electrochem. Soc. 2015, 162, A2468–A2475. [Google Scholar] [CrossRef]
- Wild, M.; O’Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescub, M.; Offer, G.J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494. [Google Scholar] [CrossRef]
- Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J. Lithium-Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Adv. Energy Mater. 2015, 5. [Google Scholar] [CrossRef]
- Gao, J.; Lowe, M.A.; Kiya, Y.; Abruña, H.D. Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in-situ X-ray absorption spectroscopic studies. J. Phys. Chem. C 2011, 115, 25132–25137. [Google Scholar] [CrossRef]
- Pang, Q.; Liang, X.; Kwok, C.Y.; Kulisch, J.; Nazar, L.F. A Comprehensive Approach toward Stable Lithium–Sulfur Batteries with High Volumetric Energy Density. Adv. Energy Mater. 2017, 7, 1601630. [Google Scholar] [CrossRef]
- Thieme, S.; Brückner, J.; Meier, A.; Bauer, I.; Gruber, K.; Kaspar, J.; Helmer, A.; Althues, H.; Schmuckc, M.; Kaskel, S. A lithium–sulfur full cell with ultralong cycle life: Influence of cathode structure and polysulfide additive. J. Mater. Chem. A 2015, 3, 808–3820. [Google Scholar] [CrossRef]
- Zhang, S.S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162. [Google Scholar] [CrossRef]
- Qian, J.; Henderson, W.A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Ma, S.B.; Lee, D.J.; Im, D.; Doo, S.G.; Yamamoto, O. A highly reversible lithium metal anode. Sci. Rep. 2014, 4, 3815. [Google Scholar] [CrossRef] [PubMed]
- Brückner, J.; Thieme, S.; Böttger-Hiller, F.; Bauer, I.; Grossmann, H.T.; Strubel1, P.; Althues, H.; Spange, S.; Kaskel, S. Carbon-based anodes for lithium sulfur full cells with high cycle stability. Adv. Funct. Mater. 2014, 24, 284–1289. [Google Scholar] [CrossRef]
- Klöpffer, W.; Grahl, B. Life Cycle Assessment (LCA); Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014. [Google Scholar]
- Hauschild, M.Z. Introduction to LCA. In Life Cycle Assessment; Springer: Cham, Switzerland, 2018; pp. 59–66. [Google Scholar]
- Hauschild, M.Z.; Huijbregts, M.A.J. Introducing Life Cycle Impact Assessment. In Life Cycle Impact Assessment; Springer: Dordrecht, The Netherlands, 2015; pp. 1–16. [Google Scholar]
- Cerdas, F.; Egede, P.; Herrmann, C. LCA of Electromobility. In Life Cycle Assessment; Springer: Cham, Switzerland, 2018; pp. 669–693. [Google Scholar]
- Duce, A.D.; Egede, P.; Öhlschläger, G.; Dettmer, T.; Althaus, H.J.; Bütler, T.; Szczechowicz, E. eLCAr—Guidelines for the LCA of Electric Vehicles. Report from project “E-Mobility Life Cycle Assessment Recommendations”, funded within the European Union Seventh Framework Programme—FP7/2007–2013; Proj. No. 285571. 31 January. Available online: https://www.elcar-project.eu/download/guidelines/ (accessed on 20 October 2017).
- Nealer, R.; Hendrickson, T.P. Review of Recent Lifecycle Assessments of Energy and Greenhouse Gas Emissions for Electric Vehicles. Curr. Sustain. Energy Rep. 2015, 2, 66–73. [Google Scholar] [CrossRef]
- Hawkins, T.R.; Gausen, O.M.; Strømman, A.H. Environmental impacts of hybrid and electric vehicles—A review. Int. J. Life Cycle Assess. 2012, 17, 997–1014. [Google Scholar] [CrossRef]
- Helmers, E.; Marx, P. Electric cars: Technical characteristics and environmental impacts. Environ. Sci. Eur. 2012, 24, 14. [Google Scholar] [CrossRef]
- Miotti, M.; Supran, G.J.; Kim, E.J.; Trancik, J.E. Personal Vehicles Evaluated against Climate Change Mitigation Targets. Environ. Sci. Technol. 2016, 50, 10795–10804. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.Y.; Ramachandaramurthy, V.K.; Tan, K.M.; Mithulananthan, N. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365–385. [Google Scholar] [CrossRef]
- Messagie, M.; Macharis, C.; Van Mierlo, J. Key outcomes from life cycle assessment of vehicles, a state of the art literature review. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–9. [Google Scholar]
- Jungmeier, G.; Dunn, J.B.; Elgowainy, A.; Ozdemir, E.D.; Ehrenberger, S.; Althaus, H.J.; Widmer, R. Life cycle assessment of electric vehicles—Key issues of Task 19 of the International Energy Agency (IEA) on Hybrid and Electric Vehicles (HEV). In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–7. [Google Scholar]
- Hofer, J. Sustainability Assessment of Passenger Vehicles: Analysis of Past Trends and Future Impacts of Electric Powertrains; ETH Zurich: Zürich, Switzerland, 2014. [Google Scholar]
- Bauer, C.; Hofer, J.; Althaus, H.-J.; Del Duce, A.; Simons, A. The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl. Energy 2015, 157, 871–883. [Google Scholar] [CrossRef]
- Messagie, M.; Boureima, F.S.; Coosemans, T.; Macharis, C.; van Mierlo, J. A range-based vehicle life cycle assessment incorporating variability in the environmental assessment of different vehicle technologies and fuels. Energies 2014, 7, 1467–1482. [Google Scholar] [CrossRef]
- Helmers, E.; Dietz, J.; Hartard, S. Electric car life cycle assessment based on real-world mileage and the electric conversion scenario. Int. J. Life Cycle Assess. 2017, 22, 15–30. [Google Scholar] [CrossRef]
- Egede, P. Environmental Assessment of Lightweight Electric Vehicles; Springer: Cham, Switzerland, 2017; pp. 94–98. [Google Scholar]
- Deng, Y.; Li, J.; Li, T.; Gao, X.; Yuan, C. Life cycle assessment of lithium sulfur battery for electric vehicles. J. Power Sources 2017, 343, 284–295. [Google Scholar] [CrossRef]
- Notter, D.A.; Gauch, M.; Widmer, R.; Wäger, P.; Stamp, A.; Zah, R.; Althaus, H. Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environ. Sci. Technol. 2010, 44, 6550–6556. [Google Scholar] [CrossRef] [PubMed]
- Zackrisson, M.; Avellán, L.; Orlenius, J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—Critical issues. J. Clean. Prod. 2010, 18, 1519–1529. [Google Scholar] [CrossRef]
- Dunn, J.B.; Gaines, L.; Sullivan, J.; Wang, M.Q. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ. Sci. Technol. 2012, 46, 12704–12710. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744–1751. [Google Scholar] [CrossRef]
- Schünemann, J.H.; Wissenschaft, F.; Praxis, I.F. Modell zur Bewertung der Herstellkosten von Lithiumionenbatteriezellen; Sierke: Göttingen, Germany, 2015. [Google Scholar]
- Yuan, C.; Deng, Y.; Li, T.; Yang, F. Manufacturing energy analysis of lithium ion battery pack for electric vehicles. CIRP Ann. Manuf. Technol. 2017, 66, 53–56. [Google Scholar] [CrossRef]
- Diekmann, J.; Hanischb, C.; Frobösea, L.; Schälickea, G.; Loellhoeffela, T.; Fölstera, A.; Kwadea, A. Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with Focus on Mechanical Processes. J. Electrochem. Soc. 2017, 164, A6184–A6191. [Google Scholar] [CrossRef]
- Gallagher, K.G.; Nelson, P.A. Manufacturing Costs of Batteries for Electric Vehicles; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Hanisch, C.; Haselrieder, W.; Kwade, A. Recycling von Lithium-Ionen- Batterien—Das Projekt LithoRec. In Recycling und Rohstoffe; Thomé-Kozmienski, D.G.K.J., Ed.; TK Verlag: Neuruppin, Germany, 2012; pp. 691–698. [Google Scholar]
- Kwade, A.; Diekmann, J.; Hanisch, C.; Spengler, T.; Thies, C.; Herrmann, C.; Dröder, K.; Cerdas, F.; Gerbers, R.; Scholl, S.; et al. Recycling von Lithium-Ionen-Batterien—LithoRec II Abschlussberichte der beteiligten Verbundpartner. Verbundprojekt im Rahmen des Förderprogramms, Erneuerbar Mobil “des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit. 2016. Available online: https://www.erneuerbar-mobil.de/sites/default/files/2017-01/Abschlussbericht_LithoRec_II_20170116.pdf (accessed on 20 October 2017).
- Hanisch, C.; Loellhoeffel, T.; Diekmann, J.; Markley, K.J.; Haselrieder, W.; Kwade, A. Recycling of lithium-ion batteries: A novel method to separate coating and foil of electrodes. J. Clean. Prod. 2015, 108, 301–311. [Google Scholar] [CrossRef]
- Hanisch, C.; Diekmann, J.; Stieger, A.; Haselrieder, W.; Kwade, A. Recycling of Lithium-Ion Batteries. In Handbook of Clean Energy Systems; John Wiley & Sons, Ltd.: New York, NY, USA, 2015; pp. 1–24. [Google Scholar]
- Cerdas, F.; Andrew, S.; Thiede, S.; Herrmann, C. Disassembly Planning and Assessment of Automation Potentials for Lithium-Ion Batteries. In Recycling of Lithium-Ion Batteries the Lithorec Way; Springer: Cham, Switzerland, 2018; pp. 83–97. [Google Scholar]
- Cerdas, F.; Andrew, S.; Thiede, S.; Herrmann, C. Environmental Aspects of the Recycling of Lithium-Ion Traction Batteries. In Recycling of Lithium-Ion Batteries the Lithorec Way; Springer: Cham, Switzerland, 2018; pp. 267–288. [Google Scholar]
- Ecoinvent Centre. Ecoinvent. 2015. Available online: http://www.ecoinvent.org/ (accessed on 20 October 2017).
- Goedkoop, M.J.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J. Recipe 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. First Edition Report I: Characterisation. Available online: https://www.leidenuniv.nl/cml/ssp/publications/recipe_characterisation.pdf (accessed on 20 October 2017).
- Del Duce, A.; Gauch, M.; Althaus, H.-J. Electric passenger car transport and passenger car life cycle inventories in ecoinvent version 3. Int. J. Life Cycle Assess. 2016, 21, 1314–1326. [Google Scholar] [CrossRef]
- Granta Design Limited. CES Selector Software; Granta Design Limited: Cambridge, UK, 2013. [Google Scholar]
- World Health Organisation. N-Methyl-2-Pyrrolidone; World Health Organisation: Geneva, Switzerland, 2001. [Google Scholar]
- Wood, D.L.; Li, J.; Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 2015, 275, 234–242. [Google Scholar] [CrossRef]
- Ludwig, B.; Zheng, Z.; Shou, W.; Wang, Y.; Pan, H. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries. Sci. Rep. 2016, 6, 23150. [Google Scholar] [CrossRef] [PubMed]
- Thieme, S.; Brückner, J.; Bauer, I.; Oschatz, M.; Borchardt, L.; Althuesa, H.; Kaskel, S. High capacity micro-mesoporous carbon–sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. J. Mater. Chem. A 2013, 1, 9225. [Google Scholar] [CrossRef]
- Jeschull, F.; Brandell, D.; Edström, K.; Lacey, M.J. A stable graphite negative electrode for the Lithium-sulfur battery. Chem. Commun. 2015, 51, 17100–17103. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zu, C.; Manthiram, A. In Situ-Formed Li2S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries. J. Am. Chem. Soc. 2013, 135, 18044–18047. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Weil, M. A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries. Resources 2016, 5, 46. [Google Scholar] [CrossRef]
Author | Battery Chemistry | Battery Size (kWh) | Battery Pack Specific Energy (kWh/kgbattery) | Cradle-to-Gate GWP (kg CO2-eq/kWhbattery) |
---|---|---|---|---|
Notter et al. 2010 [48] | LMO—graphite | 34.2 | 0.114 | 53 |
Zackrisson et al. 2010 [49] | LFP—graphite | 10.0 | 0.093 | 160 |
Majeau-Bettez 2011 [13] | NiMH, NMC, LFP—graphite | 24.0 a | 0.112 a | 196 a |
Dunn et al. 2012 [50] | LMO—graphite | 28.0 | 0.133 | 39 |
Ellingsen et al. 2013 [14] | NMC—graphite | 26.6 | 0.105 | 172 |
Kim et al. 2016 [12] | LMO/NMC—graphite | 24.0 | 0.08 | 140 |
Deng et al. 2017 [47] | LSB | 61.3 | 0.22 | 146 |
Peters et al. 2016 [51] | Na-ion | n.a. | 0.102 | 140 |
Material Characteristics | |||
---|---|---|---|
Active Material (AM) | Discharge Capacity (mAh/g) | Bulk Density (g/cm³) | Average Discharge Potential (V) |
NMC111 | 154 | 4.70 | 3.70 |
Graphite (Gr) | 372 | 2.20 | 0.10 |
Sulfur (S8) | 1672 | 2.07 | 2.10 |
Lithium metal | 3884 | 0.53 | 0.00 |
vs. Li/Li+ | |||
Inactive Materials | Thickness (µm) | Density (g/cm³) | Specific Mass (mg/cm²) |
Binder | - | 1.80 | - |
Pos. current collector | 10 | 2.70 | 2.70 |
Neg. current collector | 5 | 8.96 | 4.48 |
Separator + electrolyte | 20 | 1.05 | 2.10 |
Conductive additive (C65) | - | 2.25 | - |
Electrode Composition and Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|
Electrode | AM | (wt.%) | CA | (wt.%) | Binder | (wt.%) | Porosity (%) | Density (g/cm³) | Density Incl. Electrolyte (g/cm³) |
LIB—Cathode | NMC111 | 96% | C65 | 2% | 5130 | 2% | 37% | 2.82 | 3.21 |
LIB—Anode | SMGA4 | 92% | C65 | 3% | CMC/SBR | 5% | 32% | 1.51 | 1.85 |
LSB—Cathode | S8 | 60% | C65 | 30% | 5130 | 10% | 60% | 0.72 | 1.35 |
LSB—Anode | Li-metal | 100% | - | - | - | - | 0% | 0.53 | 0.53 |
CA = conductive additive |
Cell stacks Assembly | |||||||
---|---|---|---|---|---|---|---|
Cathode | Anode | ||||||
Cell | Nominal Cell Voltage (V) | Thickness (µm) | Areal Mass (mg/cm²) | Area Capacity (mAh/cm²) | Thickness (µm) | Area Mass (mg/cm²) | Area Capacity (mAh/cm²) |
NMC//Gr | 3.7 | 55.7 | 15.70 | 2.32 | 53.8 | 7.33 | 2.51 |
S8//Li | 2.1 | 63.6 | 4.87 | 5.33 | 50.0 | 2.46 | 9.54 |
Total Stack Level | ||||
---|---|---|---|---|
Cell | Thickness (µm) | Area Mass (mg/cm²) | Energy Density (Wh/L) | Specific Energy (Wh/kg) |
NMC//Gr | 148 | 37.5 | 594 | 229 |
S8//Li | 293 | 36.9 | 382 | 303 |
Impact Category * | Per Battery Pack | Per Battery Mass (kg−1) | Per Battery Capacity (kwh−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
LIB | LSB | Ref. [14] (LIB) | LIB | LSB | Ref. [14] (LIB) | LIB | LSB | Ref. [14] (LIB) | |
GWP100 | 5.47 × 103 | 3.03 × 103 | 4.85 × 103 | 1.59 × 101 | 2.03 × 101 | 1.80 × 101 | 1.10 × 102 | 1.17 × 102 | 1.72 × 102 |
FDP | 1.65 × 103 | 9.37 × 102 | 1.32 × 103 | 4.80 × 100 | 6.28 × 100 | 5.22 × 100 | 3.32 × 101 | 3.61 × 101 | 4.96 × 101 |
FETPinf | 4.11 × 102 | 1.68 × 102 | 2.56 × 102 | 1.19 × 100 | 1.12 × 100 | 1.01 × 100 | 8.27 × 100 | 6.46 × 100 | 9.62 × 100 |
FEP | 9.34 × 100 | 4.63 × 100 | 1.32 × 103 | 2.71 × 10−2 | 3.10 × 10−2 | 5.22 × 100 | 1.88 × 10−1 | 1.78 × 10−1 | 4.96 × 101 |
HTPinf | 1.68 × 104 | 8.31 × 103 | 1.59 × 104 | 4.87 × 101 | 5.56 × 101 | 6.28 × 101 | 3.37 × 102 | 3.20 × 102 | 5.98 × 102 |
METPinf | 4.21 × 102 | 1.74 × 102 | 2.76 × 102 | 1.22 × 100 | 1.16 × 100 | 1.09 × 100 | 8.46 × 100 | 6.69 × 100 | 1.04 × 101 |
MEP | 8.73 × 100 | 4.14 × 100 | 6.40 × 100 | 2.54 × 10−2 | 2.78 × 10−2 | 2.53 × 10−2 | 1.76 × 10−1 | 1.59 × 10−1 | 2.41 × 10−1 |
MDP | 5.11 × 103 | 1.40 × 103 | 4.10 × 103 | 1.48 × 101 | 9.37 × 100 | 1.62 × 101 | 1.03 × 102 | 5.38 × 101 | 1.54 × 102 |
ODPinf | 5.75 × 10−4 | 3.11 × 10−4 | 2.80 × 10−4 | 1.67 × 10−6 | 2.08 × 10−6 | 1.11 × 10−6 | 1.16 × 10−5 | 1.20 × 10−5 | 1.05 × 10−5 |
PMFP | 2.59 × 101 | 9.33 × 100 | 1.60 × 101 | 7.52 × 10−2 | 6.25 × 10−2 | 6.32 × 10−2 | 5.21 × 10−1 | 3.59 × 10−1 | 6.02 × 10−1 |
POFP | 2.37 × 101 | 9.91 × 100 | 1.80 × 101 | 6.87 × 10−2 | 6.63 × 10−2 | 7.11 × 10−2 | 4.76 × 10−1 | 3.81 × 10−1 | 6.77 × 10−1 |
TAP100 | 8.62 × 101 | 2.26 × 101 | 5.10 × 101 | 2.50 × 10−1 | 1.51 × 10−1 | 2.02 × 10−1 | 1.73 × 100 | 8.69 × 10−1 | 1.92 × 100 |
TETPinf | 1.37 × 100 | 7.48 × 10−1 | 5.20 × 10−3 | 3.99 × 10−3 | 5.01 × 10−3 | 2.06 × 10−5 | 2.76 × 10−2 | 2.88 × 10−2 | 1.95 × 10−4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerdas, F.; Titscher, P.; Bognar, N.; Schmuch, R.; Winter, M.; Kwade, A.; Herrmann, C. Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications. Energies 2018, 11, 150. https://doi.org/10.3390/en11010150
Cerdas F, Titscher P, Bognar N, Schmuch R, Winter M, Kwade A, Herrmann C. Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications. Energies. 2018; 11(1):150. https://doi.org/10.3390/en11010150
Chicago/Turabian StyleCerdas, Felipe, Paul Titscher, Nicolas Bognar, Richard Schmuch, Martin Winter, Arno Kwade, and Christoph Herrmann. 2018. "Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications" Energies 11, no. 1: 150. https://doi.org/10.3390/en11010150
APA StyleCerdas, F., Titscher, P., Bognar, N., Schmuch, R., Winter, M., Kwade, A., & Herrmann, C. (2018). Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications. Energies, 11(1), 150. https://doi.org/10.3390/en11010150