Optimization of Pure-Component LNG Cascade Processes with Heat Integration
Abstract
:1. Introduction
2. Method
2.1. Process Description
Modeling Parameters
- Work by equipment other than the refrigerant compressors, such as the seawater pumps, is neglected.
- Feed composition (in mol%) is: 3.1% nitrogen, 87.7% methane, 5.4% ethane, 2.6% propane, 0.8% iButane and 0.4% nButane.
- Feed gas pressure after the initial seawater cooler is 60 bar.
- All heat exchangers operate with a temperature difference.
- Streams flowing through exchangers without phase change have a pressure drop.
- All compressors have isentropic efficiency .
- The lowest evaporation occurs at , satisfying the minimum pressure requirement for R50.
2.2. Process Modeling
2.3. Optimization
- Finding the best heat exchanger configuration given a compressor configuration and all temperature levels.
- Finding the best temperature levels given configuration .
- Finding the the best compressor configuration given the number of compression stages N.
2.3.1. Optimization of Heat Exchanging Equipment
2.3.2. Optimization of Temperature Levels
2.3.3. Optimization of Compressor Configuration
2.4. Model Verification
2.5. Comparative Study of Process Performance
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lim, W.; Choi, K.; Moon, I. Current Status and Perspectives of Liquefied Natural Gas (LNG) Plant Design. Ind. Eng. Chem. Res. 2013, 52, 3065–3088. [Google Scholar] [CrossRef]
- Bauer, H.C. Mixed fluid cascade, experience and outlook. In Proceedings of the 8th Global Congress on 12AIChE—2012 AIChE Spring Meeting, Houston, TX, USA, 1–5 April 2012. [Google Scholar]
- Pettersen, J.; Nilsen, Ø.; Vist, S.; Giljarhus, L.E.N.; Fredheim, A.O.; Aasekjær, K.; Neeraas, B.O. Technical and Operational Innovation for Onshore and Floating LNG. In Proceedings of the 17th International Conference & Exhibition on Liquefied Natural Gas (LNG 17), Houston, TX, USA, 16–19 April 2013; pp. 1–12. [Google Scholar]
- Kamalinejad, M.; Amidpour, M.; Naeynian, S.M.M. Optimal Synthesis of a Cascade Refrigeration System of LNG Through MINLP Model for Pure Refrigerant Cycles. Gas Process. J. 2014, 2, 51–68. [Google Scholar]
- Barnés, F.J.; King, C.J. Synthesis of Cascade Refrigeration and Liquefaction Systems. Ind. Eng. Chem. Process Des. Dev. 1974, 13, 421–433. [Google Scholar] [CrossRef]
- Andress, D. The Phillips Optimized Cascade LNG Process: A Quarter-of-a-Century of Improvements; Phillips Petroleum Company: Bartlesville, OK, USA, 1996. [Google Scholar]
- Wang, J.; Smith, R. Synthesis and Optimization of Low-Temperature Gas Separation Processes. Ind. Eng. Chem. Res. 2005, 44, 2856–2870. [Google Scholar] [CrossRef]
- Austbø, B.; Løvseth, S.W.; Gundersen, T. Annotated bibliography—Use of optimization in LNG process design and operation. Comput. Chem. Eng. 2014, 71, 391–414. [Google Scholar] [CrossRef]
- Bosma, P.; Nagelvoort, R.K. Liquefaction Technology; Developments through History. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009; Volume 1, pp. 19–31. [Google Scholar]
- Eaton, A.; Hernandez, R.; Risley, A.; Hunter, P.; Avidan, A.; Duty, J. Lowering LNG unit costs through large and efficient LNG liquefaction trains–What is the optimal train size. In Proceedings of the AIChE Spring Meeting, New Orleans, LA, USA, 25–29 April 2004; pp. 25–29. [Google Scholar]
- Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, S.; Eiksund, O.; Brodal, E. Impact of Ambient Temperature on LNG Liquefaction Process Performance: Energy Efficiency and CO2 Emissions in Cold Climates. Ind. Eng. Chem. Res. 2017, 56, 3388–3398. [Google Scholar] [CrossRef]
Circuit Number | Refrigerant | Evaporator Temperature (C) | Used Heat Ex. | |
---|---|---|---|---|
0 | Seawater | 20.0 | - | - |
1 | R290 | 0 | 1 | |
2 | R1150 | 1, 0 | 2 | |
3 | R1150 | 2, 1 | 2 | |
4 | R50 | 3, 2, 1, 0 | 4 |
Circuit No. | Refrig. | Evap. Temp. (C) | Used Heat Ex. | |
---|---|---|---|---|
0 | Seawater | 20.0 | - | - |
1 | R290 | 1.7 | 0 | 1 |
2 | R290 | 1 | 1 | |
3 | R290 | 2 | 3 | |
4 | R1150 | 3, 2 | 4 | |
5 | R1150 | 4 | 1 | |
6 | R1150 | 5 | 1 | |
7 | R1150 | 6 | 3 | |
8 | R50 | 7, 6, 5 | 3 | |
9 | R50 | 8, 7 | 2 | |
10 | R50 | 9 | 1 | |
11 | R50 | 10 | 1 |
Ex. No. | Exchanger Duty | Natural Gas Cooling | Process Cooling |
---|---|---|---|
(kW/ton) | (kW/ton) | (kW/ton) | |
1 | 1.390 | 0.047 | 1.342 (2) |
2 | 1.226 | 0.052 | 1.056 (3), 0.118 (4) |
3 | 0.935 | 0.074 | 0.862 (4) |
4 | 0.823 | 0.112 | 0.711 (5) |
5 | 0.661 | 0.145 | 0.489 (6), 0.027 (8) |
6 | 0.444 | 0.082 | 0.335 (7), 0.027 (8) |
7 | 0.299 | 0.062 | 0.218 (8), 0.019 (9) |
8 | 0.217 | 0.059 | 0.158 (9) |
9 | 0.148 | 0.058 | 0.091 (10) |
10 | 0.080 | 0.038 | 0.043 (11) |
11 | 0.037 | 0.037 | - |
Comp. No. | Inlet Temp. | Inlet Pressure | Pressure Ratio | Mass Flow | Compressor Power |
---|---|---|---|---|---|
(C) | (bar) | (-) | (-) | (kW/ton NG) | |
1 | 20.0 | 4.99 | 2.01 | 4.04 | 47.13 |
2 | 1.7 | 2.70 | 1.85 | 3.21 | 32.30 |
3 | 1.10 | 2.46 | 2.31 | 33.40 | |
4 | 7.15 | 2.41 | 2.22 | 43.62 | |
5 | 4.58 | 1.56 | 1.58 | 13.88 | |
6 | 2.45 | 1.87 | 1.01 | 12.47 | |
7 | 1.10 | 2.23 | 0.65 | 9.99 | |
8 | 12.54 | 2.36 | 0.64 | 15.02 | |
9 | 5.44 | 2.39 | 0.35 | 8.12 | |
10 | 2.70 | 2.02 | 0.17 | 2.89 | |
11 | 1.14 | 2.36 | 0.08 | 1.48 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eiksund, O.; Brodal, E.; Jackson, S. Optimization of Pure-Component LNG Cascade Processes with Heat Integration. Energies 2018, 11, 202. https://doi.org/10.3390/en11010202
Eiksund O, Brodal E, Jackson S. Optimization of Pure-Component LNG Cascade Processes with Heat Integration. Energies. 2018; 11(1):202. https://doi.org/10.3390/en11010202
Chicago/Turabian StyleEiksund, Oddmar, Eivind Brodal, and Steven Jackson. 2018. "Optimization of Pure-Component LNG Cascade Processes with Heat Integration" Energies 11, no. 1: 202. https://doi.org/10.3390/en11010202
APA StyleEiksund, O., Brodal, E., & Jackson, S. (2018). Optimization of Pure-Component LNG Cascade Processes with Heat Integration. Energies, 11(1), 202. https://doi.org/10.3390/en11010202