Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design
Abstract
:1. Introduction
2. Energy Analysis Simulation Tools
2.1. ANSYS Fluent
2.2. DesignBuilder
2.3. Revit Autodesk (Formerly Ecotect Analysis)
2.4. SUNtool, Solene, RayMan, URSOS, and GreenCanyon.
2.5. EnergyPlus
2.6. ENVI-Met 3.1
2.7. FreeFem++
3. Geometries and Meshing
3.1. Salome Analysis
3.2. GMESH Analysis
4. Computer-Aided Design Programs
4.1. AutoCAD
4.2. SketchUp
4.3. ParaView
5. Proposed Plug-In Procedure
5.1. File Exchange
5.2. Case Study
load "msh3" |
load "medit" |
load "tetgen" |
load "mshmet" |
load "UMFPACK64" |
load "iovtk" |
real nu=0.000015; |
real dt=0.1; |
real tfinal=3600; |
real dts=60; |
real t=0; |
real tsave=dts; |
mesh3 Th=readmesh3("P_1.mesh"); |
fespace Vh(Th,P1b3d); |
fespace Ph(Th,P13d); |
Vh uu1,uu2,uu3,v1,v2,v3; |
Vh u1=0,u2=0,u3=0; |
Ph p,q; |
problem NavierStokes3d(uu1,uu2,uu3,p,v1,v2,v3,q,solver=sparsesolver) = |
int3d(Th)((uu1*v1+uu2*v2+uu3*v3)/dt |
+nu*(dx(uu1)*dx(v1)+dy(uu1)*dy(v1)+dz(uu1)*dz(v1)) |
+nu*(dx(uu2)*dx(v2)+dy(uu2)*dy(v2)+dz(uu2)*dz(v2)) |
+nu*(dx(uu3)*dx(v3)+dy(uu2)*dy(v3)+dz(uu3)*dz(v3)) |
−(dx(uu1)+dy(uu2)+dz(uu3))*q |
−(dx(v1)+dy(v2)+dz(v3))*p + 1e-10*q*p) |
+int3d(Th)(−convect([u1,u2,u3],-dt,u1)*v1/dt |
−convect([u1,u2,u3],-dt,u2)*v2/dt |
−convect([u1,u2,u3],-dt,u3)*v3/dt) |
+on(4,uu1=(10.0)*(z>9.0),uu2=0,uu3=0) |
+on(1,7,8,10,11,9,12,13,14,15,16,uu1=0,uu2=0,uu3=0); |
int i=0; |
while (t<= tfinal){ |
NavierStokes3d; |
u1=uu1; |
u2=uu2; |
u3=uu3; |
t += dt; |
cout << "Time: " << t << " tsave: " << tsave << endl; |
if (abs(t-tsave)< 0.0001) |
{ |
i++; |
savevtk("it_"+i+".vtk",Th,[u1,u2,u3],p,dataname="Velocity Pressure"); |
tsave+=dts; |
5.3. Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernandez-Nieto, E.D.; Lucas, C.; de Luna, T.M.; Cordier, S. On the influence of the thickness of the sediment moving layer in the definition of the bedload transport formula in Exner systems. Comput. Fluids 2014, 91, 87–106. [Google Scholar] [CrossRef] [Green Version]
- De La Flor, F.S.; Domınguez, S.A. Modelling microclimate in urban environments and assessing its influence on the performance of surrounding buildings. Energy Build. 2004, 36, 403–413. [Google Scholar] [CrossRef]
- Alvarez, S. Experimental work and analysis of confined urban spaces. Sol. Energy 2001, 70, 263–273. [Google Scholar]
- Rojas, J.M.; Galán-Marín, C.; Fernández-Nieto, E.D. Parametric study of thermodynamics in the mediterranean courtyard as a tool for the design of eco-efficient buildings. Energies 2012, 5, 2381–2403. [Google Scholar] [CrossRef]
- Shi, X.; Yang, W. Performance-driven architectural design and optimization technique from a perspective of architects. Autom. Constr. 2013, 32, 125–135. [Google Scholar]
- Yi, Y.K.; Malkawi, A.M. Optimizing building form for energy performance based on hierarchical geometry relation. Autom. Constr. 2009, 18, 825–833. [Google Scholar] [CrossRef]
- Rojas-Fernández, J.M.; Domínguez-Hernández, L. Corporate Web of Arquitectos Hombre de Piedra. Available online: https://hombredepiedra.com/en/research/mediterranean-courtyard/ (accessed on 2 July 2018).
- Abanda, F.H.; Vidalakis, C.; Oti, A.H.; Tah, J.H. A critical analysis of Building Information Modelling systems used in construction projects. Adv. Eng. Softw. 2015, 90, 183–201. [Google Scholar] [CrossRef]
- Mansuri, D.; Chakraborty, D.; Elzarka, H.; Deshpande, A.; Gronseth, T. Building Information Modeling enabled Cascading Formwork Management Tool. Autom. Constr. 2017, 83, 259–272. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J. Conceptualising the FinDD API plug-in: A study of BIM-FM integration. Autom. Constr. 2017, 80, 11–21. [Google Scholar] [CrossRef]
- NBS. Building Information Modelling Report. 2016. Available online: http://www.thenbs.com/pdfs/NBS-National-BIM-Report-2016.pdf (accessed on 2 July 2018).
- López-Cabeza, V.P.; Galán-Marín, C.; Rivera-Gómez, C.; Roa-Fernández, J. Courtyard microclimate ENVI-met outputs deviation from the experimental data. Build. Environ. 2018, 144, 129–141. [Google Scholar] [CrossRef]
- Ramírez-Balas, C.; Fernández-Nieto, E.; Narbona-Reina, G.; Sendra, J.; Suárez, R. Thermal 3D CFD Simulation with Active Transparent Façade in Buildings. Energies 2018, 11, 2265. [Google Scholar] [CrossRef]
- Official Web of ANSYS Fluent. Available online: https://www.ansys.com/es-es/products/fluids/ansys-fluent (accessed on 2 July 2018).
- Official Web of DesignBuilder. Available online: http://www.designbuilder.co.uk/ (accessed on 2 July 2018).
- Official Web of Autodesk Ecotec Analysis. Available online: http://usa.autodesk.com/ecotect-analysis/ (accessed on 2 July 2018).
- Chronis, A.; Liapi, K.A.; Sibetheros, I. A parametric approach to the bioclimatic design of large scale projects: The case of a student housing complex. Autom. Constr. 2012, 22, 24–35. [Google Scholar] [CrossRef]
- Robinson, D.; Campbell, N.; Gaiser, W.; Kabel, K.; Le-Mouel, A.; Morel, N.; Stone, A. SUNtool-A new modelling paradigm for simulating and optimising urban sustainability. Sol. Energy 2007, 81, 1196–1211. [Google Scholar] [CrossRef]
- Idczak, M.; Groleau, D.; Mestayer, P.; Rosant, J.M.; Sini, J.F. An application of the thermo-radiative model SOLENE for the evaluation of street canyon energy balance. Build. Environ. 2010, 45, 1262–1275. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Tumini, I.; Higueras-García, E. Strengths and weaknesses of urban microclimate simulation tools. DYNA Energía Sostenibilidad 2013, 1, 1–17. [Google Scholar]
- Official Web of EnergyPlus. Available online: http://apps1.eere.energy.gov/buildings/energyplus/ (accessed on 2nd July 2018).
- Official Web of ENVI-Met. Available online: http://www.envi-met.com/ (accessed on 2 July 2018).
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Build. Environ. 2013, 60, 93–104. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. An integrated simulation method for building energy performance assessment in urban environments. Energy Build. 2012, 54, 243–251. [Google Scholar] [CrossRef]
- Official Web of Freefem++. Available online: http://www.freefem.org/ (accessed on 2 July 2018).
- Fernández, F.J.; Alvarez-Vázquez, L.J.; Martínez, A.; Vázquez-Méndez, M.E. A 3D optimal control problem related to the urban heat islands. J. Math. Anal. Appl. 2017, 446, 1571–1605. [Google Scholar] [CrossRef]
- Ramírez-Balas, C.; Fernández-Nieto, E.D.; Narbona-Reina, G.; Sendra, J.J.; Suárez, R. Numerical simulation of the temperature evolution in a room with a mur neutralisant. Application to “The City of Refuge” by Le Corbusiero. Energy Build. 2015, 86, 708–722. [Google Scholar] [CrossRef]
- Bernard Barrois, Example of Use of Freefem ++ for an Object 3D. Web on Freefem ++ Inside the Official Web of the Univerisad of Murcia. Available online: http://www.um.es/freefem/ff++/pmwiki.php?n=Main.Room3D (accessed on 2 July 2018).
- Zhang, R.; Zhang, Y.; Lam, K.P.; Archer, D.H. A prototype mesh generation tool for CFD simulations in architecture domain. Build. Environ 2010, 45, 2253–2262. [Google Scholar] [CrossRef]
- Official Web of Salome Software. Available online: http://www.salome-platform.org/ (accessed on 2 July 2018).
- Official Web of GMESH. Available online: http://geuz.org/gmsh/ (accessed on 2 July 2018).
- Almhafdy, A.; Ibrahim, N.; Ahmad, S.S.; Yahya, J. Courtyard Design Variants and Microclimate Performance. Procedia-Soc. Behav. Sci. 2013, 101, 170–180. [Google Scholar] [CrossRef]
- Official Web of Sketchup. Available online: http://www.sketchup.com/ (accessed on 2 July 2018).
- Exports the Model to IGES Format. Available online: http://rhin.crai.archi.fr/rld/download.php?file=iges_export_V0.6.zip (accessed on 2 July 2018).
- Official Web of ParaView. Available online: http://www.paraview.org/ (accessed on 2 July 2018).
- Save in vtk File from Freefem++ and Read from ParaView. Inside the Official Web of Universidad de Murcia. Available online: http://www.um.es/freefem/ff++/uploads/Main/paraview_freefem_english.pdf (accessed on 2 July 2018).
- Geyer, P.; Stopper, J.; Lang, W.; Thumfart, M. A Systems Engineering Methodology for Designing and Planning the Built Environment—Results from the Urban Research Laboratory Nuremberg and Their Integration in Education. Systems 2014, 2, 137–158. [Google Scholar] [CrossRef] [Green Version]
Software Analysed | Outdoor Conditions Simulations | Simulations Using CFD | Free Software | Open Sauce | AutoCAD/Sketchup Import |
---|---|---|---|---|---|
ANSYS Fluent | |||||
DesignBuilder | |||||
Revit/Ecotect Analysis | |||||
SUNtool | |||||
Solene | |||||
RayMan | |||||
URSUS | |||||
GreenCanyon | |||||
EnergyPlus | |||||
ENVI-met | |||||
Software using FreeFem++ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Fernández, J.; Galán-Marín, C.; Rivera-Gómez, C.; Fernández-Nieto, E.D. Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design. Energies 2018, 11, 2665. https://doi.org/10.3390/en11102665
Rojas-Fernández J, Galán-Marín C, Rivera-Gómez C, Fernández-Nieto ED. Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design. Energies. 2018; 11(10):2665. https://doi.org/10.3390/en11102665
Chicago/Turabian StyleRojas-Fernández, Juan, Carmen Galán-Marín, Carlos Rivera-Gómez, and Enrique D. Fernández-Nieto. 2018. "Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design" Energies 11, no. 10: 2665. https://doi.org/10.3390/en11102665
APA StyleRojas-Fernández, J., Galán-Marín, C., Rivera-Gómez, C., & Fernández-Nieto, E. D. (2018). Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design. Energies, 11(10), 2665. https://doi.org/10.3390/en11102665