Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crude Oil Properties and Elemental Analysis
2.2. ESI(+) FT-ICR MS
2.3. ESI(−) FT-ICR MS
2.4. APPI(+) FT-ICR MS
2.5. Combining ESI(±) and APPI(+)
3. Materials and Methods
3.1. Chemicals and Samples
3.2. Elemental Analysis
3.3. FT-ICR MS Analysis
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Speight, J.G. The Chemistry and Technology of Petroleum, 4th ed.; CRC Press: New York, NY, USA, 2006. [Google Scholar]
- Cho, Y.; Ahmed, A.; Islam, A.; Kim, S. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom. Rev. 2015, 34, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Casilli, A.; Silva, R.C.; Laakia, J.; Oliveira, C.J.F.; Ferreira, A.A.; Loureiro, M.R.B.; Azevedo, D.A.; Aquino Neto, F.R. High resolution molecular organic geochemistry assessment of Brazilian lacustrine crude oils. Org. Geochem. 2014, 68, 61–70. [Google Scholar] [CrossRef]
- Li, S.; Cao, J.; Hu, S.; Zhang, D.; Fan, R. Analysis of terpanes in biodegraded oils from China using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Fuel 2014, 133, 153–162. [Google Scholar] [CrossRef]
- Duan, Y. Geochemical characteristics of crude oil in fluvial deposits from maling oilfield of ordos basin, China. Org. Geochem. 2012, 52, 35–43. [Google Scholar] [CrossRef]
- Chacon-Patino, M.L.; Vesga-Martinez, S.J.; Blanco-Tirado, C.; Orrego-Ruiz, J.A.; Gomez-Escudero, A.; Combariza, M.Y. Exploring Occluded Compounds and Their Interactions with Asphaltene Networks Using High-Resolution Mass Spectrometry. Energy Fuels 2016, 30, 4550–4561. [Google Scholar] [CrossRef]
- Corilo, Y.E.; Vaz, B.G.; Simas, R.C.; Lopes Nascimento, H.D.; Klitzke, C.F.; Pereira, R.C.L.; Bastos, W.L.; Santos Neto, E.V.; Rodgers, R.P.; Eberlin, M.N. Petroleomics by EASI(±) FT-ICR MS. Anal. Chem. 2010, 82, 3990–3996. [Google Scholar] [CrossRef] [PubMed]
- Zhurov, K.O.; Kozhinov, A.N.; Tsybin, Y.O. Evaluation of high-field orbitrap fourier transform mass spectrometer for petroleomics. Energy Fuels 2013, 27, 2974–2983. [Google Scholar] [CrossRef]
- Vetere, A.; Schrader, W. Mass Spectrometric Coverage of Complex Mixtures: Exploring the Carbon Space of Crude oil. Chem. Sel. 2017, 2, 849–853. [Google Scholar] [CrossRef]
- Klitzke, C.F.; Corilo, Y.E.; Siek, K.; Binkley, J.; Patrick, J.; Eberlin, M.N. Petroleomics by ultrahigh-resolution time-of-flight mass spectrometry. Energy Fuels 2012, 26, 5787–5794. [Google Scholar] [CrossRef]
- Wu, Z.; Rodgers, R.P.; Marshall, A.G.; Strohm, J.J.; Song, C. Comparative compositional analysis of untreated and hydrotreated oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2005, 19, 1072–1077. [Google Scholar] [CrossRef]
- Headley, J.V.; Barrow, M.P.; Peru, K.M.; Fahlman, B.; Frank, R.A.; Bickerton, G.; McMaster, M.E.; Parrott, J.; Hewitt, L.M. Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.; Malacarne, M.M.; Romão, W.; Dalmaschio, G.P.; Castro, E.V.R.; Celante, V.G.; Freitas, M.B.J.G. Analysis of the heavy oil distillation cuts corrosion by electrospray ionization FT-ICR mass spectrometry, electrochemical impedance spectroscopy, and scanning electron microscopy. Fuel 2013, 104, 656–663. [Google Scholar] [CrossRef]
- Vaz, B.G.; Silva, R.C.; Klitzke, C.F.; Simas, R.C.; Lopes Nascimento, H.D.; Pereira, R.C.L.; Garcia, D.F.; Eberlin, M.N.; Azevedo, D.A. Assessing biodegradation in the llanos orientales crude oils by electrospray ionization ultrahigh resolution and accuracy fourier transform mass spectrometry and chemometric analysis. Energy Fuels 2013, 27, 1277–1284. [Google Scholar] [CrossRef]
- Molnárné Guricza, L.; Schrader, W. Electrospray ionization for determination of non-polar polyaromatic hydrocarbons and polyaromatic heterocycles in heavy crude oil asphaltenes. J. Mass Spectrom. 2015, 50, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.M.C.; Vanini, G.; Oliveira, E.C.S.; Cardoso, F.M.R.; Fleming, F.P.; Neto, A.C.; Lacerda, V., Jr.; Castro, E.V.R.; Vaz, B.G.; Romão, W. An evaluation of the aromaticity of asphaltenes using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry—APPI(±) FT-ICR MS. Fuel 2014, 118, 348–357. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, S. Improved Abundance Sensitivity of Molecular Ions in Positive-Ion APCI MS Analysis of Petroleum in Toluene. J. Am. Soc. Mass Spectrom. 2010, 21, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Andersson, J.T.; Schrader, W. Characterization of Supercomplex Crude Oil Mixtures: What Is Really in There? Angew. Chem. Int. Ed. 2009, 48, 1788–1791. [Google Scholar] [CrossRef] [PubMed]
- Schrader, W.; Panda, S.K.; Brockmann, K.J.; Benter, T. Characterization of non-polar aromatic hydrocarbons in crude oil using atmospheric pressure laser ionization and Fourier transform ion cyclotron resonance mass spectrometry (APLI FT-ICR MS). Analyst 2008, 133, 867–869. [Google Scholar] [CrossRef] [PubMed]
- Palacio Lozano, D.C.; Orrego-Ruiz, J.A.; Barrow, M.P.; Cabanzo Hernandez, R.; Mejía-Ospino, E. Analysis of the molecular weight distribution of vacuum residues and their molecular distillation fractions by laser desorption ionization mass spectrometry. Fuel 2016, 171, 247–252. [Google Scholar] [CrossRef]
- Cho, Y.; Jin, J.M.; Witt, M.; Birdwell, J.E.; Na, J.G.; Roh, N.S.; Kim, S. Comparing laser desorption ionization and atmospheric pressure photoionization coupled to fourier transform ion cyclotron resonance mass spectrometry to characterize shale oils at the molecular level. Energy Fuels 2013, 27, 1830–1837. [Google Scholar] [CrossRef]
- Gaspar, A.; Zellermann, E.; Lababidi, S.; Reece, J.; Schrader, W. Impact of different ionization methods on the molecular assignments of asphaltenes by FT-ICR mass spectrometry. Anal. Chem. 2012, 84, 5257–5267. [Google Scholar] [CrossRef] [PubMed]
- Hur, M.; Yeo, I.; Kim, E.; No, M.H.; Koh, J.; Cho, Y.J.; Lee, J.W.; Kim, S. Correlation of FT-ICR mass spectra with the chemical and physical properties of associated crude oils. Energy Fuels 2010, 24, 5524–5532. [Google Scholar] [CrossRef]
- Chiaberge, S.; Fiorani, T.; Savoini, A.; Bionda, A.; Ramello, S.; Pastori, M.; Cesti, P. Classification of crude oil samples through statistical analysis of APPI FTICR mass spectra. Fuel Process. Technol 2013, 106, 181–185. [Google Scholar] [CrossRef]
- Maciel, S.T.A.; Wisniewski, A., Jr.; De Souza, M.J.B. Use of micropyrolysis and TG to study the thermal catalytic conversion of onshore crude oil using the zeolite catalysts type y and ferrierite. J. Therm. Anal. Calorim. 2015, 122, 369–377. [Google Scholar] [CrossRef]
- Santos, J.M.; Santos, F.M.L.; Araujo, R.G.O.; Lessa, A.C.; Souza, J.P.D.; Santos, M.J.D.; Wisniewski, A. Chemical aspects of onshore crude oils from the Carmópolis Field, Sergipe-Alagoas Basin, Brazil: A case study on the industrial process for water-oil separation. Energy Fuels 2015, 29, 1315–1322. [Google Scholar] [CrossRef]
- Daubert, T.E.; Danner, R.P.E. API Technical Data Book—Petroleum Refining; American Petroleum Institute (API): Washington, DC, USA, 1997. [Google Scholar]
- Cho, Y.; Na, J.G.; Nho, N.S.; Kim, S.; Kim, S. Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionization. Energy Fuels 2012, 26, 2558–2565. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, Y.H.; Kim, S. Planar limit-assisted structural interpretation of saturates/aromatics/resins/asphaltenes fractionated crude oil compounds observed by fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2011, 83, 6068–6073. [Google Scholar] [CrossRef] [PubMed]
- Rowland, S.M.; Robbins, W.K.; Corilo, Y.E.; Marshall, A.G.; Rodgers, R.P. Solid-phase extraction fractionation to extend the characterization of naphthenic acids in crude oil by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2014, 28, 5043–5048. [Google Scholar] [CrossRef]
- Terra, L.A.; Filgueiras, P.R.; Tose, L.V.; Romão, W.; De Souza, D.D.; De Castro, E.V.R.; De Oliveira, M.S.L.; Dias, J.C.M.; Poppi, R.J. Petroleomics by electrospray ionization FT-ICR mass spectrometry coupled to partial least squares with variable selection methods: Prediction of the total acid number of crude oils. Analyst 2014, 139, 4908–4916. [Google Scholar] [CrossRef] [PubMed]
- Klee, S.; Albrecht, S.; Derpmann, V.; Kersten, H.; Benter, T. Generation of ion-bound solvent clusters as reactant ions in dopant-assisted APPI and APLI. Anal. Bioanal. Chem. 2013, 405, 6933–6951. [Google Scholar] [CrossRef] [PubMed]
- Vetere, A.; Schrader, W. 1-and 2-Photon Ionization for Online FAIMS-FTMS Coupling Allows New Insights into the Constitution of Crude Oils. Anal. Chem. 2015, 87, 8874–8879. [Google Scholar] [CrossRef] [PubMed]
- Kauppila, T.J.; Kuuranne, T.; Meurer, E.C.; Eberlin, M.N.; Kotiaho, T.; Kostiainen, R. Atmospheric pressure photoionization mass spectrometry. Ionization mechanism and the effect of solvent on the ionization of naphthalenes. Anal. Chem. 2002, 74, 5470–5479. [Google Scholar] [CrossRef] [PubMed]
Sample | Sample 1 API30 | Sample 2 API23 | Sample 3 API16 | |
---|---|---|---|---|
Data | ||||
API gravity | 30.0 | 23.5 | 16.4 | |
Density (g·cm−3) | 0.8735 | 0.9089 | 0.9530 | |
Classification * | Light | Medium | Heavy | |
H/C | 1.6686 | 1.5829 | 1.5588 | |
N/C | 0.0060 | 0.0042 | 0.0026 | |
O/C | 0.0291 | 0.0188 | 0.0363 | |
S/C | 0.0013 | 0.0017 | 0.0010 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.M.; Wisniewski Jr., A.; Eberlin, M.N.; Schrader, W. Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil. Energies 2018, 11, 2766. https://doi.org/10.3390/en11102766
Santos JM, Wisniewski Jr. A, Eberlin MN, Schrader W. Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil. Energies. 2018; 11(10):2766. https://doi.org/10.3390/en11102766
Chicago/Turabian StyleSantos, Jandyson M., Alberto Wisniewski Jr., Marcos N. Eberlin, and Wolfgang Schrader. 2018. "Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil" Energies 11, no. 10: 2766. https://doi.org/10.3390/en11102766
APA StyleSantos, J. M., Wisniewski Jr., A., Eberlin, M. N., & Schrader, W. (2018). Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil. Energies, 11(10), 2766. https://doi.org/10.3390/en11102766