Preparation and Thermoelectric Properties of Graphite/poly(3,4-ethyenedioxythiophene) Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Graphite/PEDOT Nanocomposites
2.3. Sample Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kim, G.; Pipe, K.P. Thermoelectric model to characterize carrier transport in organic semiconductors. Phys. Rev. B 2012, 86, 6709–6717. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357. [Google Scholar] [CrossRef] [PubMed]
- Yue, R.R.; Xu, J.K. Poly (3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review. Synth. Met. 2012, 162, 912–917. [Google Scholar] [CrossRef]
- Li, Y.Y.; Du, Y.; Dou, Y.C.; Cai, K.F.; Xu, J.Y. PEDOT-based thermoelectric nanocomposites—A mini-review. Synth. Met. 2017, 226, 119–128. [Google Scholar] [CrossRef]
- Du, Y.; Shen, S.Z.; Cai, K.F.; Casey, P.S. Research progress on polymer—Inorganic thermoelectric nanocomposite materials. Prog. Polym. Sci. 2012, 37, 820–841. [Google Scholar] [CrossRef]
- Bubnova, O.; Crispin, X. Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 2012, 5, 9345–9362. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.M.; Xu, W.; Zhu, D.B. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 2014, 26, 6829–6851. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xu, J.Y.; Paul, B.; Eklund, P. Flexible thermoelectric materials and devices. Appl. Mater. Today 2018, 12, 366–388. [Google Scholar] [CrossRef]
- Bahk, J.H.; Fang, H.Y.; Yazawa, K.; Shakouria, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Han, M.G.; Kim, S.Y.; Oh, S.G.; Im, S.S. Poly (3,4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions. Synth. Met. 2004, 141, 293–299. [Google Scholar] [CrossRef]
- Metsik, J.; Timusk, M.; Käämbre, T.; Mändar, H.; Umalas, M.; Kuus, A.; Puust, L.; Utt, K.; Sildos, I.; Mäeorg, U. Stability of poly(3,4-ethylenedioxythiophene) thin films prepared by vapor phase polymerization. Polym. Degrad. Stab. 2016, 126, 170–178. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, M.S.; Park, K.T.; Lee, J.K.; Park, D.H.; Joo, J.; Yu, S.G.; Lee, S.H. Characteristics and field emission of conducting poly (3,4-ethylenedioxythiophene) nanowires. Appl. Phys. Lett. 2003, 83, 539–541. [Google Scholar] [CrossRef]
- Bubnova, O.; Khan, Z.U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Shao, L.; Zhang, K.; Pipe, K.P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Cai, K.F.; Shen, S.Z.; Yang, W.D.; Casey, P.S. The thermoelectric performance of carbon black/poly (3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) composite films. J. Mater. Sci. Mater. Electron. 2012, 24, 1702–1706. [Google Scholar] [CrossRef]
- Kim, G.H.; Hwang, D.H.; Woo, S.I. Thermoelectric properties of nanocomposite thin films prepared with poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Phys. Chem. Chem. Phys. 2012, 14, 3530–3536. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.L.; Chen, G.M.; Qiu, D. Convenient construction of poly (3,4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. J. Mater. Chem. A 2013, 1, 12395–12399. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cai, K.F.; Shen, S.; Yao, X. In-situ fabrication and enhanced thermoelectric properties of carbon nanotubes filled poly(3,4-ethylenedioxythiophene) composites. Synth. Met. 2015, 209, 480–483. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.Y.; Wang, Y.Y.; Lin, T. Thermoelectric properties of graphite-PEDOT: PSS coated flexible polyester fabrics. J. Mater. Sci. Mater. Electron. 2016, 28, 5796–5801. [Google Scholar] [CrossRef]
- Gao, C.Y.; Chen, G.M. Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Compos. Sci. Technol. 2016, 124, 52–70. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, J.; Kim, J.H. Direct synthesis of highly conductive poly (3,4-ethylenedioxythiophene): Poly (4-styrenesulfonate)(PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717–730. [Google Scholar] [CrossRef]
- Xiong, J.H.; Jiang, F.X.; Shi, H.; Xu, J.K.; Liu, C.C.; Zhou, W.Q.; Jiang, Q.L.; Zhu, Z.Y.; Hu, Y.J. Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT: PSS nanofilm with hydrazine treatment. ACS Appl. Mater. Interfaces 2015, 7, 14917–14925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Harima, Y.; Imae, I. Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent treatment. Org. Electron. 2017, 51, 304–307. [Google Scholar] [CrossRef]
- Wang, H.; Hsu, J.H.; Yi, S.I.; Kim, S.L.; Choi, K.; Yang, G.; Yu, C. Thermally driven large n-type voltage responses from hybrids of carbon nanotubes and poly (3,4-ethylenedioxythiophene) with tetrakis (dimethylamino) ethylene. Adv. Mater. 2015, 27, 6855–6861. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.S.; Ren, W.; Gao, L.B.; Zhao, J.P.; Chen, Z.P.; Liu, B.L.; Tang, D.M.; Yu, B.; Jiang, C.B.; Cheng, H.M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Kim, Y.S.; Kim, D.; Grunlan, J.C. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett. 2008, 8, 4428–4432. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Maity, A.; Khan, M.A.S.; Sikder, A.K.; Chattopadhyay, S. PVAc/PEDOT:PSS/graphene-iron oxide nanocomposite(GINC): An efficient thermoelectric material. RSC Adv. 2016, 6, 22453–22460. [Google Scholar] [CrossRef]
- Du, Y.; Cai, K.F.; Shen, S. Facile preparation and characterization of graphene nanosheet/polyaniline nanofiber thermoelectric composites. Funct. Mater. Lett. 2013, 6. [Google Scholar] [CrossRef]
- Zhan, L.Z.; Song, Z.P.; Zhang, J.Y.; Tang, J.; Zhan, H.; Zhou, Y.H.; Zhan, C.M. PEDOT: Cathode active material with high specific capacity in novel electrolyte system. Electrochim. Acta 2008, 53, 8319–8323. [Google Scholar] [CrossRef]
- Rattan, S.; Singhal, P.; Verma, A.L. Synthesis of PEDOT: PSS (poly (3, 4-ethylenedioxythiophene))/poly (4-styrene sulfonate))/ngps (nanographitic platelets) nanocomposites as chemiresistive sensors for detection of nitroaromatics. Polym. Eng. Sci. 2013, 53, 2045–2052. [Google Scholar] [CrossRef]
- Hohnholz, D.; Macdiarmid, A.G.; Sarno, D.M.; Jones, W.E. Uniform thin films of poly-3,4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition. Chem. Commun. 2001, 23, 2444–2445. [Google Scholar] [CrossRef]
- Madl, C.M.; Kariuki, P.N.; Gendron, J.; Piper, L.F.J.; Jones, W.E. Vapor phase polymerization of poly (3,4-ethylenedioxythiophene) on flexible substrates for enhanced transparent electrodes. Synth. Met. 2011, 161, 1159–1165. [Google Scholar] [CrossRef]
- Jönsson, S.K.M.; Birgerson, J.; Crispin, X.; Greczynski, G.; Osikowicz, W.; Gon, A.W.D.; Salaneck, W.R.; Fahlman, M. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synth. Met. 2003, 139, 1–10. [Google Scholar] [CrossRef]
- Xie, X.L.; Mai, Y.W.; Zhou, X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R 2005, 49, 89–112. [Google Scholar] [CrossRef]
- Wang, J.; Cai, K.F.; Yin, J.L.; Shen, S. Thermoelectric properties of the PEDOT/SWCNT composite films prepared by a vapor phase polymerization. Synth. Met. 2017, 224, 27–32. [Google Scholar] [CrossRef]
- Pichanusakorn, P.; Bandaru, P. Nanostructured thermoelectrics. Mater. Sci. Eng. R 2010, 67, 19–63. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Li, H.; Jia, X.; Dou, Y.; Xu, J.; Eklund, P. Preparation and Thermoelectric Properties of Graphite/poly(3,4-ethyenedioxythiophene) Nanocomposites. Energies 2018, 11, 2849. https://doi.org/10.3390/en11102849
Du Y, Li H, Jia X, Dou Y, Xu J, Eklund P. Preparation and Thermoelectric Properties of Graphite/poly(3,4-ethyenedioxythiophene) Nanocomposites. Energies. 2018; 11(10):2849. https://doi.org/10.3390/en11102849
Chicago/Turabian StyleDu, Yong, Haixia Li, Xuechen Jia, Yunchen Dou, Jiayue Xu, and Per Eklund. 2018. "Preparation and Thermoelectric Properties of Graphite/poly(3,4-ethyenedioxythiophene) Nanocomposites" Energies 11, no. 10: 2849. https://doi.org/10.3390/en11102849
APA StyleDu, Y., Li, H., Jia, X., Dou, Y., Xu, J., & Eklund, P. (2018). Preparation and Thermoelectric Properties of Graphite/poly(3,4-ethyenedioxythiophene) Nanocomposites. Energies, 11(10), 2849. https://doi.org/10.3390/en11102849