Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals
Abstract
:1. Introduction
2. Lignocellulosic Feedstocks
3. Pretreatment for Enzymatic Saccharification
4. Enzymatic Saccharification of Lignocellulosic Feedstocks
5. Analytical-Scale Pretreatment and Enzymatic Saccharification
5.1. Pretreatment and Enzymatic Saccharification
5.2. Analysis of Reaction Mixtures
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tracking Clean Energy Progress 2017; International Energy Agency: Paris, France, 2017.
- Chum, H.L.; Warner, E.; Seabra, J.E.A.; Macedo, I.C. A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuels Bioprod. Bioref. 2014, 8, 205–223. [Google Scholar] [CrossRef]
- Manochio, C.; Andrade, B.R.; Rodriguez, R.P.; Moraes, B.S. Ethanol from biomass: A comparative overview. Renew. Sust. Energ. Rev. 2017, 80, 743–755. [Google Scholar] [CrossRef]
- Alternative Fuels Data Center. Available online: https://www.afdc.energy.gov/data/ (accessed on 22 October 2018).
- Chollacoop, N.; Saisirirat, P.; Fukuda, T.; Fukuda, A. Scenario analyses of road transport energy demand: A case study of ethanol as a diesel substitute in Thailand. Energies 2011, 4, 108–125. [Google Scholar] [CrossRef]
- Geleynse, S.; Brandt, K.; Garcia-Perez, M.; Wolcott, M.; Zhang, X. The alcohol-to-jet conversion pathway for drop-in biofuels: Techno-economic evaluation. ChemSusChem 2018. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, K. Lignocellulose: A chewy problem. Nature 2011, 474, S12–S14. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Ragauskas, A.J. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin. Biotechnol. 2014, 27, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Den Haan, R.; Kroukamp, H.; Mert, M.; Bloom, M.; Görgens, J.F.; van Zyl, W.H. Engineering Saccharomyces cerevisiae for next generation ethanol production. J. Chem. Technol. Biotechnol. 2013, 88, 983–991. [Google Scholar] [CrossRef]
- Arantes, V.; Saddler, J.N. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol. Biofuels 2011, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Donev, E.; Gandla, M.L.; Jönsson, L.J.; Mellerowicz, E. Engineering non-cellulosic polysaccharides of wood for the biorefinery. Front. Plant Sci. 2018, 9, 1537. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood-Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1989. [Google Scholar]
- Ragauskas, A.J. Materials for Biofuels; World Scientific: Singapore, 2014. [Google Scholar]
- Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous cellulose–structure and characterization. Cellulose Chem. Technol. 2011, 45, 13–21. [Google Scholar]
- Xiao, B.; Sun, X.F.; Sun, R.C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stabil. 2001, 74, 307–319. [Google Scholar] [CrossRef]
- Chundawat, S.P.S.; Beckham, G.; Himmel, M.E.; Dale, B.E. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.B.; Zhang, L.H.; Liu, D.H. Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Bioref. 2012, 6, 465–482. [Google Scholar] [CrossRef]
- Herbaut, M.; Zoghlami, A.; Habrant, A.; Falourd, X.; Foucat, L.; Chabbert, B.; Paës, G. Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance. Biotechnol. Biofuels 2018, 11, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Jönsson, L.J. Comparison of catalytically non-productive adsorption of fungal proteins to lignins and pseudo-lignin using isobaric mass tagging. Bioresour. Technol. 2018, 268, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Bhagia, S.; Smith, M.D.; Petridis, L.; Ong, R.G.; Cai, C.M.; Mittal, A.; Himmel, M.H.; Balan, V.; Dale, B.E.; et al. Cellulose–hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chem. 2018, 20, 921–934. [Google Scholar] [CrossRef]
- Wang, Z.; Winestrand, S.; Gillgren, T.; Jönsson, L.J. Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass Bioenergy 2018, 109, 125–134. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.B.; Zhang, L.H.; Liu, D.H. Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod. Bioref. 2012, 6, 561–579. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, H.A.; Rodríguez-Jasso, R.M.; Fernandes, B.D.; Vicente, A.A.; Teixeira, J.A. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renew. Sust. Energ. Rev. 2013, 21, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Bhagia, S.; Kumar, R.; Wyman, C.E. Effects of dilute acid and flowthrough pretreatments and BSA supplementation on enzymatic deconstruction of poplar by cellulase and xylanase. Carbohydr. Polym. 2017, 157, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.H.L.; Morais, A.R.C.; Lopes, A.M.C.; Olekszyszen, D.N.; Bogel-Łukasik, R.; Andreaus, J.; Ramos, L.P. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 2015, 8, 3366–3390. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Balan, V.; Bals, B.; Chundawat, S.P.S.; Marshall, D.; Dale, B.E. Lignocellulosic biomass pretreatment using AFEX. Methods Mol. Biol. 2009, 581, 93–102. [Google Scholar]
- Zhou, H.F.; Zhu, J.Y.; Gleisner, T.; Qiu, X.Q.; Horn, E.; Negrón, J. Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate. Holzforschung 2016, 70, 21–30. [Google Scholar] [CrossRef]
- Silva, A.R.G.; Errico, M.; Rong, B.G. Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass. Clean Techn. Environ. Policy 2018, 20, 1401–1412. [Google Scholar] [CrossRef]
- Wang, Z.; Gräsvik, J.; Jönsson, L.J.; Winestrand, S. Comparison of [HSO4]−, [Cl]− and [MeCO2]− as anions in the pretreatment of aspen and spruce with imidazolium-based ionic liquid. BMC Biotechnol. 2017, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Karatzos, S.K.; Edye, L.A.; Doherty, W.O.S. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics. Biotechnol. Biofuels 2012, 5, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.J.; Zhang, R.B.; Cheng, T.; Guo, J.; Xian, M.; Liu, H.Z. Imidazolium-based ionic liquids for cellulose pretreatment: Recent progresses and future perspectives. Appl. Microbiol. Biotechnol. 2017, 101, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.J.; Zhang, X.M.; Gu, X.W.; Han, L.J.; Ji, G.Y.; Chen, X.L.; Xiao, W.H. Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. ACS Sustain. Chem. Eng. 2017, 5, 7733–7742. [Google Scholar] [CrossRef]
- Vasco-Correa, J.; Ge, X.; Li, Y. Biological pretreatment of lignocellulosic biomass. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Mussatto, S.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 561–585. ISBN 978-0-12-802323-5. [Google Scholar]
- Van Dyk, J.S.; Pletschke, B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes – factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012, 30, 1458–1480. [Google Scholar] [CrossRef] [PubMed]
- Kubicek, C.P. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 2013, 163, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.; Kieselbach, T.; Jönsson, L.J. Enzyme production by filamentous fungi: Analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb. Cell. Fact. 2011, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Adav, S.S.; Chao, L.T.; Sze, S.K. Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol. Cell. Proteom. 2012, 11, M111–012419. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V.G.H. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 2012, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, I.; Powlowski, J.; Tsang, A. Fungal cellulose degradation by oxidative enzymes: From dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Brief. Funct. Genom. 2014, 13, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, G.; Jönsson, L.J. Effects of impregnation of softwood with sulfuric acid and sulfur dioxide on chemical and physical characteristics, enzymatic digestibility, and fermentability. Bioresour. Technol. 2018, 247, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pareek, N.; Gillgren, T.; Jönsson, L.J. Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresour. Technol. 2013, 148, 70–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooshima, H.; Sakata, M.; Harano, Y. Enhancement of enzymatic hydrolysis of cellulose by surfactant. Biotechnol. Bioeng. 1986, 28, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Jeoh, T.; Cardona, M.J.; Karuna, N.; Mudinoor, A.R.; Nill, J. Mechanistic kinetic models of enzymatic cellulose hydrolysis—A review. Biotechnol. Bioeng. 2017, 114, 1369–1385. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K.; Soeno, K.; Gandla, M.L.; Immerzeel, P.; Pattathil, S.; Lucenius, J.; Serimaa, R.; Hahn, M.G.; Moritz, T.; Jönsson, L.J.; et al. Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield. Biotechnol. Biofuels 2014, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandla, M.L.; Derba-Maceluch, M.; Liu, X.; Gerber, L.; Master, E.R.; Mellerowicz, E.J.; Jönsson, L.J. Expression of a fungal glucuronoyl esterase in Populus: Effects on wood properties and saccharification efficiency. Phytochemistry 2015, 112, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K.; Hao, Z.; Pattathil, S.; Yang, X.; Winkeler, K.; Collins, C.; Mohanty, S.S.; Richardson, E.A.; Gelineo-Albersheim, I.; Hunt, K.; et al. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnol. Biofuels 2015, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K.; Atmodjo, M.A.; Li, M.; Baxter, H.L.; Yoo, C.G.; Pu, Y.; Lee, Y.C.; Mazarei, M.; Black, I.M.; Zhang, J.Y.; et al. Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat. Biotechnol. 2018, 36, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Studer, M.H.; DeMartini, J.D.; Brethauer, S.; McKenzie, H.L.; Wyman, C.E. Engineering of a high-throughput screening system to identify cellulosic biomass, pretreatments, and enzyme formulations that enhance sugar release. Biotechnol. Bioeng. 2010, 105, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Studer, M.H.; DeMartini, J.D.; Davis, M.F.; Sykes, R.W.; Davison, B.; Keller, M.; Tuskan, G.A.; Wyman, C.E. Lignin content in natural Populus variants affects sugar release. Proc. Natl. Acad. Sci. USA 2011, 108, 6300–6305. [Google Scholar] [CrossRef] [PubMed]
- Decker, S.R.; Syke, R.W.; Turner, G.B.; Lupoi, J.S.; Doepkke, C.; Tucker, M.P.; Schuster, L.A.; Mazza, K.; Himmel, M.E.; Davis, M.F.; Gjersing, E. High-throughput screening of recalcitrance variations in lignocellulosic biomass: Total lignin, lignin monomers, and enzymatic sugar release. J. Vis. Exp. 2015, 103, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rende, U.; Wang, W.; Gandla, M.L.; Jönsson, L.J.; Niittylä, T. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytol. 2017, 214, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.M.A.; Ratke, C.; Balasubramanian, V.K.; Chong, S.L.; Gandla, M.L.; Adriasola, M.; Sparrman, T.; Hedenström, M.; Szwaj, K.; Derba-Maceluch, M.; et al. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification. New Phytol. 2017, 214, 1491–1505. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.M.A.; Derba-Maceluch, M.; Chong, S.L.; Gandla, M.L.; Bashar, S.S.; Sparrman, T.; Ahvenainen, P.; Hedenström, M.; Özparpucu, M.; Ruggeberg, M.; et al. In muro deacetylation of xylan affects lignin properties and improves saccharification of aspen wood. Biotechnol. Biofuels 2017, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Obudulu, O.; Mähler, N.; Skotare, T.; Bygdell, J.; Abreu, I.N.; Ahnlund, M.; Gandla, M.L.; Petterle, A.; Moritz, T.; Hvidsten, T.R.; et al. A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of Populus trees. BMC Genom. 2018, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Escamez, S.; Gandla, L.M.; Derba-Maceluch, M.; Lundqvist, S.O.; Mellerowicz, E.J.; Jönsson, L.J.; Tuominen, H. A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Normark, M.; Winestrand, S.; Lestander, T.A.; Jönsson, L.J. Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine. BMC Biotechnol. 2014, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Normark, M.; Pommer, L.; Gräsvik, J.; Hedenström, M.; Gorzsás, A.; Winestrand, S.; Jönsson, L.J. Biochemical conversion of torrefied Norway spruce after pretreatment with acid or ionic liquid. Bioenergy Res. 2016, 9, 355–368. [Google Scholar] [CrossRef]
- Kaku, T.; Kaida, R.; Baba, K.; Hartati, S.; Sudarmonowati, E.; Hayashi, T. Improvement of fermentable sugar yields of mangium through transgenic overexpression of xyloglucanase. J. Wood Sci. 2011, 57, 545–548. [Google Scholar] [CrossRef]
- Gomez, L.D.; Whitehead, C.; Barakate, A.; Halpin, C.; McQueen-Mason, S.J. Automated saccharification assay for determination of digestibility in plant materials. Biotechnol. Biofuels 2010, 3, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, L.D.; Whitehead, C.; Roberts, P.; McQueen-Mason, S.J. High-throughput saccharification assay for lignocellulosic materials. J. Vis. Exp. 2011, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Cantu, S.L.; Tornqvist, C.E.; Falbel, T.G.; Bolivar, J.L.; Patterson, S.E.; Pauly, M.; Walton, J.D. A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility. Bioenergy Res. 2010, 3, 93–102. [Google Scholar] [CrossRef]
- Berlin, A.; Maximenko, V.; Bura, R.; Kang, K.Y.; Gilkes, N.; Saddler, J. A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnol. Bioeng. 2006, 93, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, R.; Vanholme, R.; Storme, V.; Mortimer, J.C.; Dupree, P.; Boerjan, W. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol. Biofuels 2013, 6, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Acker, R.; Lepléc, J.-C.; Aerts, D.; Storme, V.; Goeminne, G.; Ivens, B.; Légéee, F.; Lapierree, C.; Piens, K.; Van Montagua, M.C.E.; et al. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc. Natl. Acad. Sci. USA 2014, 111, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Wolfrum, E.J.; Ness, R.M.; Nagle, N.J.; Peterson, D.J.; Scarlata, C.J. A laboratory-scale pretreatment and hydrolysis assay for determination of reactivity in cellulosic biomass feedstocks. Biotechnol. Biofuels 2013, 6, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chundawat, P.S.; Venkatesh, B.; Dale, B.E. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol. Bioeng. 2008, 99, 1281–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selig, M.J.; Tucker, M.P.; Sykes, R.W.; Reichel, K.L.; Brunecky, R.; Himmel, M.E.; Davis, M.F.; Decker, S.R. Lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification. Ind. Biotechnol. 2010, 6, 104–111. [Google Scholar] [CrossRef]
- Ratke, C.; Terebieniec, B.K.; Winestrand, S.; Derba-Maceluch, M.; Grahn, T.; Schiffthaler, B.; Ulvcrona, T.; Özparpucu, M.; Ruggeberg, M.; Lundqvist, S.O.; et al. Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome. New Phytol. 2018, 219, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, X.; DeMartini, J.D.; Kumar, R.; Wyman, C.E. Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali. Biotechnol. Bioeng. 2013, 110, 2894–2901. [Google Scholar] [CrossRef] [PubMed]
- Gräsvik, J.; Winestrand, S.; Normark, M.; Jönsson, L.J.; Mikkola, J.P. Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass. BMC Biotechnol. 2014, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Zavrel, M.; Bross, D.; Funke, M.; Buchs, J.; Spiess, A.C. High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour. Technol. 2009, 100, 2580–2587. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bailey, M.J. A note on the use of dinitrosalicylic acid for determining the products of enzymatic reactions. Appl. Microbiol. Biotechnol. 1988, 29, 494–496. [Google Scholar] [CrossRef]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar]
- Walker, J.M. The bicinchoninic acid (BCA) assay for protein quantitation. In The Protein Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 11–15. [Google Scholar]
- Anthon, G.E.; Barrett, D.M. Determination of reducing sugars with 3-methyl-2- benzothiazolinonehydrazone. Anal. Biochem. 2002, 305, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Bergmeyer, H.U.; Bernt, E. D-Glucose determination with glucose oxidase and peroxidase. In Methods of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinheim, Germany, 1974; pp. 1205–1215. [Google Scholar]
- Kunst, A.; Draeger, B.; Ziegenhorn, J. UV-methods with hexokinase and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Verlag Chemie: Weinheim, Germany, 1984; pp. 163–172. [Google Scholar]
- Hildén, L.; Eng, L.; Johansson, G.; Lindqvist, S.E.; Pettersson, G. An amperometric cellobiose dehydrogenase-based biosensor can be used for measurement of cellulase activity. Anal. Biochem. 2001, 290, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Himmel, M.E.; Decker, S.R. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium. Biotechnol. Lett. 2005, 27, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Hale, P.D.; Boguslavsky, L.I.; Inagaki, T.; Karan, H.I.; Lee, H.S.; Skotheim, T.A.; Okamoto, Y. Amperometric glucose biosensors based on redox polymer-mediated electron transfer. Anal. Chem. 1991, 63, 677–682. [Google Scholar] [CrossRef]
- Silva, A.S.A.; Souza, M.F.; Ballesteros, I.; Manzanares, P.; Ballesteros, M.; Bon, E.P.S. High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochem. 2016, 51, 1561–1567. [Google Scholar] [CrossRef]
- Black, G.E.; Fox, A. Recent progress in the analysis of sugar monomers from complex matrices using chromatography in conjunction with mass spectrometry or stand-alone tandem mass spectrometry. J. Chromatogr. 1996, 720, 51–60. [Google Scholar] [CrossRef]
- Khandurina, J.; Olson, N.A.; Anderson, A.A.; Gray, K.A.; Guttman, A. Large-scale carbohydrate analysis by capillary array electrophoresis: Part 1. Separation and scale-up. Electrophoresis 2004, 25, 3117–3121. [Google Scholar] [CrossRef] [PubMed]
Method | Typical Temperature and Reaction Time | Chemicals | Effects on Hemi-Celluloses | Effects on Lignin | Effects on Cellulose | Examples of Upscaling Attempts | Ref. |
---|---|---|---|---|---|---|---|
Hydrothermal pretreatment | ~170–230 °C, 10–30 min | None | Partial solubilization | Slight removal | Slight crystallinity increase | Inbicon (Denmark) | [25] |
Hydrothermal pretreatment with dilute acid | ~120–230 °C, from a few sec to ~1 h | H2SO4, HCl, H3PO4, organic acids | Complete hydrolysis | Disruption and redistribution, slight removal | Partial depolymerization, slight crystallinity increase | Iogen-Raízen (Brazil), POET-DSM (USA), Iogen (Canada), Blue Sugars (USA) | [23,26,27] |
Hydrothermal pretreatment with steam explosion | ~160–230 °C, ~1–30 min | None, SO2, H2SO4, H3PO4, NaOH | Partial to complete solubilization, de-acetylation | Slight removal and modification | Slight crystallinity increase | Sekab (Sweden), Abengoa (Spain), Beta Renewables (Italy), Verenium (USA), Greenfield (Canada) | [23,24,27] |
Mild alkaline methods | ~25–180 °C, from a few min to several weeks | NaOH, KOH, Ca(OH)2, NH4OH | Partial solubilization, deacetylation | Significant removal | Crystallinity decrease, depolymerization | DuPont Danisco (USA) | [28] |
AFEX | 40–100 °C, 5–45 min | NH3 | Deacetylation | Structural changes | Crystallinity decrease | DEINOVE-MBI (USA) | [28,29] |
Chemical pulping (Kraft, sulfite, soda, or organosolv) | 90–250 °C, 30–60 min | Depends on process | Variable removal | Extensive removal | No removal, but degree of polymerization and crystallinity affected | Borregaard (Norway), Lignol (Canada), Chempolis (Finland) | [30,31] |
Oxidative methods | From room temperature to ~200 °C | O3, O2, H2O2 | Partial removal | Significant removal | Partial depolymerization, marginal crystallinity increase | BioGasol (Denmark) | [23] |
Ionic liquids | ~80–130 °C | Ionic liquids | Solubilization | Solubilization | Decrystallization | ? | [32,33,34] |
Approach | Feedstock; Particle Size; Loading (DW) | Pretreatment Conditions | Solid-Liquid Separation; Wash | Enzymatic Saccharification (ES) | Analysis Methods | Sugar Yield (Control) | Ref. |
---|---|---|---|---|---|---|---|
Preparative PT (organosolv) and analytical-scale ES (MTP) | Yellow poplar wood; 1.76 g wood chips per hand sheet (PT); 1.78 mg disk per well (ES) | Ethanol-Organosolv at 195 °C for ~90‘ | Yes; Washes with ethanol (70%) and H2O | Desalted A and E separately; 0.1 M AB (WC); pH 5.0; 50 °C; 24 h; 600 rpm | Glu (ES)-HPLC-PAD, enzyme coupled assay (GOX-PRX). | 82% Cel⇔Glu in 24 h. | [65] |
With and w/o preparative PT (AFEX). Analytical-scale ES (MWP) | Corn stover; <0.1 mm; 1 kg BM (PT); 1000 µl PT slurry (0.25–1% G load, ES) | AFEX (1 kg NH3) at 90 °C for 5‘ (instantaneous pressure release) | No; dried overnight to remove NH3 | C and B; 0.05 M CB (WC); pH 4.8; 50 °C; 24 h; 375 rpm | Glu-HPLC-RID, spectrophotometric assay (Glu bio-enzymatic assay kit) | 20% G⇔Glu (ES w/o PT); 90% G⇔Glu (PT+ES) | [69] |
Combined PT and ES + ES w/o PT (HTDP method). HPT with acid or PT with alkali in micronic tubes. | Corn stover, A. thaliana; <0.35 mm (robotic); 1.5 mg powder per micronic tube | PT with alkali (6.25 or 62.5 mM NaOH) at 90 °C for 180’, or HPT with 2% H2SO4 at 120 °C for 45’ | No; Neutralized with 0.03 M CB, HCl, or NaOH | G; 0.03 M CB (WC); pH 4.5; 50 °C; 20 h; end-over-end rotation | Glu-GOX-PRX; Xyl-XDH; Total Mono content-alditol acetate/GC method. | Up to 1500 nmol (0.27 mg) Glu/mg BM | [64] |
Combined PT (HPT) and ES in Hastelloy 96-well format | Poplar (around 755 variants); <1 mm; 5 mg per well | HPT at 180 °C for 40‘ | No; Neutralized with 1 M CB, pH 5.0 | C and B; 1 M CB (NC), pH 5.0, 40°C, 72 h, static incubation | Glu-GOX-PRX; Xyl-XDH; Mono-HPLC-RID | TSY (Glu+Xyl): 0.17–0.64 g/g BM | [70] |
Combined HTP-PT (HPT) and ES + ES w/o PT (Hastelloy 96-well format) | P. trichocarpa (47 phenotypes); 0.180–0.85 mm; 2.6 mg; <2% solids | HPT (180 °C for 18’, or 160°C for 28’, or 140°C for 464’) | No; Neutralized with 1 M CB pH 4.95 | C and F; 1 M CB (NC); pH 4.95; 50 °C; 72 h; 150 rpm. | Mono-HPLC-RID | TSY: 0.437–0.68 g/g BM (PT+ES); 0.05–0.40 g/g BM (ES w/o PT) | [51,52,53] |
Combined PT (PT with acid or alkali) and ES (96 MWP format). | A. thaliana, Brachypodium, poplar, maize, barley, tobacco; powder; 4 mg per well | PT with 0.5–4% H2SO4 or 0.5 N NaOH, 90°C, time variable depending on plant material | Yes; 0.025 M AB wash | Desalted A and B; 0.025 M AB; pH 4.5; 50 °C; shaking | RS-MTBH assay; Mono (PTL and ES)-HPAEC-ECD | Tobacco WT: 50 µmol (9 mg) Glu/g BM | [62,63] |
Combined PT (HPT) and ES | A. mangium (transgenic); powder; 100 mg | HPT at 120°C for 3’ | Yes; H2O wash | H; 0.05 M AB; pH 4.8; 0.02% Tween-20; 45 °C; 48 h; 135 rpm | RS (ES)-Somogyi–Nelson method; Glu (ES)-GOX method | 9.4 mg RS/100 mg BM, 6.8 Glu mg/100 mg. | [61] |
Combined PT (HPT with acid using ASE 350) and ES. | 156 different feedstocks: corn stover, poplar, etc.; <2 mm; 3 g | HPT with 1% H2SO4 at 110–200 °C for 13’ (7’ heating, 6’ static) | Yes; H2O wash | D; 0.1 M CB; pH 4.8; 48 h; 5–7 days | Glu and Xyl (PTL and ES)-HPLC-RID | Corn stover: PT+ES 0.309 g Glu and 0.228 g Xyl/g BM. | [68] |
Combined PT (HPT with alkali using Hastelloy 96-well format) and ES. | Switchgrass, P. tremuloides; 0.180–0.85 mm; 4.5 mg | HPT with 1% NaOH at 120°C for 10–1440’ | No; diluted with H2O, neutralized with 1 M CB, pH 4.5 | C and F; 1 M CB (NC); pH 4.95; 50 °C; 72 h; 150 rpm. | Mono-HPLC-RID | Poplar: 49-69% (Glu+Xyl); Switch-grass: 85% (Glu) | [72] |
Combined PT (PT with acid) and ES + ES w/o PT | P. tremula × P. alba (green house); powder; 10 mg | PT with 1 ml of 1 N HCl at 80°C for 120’ | Yes; H2O wash, 70% (v/v) ethanol, and 100% acetone | Desalted A and B; AB pH 4.8; 50 °C; 48 h | Glu in ES (with and w/o PT)-GOX-PRX assay | 16–18% Cel⇔Glu | [66] |
HTDP: combined PT (HPT with acid or PT with alkali) and ES | P. tremula × P. alba (field grown); powder; 1.5 mg | HPT with 0.4 M H2SO4 (120 °C, 45’), or PT with 6.25 or 62.5 mM NaOH (90 °C, 180’) | No; Neutralized with acid or base depending on PT. | Desalted A and B; AB pH 4.8; 50 °C; 48 h | HPLC-RID | 16–69% Cel⇔Glu | [67] |
Combined PT (HPT with acid using robotic single-mode microwave system) and ES + ES w/o PT. | Hybrid aspen; 0.1–0.5 mm; 50 mg | HPT with 1% H2SO4 at 165 °C for 10’ | Yes; H2O wash and 0.05 M CB (pH 5.2). | A and B; 0.05 M CB pH 5.2; 45 °C; 72 h; 170 rpm | Mono (PTL and ES)-HPAEC-ECD; Glu (ES)-GOX; ACA (PTL)-HPAEC-CD | Glu (g/g BM): 0.1–0.25 g (ES); 0.35–0.5 g (PT+ES) | [47,48,54,55,56,57,58,71] |
Combined PT (HTP with acid using robotic single-mode micro-wave system) and ES + ES w/o PT. | Scots pine, Norway spruce; 0.1–0.5 mm; 50 mg | HPT with 2–4% H2SO4 at 180 °C for 5–30’ | Yes; H2O wash and 0.05 M CB (pH 5.2). | A and B; 0.05 M CB; pH 5.2; 45 °C; 72 h; 170 rpm | Mono (PTL and ES)-HPAEC-ECD; Glu (ES)-GOX; ACA (PTL)-HPAEC-CD | Glu (g/g BM): 0.03–0.10 g (ES); 0.1–0.34 g (PT+ES) | [59,60] |
Combined IL-PT and ES + ES w/o PT | Hybrid aspen, Norway spruce; 0.1–0.5 mm; 50 mg | 950 mg IL ([Bmim] [HSO4], [Bmim][Ac], [Bmim][Cl], or [Amim][Ac]) at 100 °C for 1200’ | Yes; H2O wash and 0.05 M CB (pH 5.2). | A and B; 0.05 M CB; pH 5.2; 45 °C; 72 h; 170 rpm | Mono (PTL and ES)-HPAEC-ECD; Glu-GOX; ACA (PTL)-HPLC-RID; furans (PTL)-HPLC-DAD. | Glu (g/g BM): aspen, 0.1 g (ES), 0.13–0.35 g (PT+ES); spruce, 0.03 g (ES), 0.4 g (PT+ES) | [43,60,73] |
PT (HPT) and ES + ES w/o PT (Hastelloy 96-well format) | P. deltoides, Switch grass, Rice; 0.85–1 mm; 5 mg | HPT at 180 °C for 17.5’ | No. | D; 1.0 M CB (NC); pH 5.0; 50 °C; 70 h; static incubation | Glu-GOX-PRX; Xyl-XDH | Poplar: (0.32 g Glu and 0.17 g Xyl) /g BM | [49,50,53] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandla, M.L.; Martín, C.; Jönsson, L.J. Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals. Energies 2018, 11, 2936. https://doi.org/10.3390/en11112936
Gandla ML, Martín C, Jönsson LJ. Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals. Energies. 2018; 11(11):2936. https://doi.org/10.3390/en11112936
Chicago/Turabian StyleGandla, Madhavi Latha, Carlos Martín, and Leif J. Jönsson. 2018. "Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals" Energies 11, no. 11: 2936. https://doi.org/10.3390/en11112936