A Review of Commercial Biogas Systems and Lessons for Africa
Abstract
:1. Introduction
2. Overview of Commercial Biogas Systems in Africa and Barriers to Dissemination
2.1. Overview of Large Biogas Systems in Africa
2.2. Support for Commercial Biogas Systems
3. Barriers to Commercial Biogas Dissemination in Africa
3.1. Financial and Economic Barriers
3.2. Technical and Infrastructural Barriers
3.3. Regulatory and Institutional Barriers
3.4. Market and Awareness Barriers
4. Overview of Successful Commercial Biogas Programmes
4.1. Global Overview
4.2. Germany
4.3. China
4.4. India
4.5. Other Countries
4.6. Summary Lessons from Country Reviews
5. Lessons for Africa
5.1. Energy and Environmental Policies
5.2. Economic and Financial Policies
5.3. Research and Development
5.4. Other Support Schemes
6. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Sehgal, K. Current State and Future Prospects of Global Biogas Industry. In Biogas; Biofuel and Biorefinery Technologies; Springer: Cham, Switzerland, 2018; pp. 449–472. ISBN 978-3-319-77334-6. [Google Scholar]
- Bos, K.; Chaplin, D.; Mamun, A. Benefits and challenges of expanding grid electricity in Africa: A review of rigorous evidence on household impacts in developing countries. Energy Sustain. Dev. 2018, 44, 64–77. [Google Scholar] [CrossRef]
- Renewable Energy Network of the 21st Century. Renewables 2018 Global Status Report. 2018. Available online: http://www.ren21.net/status-of-renewables/global-status-report/ (accessed on 12 June 2018).
- Ahammad, S.Z.; Sreekrishnan, T.R. Biogas: An Evolutionary Perspective in the Indian Context. In Green Fuels Technology; Green Energy and Technology; Springer: Cham, Switzerland, 2016; pp. 431–443. ISBN 978-3-319-30203-4. [Google Scholar]
- Lebuhn, M.; Munk, B.; Effenberger, M. Agricultural biogas production in Germany—From practice to microbiology basics. Energy Sustain. Soc. 2014, 4, 10. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Z.; Mang, H.-P.; Huba, E.-M.; Gao, R.; Wang, X. Development and application of prefabricated biogas digesters in developing countries. Renew. Sustain. Energy Rev. 2014, 34, 387–400. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Roubík, H.; Mazancová, J.; Le Dinh, P.; Dinh Van, D.; Banout, J.; Roubík, H.; Mazancová, J.; Le Dinh, P.; Dinh Van, D.; Banout, J. Biogas quality across small-scale biogas plants: A case of central Vietnam. Energies 2018, 11, 1794. [Google Scholar] [CrossRef]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J.; Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household biogas digesters—A review. Energies 2012, 5, 2911–2942. [Google Scholar] [CrossRef]
- Mittal, S.; Ahlgren, E.O.; Shukla, P.R. Barriers to biogas dissemination in India: A review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- Mshandete, A.M.; Parawira, W. Biogas technology research in selected sub-Saharan African countries—A review. Afr. J. Biotechnol. 2009, 8, 116–125. [Google Scholar]
- Rupf, G.V.; Bahri, P.A.; de Boer, K.; McHenry, M.P. Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal. Renew. Sustain. Energy Rev. 2015, 52, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Sommer, S.G.; Christensen, K.V. A review of the biogas industry in China. Energy Policy 2011, 39, 6073–6081. [Google Scholar] [CrossRef]
- Ahmad Dar, R.; Ahmad Dar, E.; Kaur, A.; Gupta Phutela, U. Sweet sorghum-a promising alternative feedstock for biofuel production. Renew. Sustain. Energy Rev. 2018, 82, 4070–4090. [Google Scholar] [CrossRef]
- Zareei, S. Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran. Renew. Energy 2018, 118, 351–356. [Google Scholar] [CrossRef]
- Namsaraev, Z.B.; Gotovtsev, P.M.; Komova, A.V.; Vasilov, R.G. Current status and potential of bioenergy in the Russian Federation. Renew. Sustain. Energy Rev. 2018, 81, 625–634. [Google Scholar] [CrossRef]
- Tasnim, F.; Iqbal, S.A.; Chowdhury, A.R. Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renew. Energy 2017, 109, 434–439. [Google Scholar] [CrossRef]
- Wu, Q.; Qiang, T.C.; Zeng, G.; Zhang, H.; Huang, Y.; Wang, Y. Sustainable and renewable energy from biomass wastes in palm oil industry: A case study in Malaysia. Int. J. Hydrogen Energy 2017, 42, 23871–23877. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Saidan, M.; Hararah, M.; Rawajfeh, K.; Alkhasawneh, H.E.; Al-Shannag, M. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew. Sustain. Energy Rev. 2017, 67, 295–314. [Google Scholar] [CrossRef]
- Li, K.; Liu, R.; Sun, C. A review of methane production from agricultural residues in China. Renew. Sustain. Energy Rev. 2016, 54, 857–865. [Google Scholar] [CrossRef]
- Biosantech, T.A.S.; Rutz, D.; Janssen, R.; Drosg, B. Biomass resources for biogas production. In The Biogas Handbook; Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2013; pp. 19–51. ISBN 978-0-85709-498-8. [Google Scholar]
- Guimarães, C.; Maia, D.; Serra, E. Construction of biodigesters to optimize the production of biogas from anaerobic co-digestion of food waste and sewage. Energies 2018, 11, 870. [Google Scholar] [CrossRef]
- Mor, S.; Ravindra, K.; Dahiya, R.P.; Chandra, A. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ. Monit. Assess. 2006, 118, 435–456. [Google Scholar] [CrossRef] [PubMed]
- Mantis, I.; Voutsa, D.; Samara, C. Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods. Ecotoxicol. Environ. Saf. 2005, 62, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Tatsi, A.A.; Zouboulis, A.I. A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv. Environ. Res. 2002, 6, 207–219. [Google Scholar] [CrossRef]
- Mugodo, K.; Magama, P.P.; Dhavu, K. Biogas production potential from agricultural and agro-processing waste in South Africa. Waste Biomass Valoriz. 2017, 8, 2383–2392. [Google Scholar] [CrossRef]
- Rupf, G.V.; Bahri, P.A.; de Boer, K.; McHenry, M.P. Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks. Renew. Sustain. Energy Rev. 2016, 61, 556–571. [Google Scholar] [CrossRef] [Green Version]
- Parawira, W. Biogas technology in sub-Saharan Africa: Status, prospects and constraints. Rev. Environ. Sci. Biotechnol. 2009, 8, 187–200. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Clemens, H.; Bailis, R.; Nyambane, A.; Ndung’u, V. Africa biogas partnership program: A review of clean cooking implementation through market development in East Africa. Energy Sustain. Dev. 2018. [Google Scholar] [CrossRef]
- Kinyua, M.N.; Rowse, L.E.; Ergas, S.J. Review of small-scale tubular anaerobic digesters treating livestock waste in the developing world. Renew. Sustain. Energy Rev. 2016, 58, 896–910. [Google Scholar] [CrossRef] [Green Version]
- Kemausuor, F.; Bolwig, S.; Miller, S. Modelling the socio-economic impacts of modern bioenergy in rural communities in Ghana. Sustain. Energy Technol. Assess. 2016, 14, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Orskov, E.R.; Yongabi Anchang, K.; Subedi, M.; Smith, J. Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa. Biomass Bioenergy 2014, 70, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, P.C. SNV supported domestic biogas programmes in Asia and Africa. Renew. Energy 2013, 49, 90–94. [Google Scholar] [CrossRef]
- Laramee, J.; Davis, J. Economic and environmental impacts of domestic bio-digesters: Evidence from Arusha, Tanzania. Energy Sustain. Dev. 2013, 17, 296–304. [Google Scholar] [CrossRef]
- Mutungwazi, A.; Mukumba, P.; Makaka, G. Biogas digester types installed in South Africa: A review. Renew. Sustain. Energy Rev. 2018, 81, 172–180. [Google Scholar] [CrossRef]
- Aliyu, A.S.; Dada, J.O.; Adam, I.K. Current status and future prospects of renewable energy in Nigeria. Renew. Sustain. Energy Rev. 2015, 48, 336–346. [Google Scholar] [CrossRef]
- Suberu, M.Y.; Bashir, N.; Mustafa, M.W. Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria. Renew. Sustain. Energy Rev. 2013, 25, 643–654. [Google Scholar] [CrossRef]
- Giwa, A.; Alabi, A.; Yusuf, A.; Olukan, T. A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria. Renew. Sustain. Energy Rev. 2017, 69, 620–641. [Google Scholar] [CrossRef]
- REUTERS. Africa’s First Grid-Connected Biogas Plant Powers Up. Available online: https://www.reuters.com/article/kenya-energy-biogas/africas-first-grid-connected-biogas-plant-powers-up-idUSL5N1EZ1KL (accessed on 9 July 2018).
- Nzila, C.; Dewulf, J.; Spanjers, H.; Kiriamiti, H.; van Langenhove, H. Biowaste energy potential in Kenya. Renew. Energy 2010, 35, 2698–2704. [Google Scholar] [CrossRef]
- Hamid, R.G.; Blanchard, R.E. An assessment of biogas as a domestic energy source in rural Kenya: Developing a sustainable business model. Renew. Energy 2018, 121, 368–376. [Google Scholar] [CrossRef]
- Kiplagat, J.K.; Wang, R.Z.; Li, T.X. Renewable energy in Kenya: Resource potential and status of exploitation. Renew. Sustain. Energy Rev. 2011, 15, 2960–2973. [Google Scholar] [CrossRef]
- Kemausuor, F.; Nygaard, I.; Mackenzie, G. Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model. Energy 2015, 93, 672–682. [Google Scholar] [CrossRef] [Green Version]
- Kemausuor, F.; Kamp, A.; Thomsen, S.T.; Bensah, E.C.; Østergård, H. Assessment of biomass residue availability and bioenergy yields in Ghana. Resour. Conserv. Recycl. 2014, 86, 28–37. [Google Scholar] [CrossRef]
- Sakah, M.; Diawuo, F.A.; Katzenbach, R.; Gyamfi, S. Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies. Renew. Sustain. Energy Rev. 2017, 79, 544–557. [Google Scholar] [CrossRef]
- Ofori-Boateng, C.; Lee, K.T.; Mensah, M. The prospects of electricity generation from municipal solid waste (MSW) in Ghana: A better waste management option. Fuel Process. Technol. 2013, 110, 94–102. [Google Scholar] [CrossRef]
- GIZ. Biogas in Ghana: Sub-Sector Analysis of Potential and Framework Conditions. Available online: https://www.giz.de/fachexpertise/downloads/giz2014-en-ghana-pdp-subsector-analysis-biogas.pdf (accessed on 13 July 2018).
- Arthur, R.; Glover, K. Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009. Bioresour. Technol. 2012, 111, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.; Gheewala, S.H. Missed environmental benefits of biogas production in Zambia. J. Clean. Prod. 2017, 142, 1200–1209. [Google Scholar] [CrossRef]
- Yimen, N.; Hamandjoda, O.; Meva’a, L.; Ndzana, B.; Nganhou, J.; Yimen, N.; Hamandjoda, O.; Meva’a, L.; Ndzana, B.; Nganhou, J. Analyzing of a Photovoltaic/Wind/Biogas/Pumped-Hydro Off-Grid Hybrid System for Rural Electrification in Sub-Saharan Africa—Case Study of Djoundé in Northern Cameroon. Energies 2018, 11, 2644. [Google Scholar] [CrossRef]
- UNIDO. Biogas to Biomethane. Available online: https://www.biogas-to-biomethane.com/Download/BTB.pdf (accessed on 24 October 2018).
- Kenya Ministry of Energy. Biogas Development in Kenya. Available online: http://energy.go.ke/biogas/ (accessed on 13 July 2018).
- Becker, B.; Fischer, D. Promoting renewable electricity generation in emerging economies. Energy Policy 2013, 56, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Walwyn, D.R.; Brent, A.C. Renewable energy gathers steam in South Africa. Renew. Sustain. Energy Rev. 2015, 41, 390–401. [Google Scholar] [CrossRef] [Green Version]
- GIZ. Biogas Industry in South Africa: An Assessment of the Skills Need and Estimation of the Job Potential. Available online: https://www.crses.sun.ac.za/files/research/publications/SAGEN%20Job%20Pot%20-%20Digital%20(low-res).pdf (accessed on 19 October 2018).
- Kemausuor, F.; Ackom, E. Toward universal electrification in Ghana. Wiley Interdiscip. Rev. Energy Environ. 2016, 6, e225. [Google Scholar] [CrossRef] [Green Version]
- Gyamfi, S.; Modjinou, M.; Djordjevic, S. Improving electricity supply security in Ghana—The potential of renewable energy. Renew. Sustain. Energy Rev. 2015, 43, 1035–1045. [Google Scholar] [CrossRef] [Green Version]
- Parliament of the Republic of Ghana. Renewable Energy Act 2011. Available online: http://energycom.gov.gh/files/RENEWABLE%20ENERGY%20ACT%202011%20(ACT%20832).pdf (accessed on 19 October 2018).
- Nigerian Electricity Regulatory Commission. Regulations on Feed-in Tariff for Renewable Energy Sourced Electricity in Nigeria. 2015. Available online: https://www.iea.org/media/pams/nigeria/NIGERIA_FIT_regulation2015enteringintoforceFeb2016.pdf (accessed on 19 October 2018).
- Mengistu, M.G.; Simane, B.; Eshete, G.; Workneh, T.S. Institutional factors influencing the dissemination of biogas technology in Ethiopia. J. Hum. Ecol. 2016, 55, 117–134. [Google Scholar] [CrossRef]
- Roopnarain, A.; Adeleke, R. Current status, hurdles and future prospects of biogas digestion technology in Africa. Renew. Sustain. Energy Rev. 2017, 67, 1162–1179. [Google Scholar] [CrossRef]
- Mulinda, C.; Hu, Q.; Pan, K. Dissemination and problems of African biogas Technology. Energy Power Eng. 2013, 5, 506–512. [Google Scholar] [CrossRef]
- Central Bank News Interest Rates. Available online: http://www.centralbanknews.info/p/interest-rates.html (accessed on 24 July 2018).
- Trading Economics Interest Rate: Countries List. Available online: https://tradingeconomics.com/country-list/interest-rate (accessed on 24 July 2018).
- Pueyo, A. What constrains renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana. World Dev. 2018, 109, 85–100. [Google Scholar] [CrossRef]
- Schmidt, T.S.; Dabur, S. Explaining the diffusion of biogas in India: A new functional approach considering national borders and technology transfer. Environ. Econ. Policy Stud. 2014, 16, 171–199. [Google Scholar] [CrossRef]
- Yousuf, A.; Khan, M.R.; Pirozzi, D.; Wahid, Z.A. Financial sustainability of biogas technology: Barriers, opportunities, and solutions. Energy Sources Part B Econ. Plan. Policy 2016, 11, 841–848. [Google Scholar] [CrossRef]
- Tucho, G.; Moll, H.; Schoot Uiterkamp, A.; Nonhebel, S.; Tucho, G.T.; Moll, H.C.; Schoot Uiterkamp, A.J.M.; Nonhebel, S. Problems with biogas implementation in developing countries from the perspective of labor requirements. Energies 2016, 9, 750. [Google Scholar] [CrossRef]
- Mohammed, M.; Egyir, I.S.; Donkor, A.K.; Amoah, P.; Nyarko, S.; Boateng, K.K.; Ziwu, C. Feasibility study for biogas integration into waste treatment plants in Ghana. Egypt. J. Pet. 2017, 26, 695–703. [Google Scholar] [CrossRef]
- Gebreegziabher, Z.; Naik, L.; Melamu, R.; Balana, B.B. Prospects and challenges for urban application of biogas installations in Sub-Saharan Africa. Biomass Bioenergy 2014, 70, 130–140. [Google Scholar] [CrossRef]
- Kranert, M.; Kusch, S.; Huang, J.; Fischer, K. Anaerobic Digestion of Waste. In Waste to Energy; Green Energy and Technology; Springer: London, UK, 2012; pp. 107–135. ISBN 978-1-4471-2305-7. [Google Scholar]
- Mukumba, P.; Makaka, G.; Mamphweli, S. Biogas technology in South Africa, problems, challenges and solutions. Int. J. Sustain. Energy Environ. Res. 2016, 5, 58–69. [Google Scholar] [CrossRef]
- Aliyu, A.S.; Ramli, A.T.; Saleh, M.A. Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications. Energy 2013, 61, 354–367. [Google Scholar] [CrossRef]
- Kesselring, R. The electricity crisis in Zambia: Blackouts and social stratification in new mining towns. Energy Res. Soc. Sci. 2017, 30, 94–102. [Google Scholar] [CrossRef]
- Murphy, P.M.; Twaha, S.; Murphy, I.S. Analysis of the cost of reliable electricity: A new method for analyzing grid connected solar, diesel and hybrid distributed electricity systems considering an unreliable electric grid, with examples in Uganda. Energy 2014, 66, 523–534. [Google Scholar] [CrossRef]
- Okello, C.; Pindozzi, S.; Faugno, S.; Boccia, L. Development of bioenergy technologies in Uganda: A review of progress. Renew. Sustain. Energy Rev. 2013, 18, 55–63. [Google Scholar] [CrossRef]
- Mbuligwe, S.E.; Kassenga, G.R. Feasibility and strategies for anaerobic digestion of solid waste for energy production in Dar es Salaam city, Tanzania. Resour. Conserv. Recycl. 2004, 42, 183–203. [Google Scholar] [CrossRef]
- Kolchakov, V.; Petrova, V.; Mitova, T.; Ivanov, P.; Marinova, S. Possibilities for Biogas Production from Waste—Potential, Barriers, and Legal Notices. In Energy Solutions to Combat Global Warming; Lecture Notes in Energy; Springer: Cham, Switzerland, 2017; pp. 181–191. ISBN 978-3-319-26948-1. [Google Scholar]
- Trimble, C.P.; Kojima, M.; Perez Arroyo, I.; Mohammadzadeh, F. Financial Viability of Electricity Sectors in Sub-Saharan Africa: Quasi-Fiscal Deficits and Hidden Costs; The World Bank: Washington, DC, USA, 2016; pp. 1–105. [Google Scholar]
- Langeveld, J.W.A.; Peterson, E.C. Feedstocks for Biogas Production: Biogas and Electricity Generation Potentials. In Biogas; Biofuel and Biorefinery Technologies; Springer: Cham, Switzerland, 2018; pp. 35–49. ISBN 978-3-319-77334-6. [Google Scholar]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A technological overview of biogas production from biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Aryal, N.; Kvist, T.; Ammam, F.; Pant, D.; Ottosen, L.D.M. An overview of microbial biogas enrichment. Bioresour. Technol. 2018, 264, 359–369. [Google Scholar] [CrossRef] [PubMed]
- International Renewable Energy Agency. Renewable Capacity Statistics 2017. Available online: http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Mar/IRENA_RE_Capacity_Statistics_2017.pdf (accessed on 13 October 2018).
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Stinner, W.; Schmalfuß, T.; Scheftelowitz, M.; Nelles, M.; Liebetrau, J. Current Developments in Production and Utilization of Biogas and Biomethane in Germany. Chem. Ing. Tech. 2018, 90, 17–35. [Google Scholar] [CrossRef]
- German Agency for Renewable Resources. Bioenergy in Germany: Facts and Figures 2016. Available online: content/uploads/2017/03/Bioenergy_in_Germany_facts_and_figures_2016.pdf (accessed on 19 June 2018).
- Heffels, T.; McKenna, R.; Fichtner, W. Direct marketing of electricity from biogas and biomethane: An economic analysis of several business models in Germany. J. Manag. Control 2012, 23, 53–70. [Google Scholar] [CrossRef]
- German Federal Ministry for Economic Affairs and Energy Renewable Energy Sources Act (EEG 2017). Available online: https://www.bmwi.de/Redaktion/EN/Downloads/renewable-energy-sources-act-2017.pdf?__blob=publicationFile&v=3 (accessed on 2 July 2018).
- Chen, L.; Zhao, L.; Ren, C.; Wang, F. The progress and prospects of rural biogas production in China. Energy Policy 2012, 51, 58–63. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Sweeney, S.; Feng, Y. Household biogas use in rural China: A study of opportunities and constraints. Renew. Sustain. Energy Rev. 2010, 14, 545–549. [Google Scholar] [CrossRef]
- Chen, B.; Hayat, T.; Alsaedi, A. History of Biogas Production in China. In Biogas Systems in China; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–15. ISBN 978-3-662-55496-8. [Google Scholar]
- Eberhard, A.; Gratwick, K.; Morella, E.; Antmann, P. Independent Power Projects in Sub-Saharan Africa: Lessons from Five Key Countries; Directions in Development; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Gu, L.; Zhang, Y.-X.; Wang, J.-Z.; Chen, G.; Battye, H. Where is the future of China’s biogas? Review, forecast, and policy implications. Pet. Sci. 2016, 13, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.R. Biomass Energy Strategies for Aligning Development and Climate Goals in India. Available online: https://www.rivm.nl/bibliotheek/rapporten/500101002.pdf (accessed on 3 July 2018).
- Valenti, F.; Zhong, Y.; Sun, M.; Porto, S.M.C.; Toscano, A.; Dale, B.E.; Sibilla, F.; Liao, W. Anaerobic co-digestion of multiple agricultural residues to enhance biogas production in southern Italy. Waste Manag. 2018, 78, 151–157. [Google Scholar] [CrossRef]
- Torrijos, M. State of development of biogas production in Europe. Procedia Environ. Sci. 2016, 35, 881–889. [Google Scholar] [CrossRef]
- Aryal, N.; Kvist, T.; Aryal, N.; Kvist, T. Alternative of biogas injection into the Danish gas grid system—A study from demand perspective. ChemEngineering 2018, 2, 43. [Google Scholar] [CrossRef]
- Vochozka, M.; Maroušková, A.; Šuleř, P. Economic, Environmental and moral acceptance of renewable energy: A case study-the agricultural biogas plant at Pěčín. Sci. Eng. Eth. 2018, 24, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Stürmer, B. Biogas—Part of Austria’s future energy supply or political experiment? Renew. Sustain. Energy Rev. 2017, 79, 525–532. [Google Scholar] [CrossRef]
- Pablo-Romero, M.D.P.; Sánchez-Braza, A.; Salvador-Ponce, J.; Sánchez-Labrador, N. An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28. Renew. Sustain. Energy Rev. 2017, 73, 1366–1379. [Google Scholar] [CrossRef]
- Larsson, M.; Grönkvist, S.; Alvfors, P. Upgraded biogas for transport in Sweden—Effects of policy instruments on production, infrastructure deployment and vehicle sales. J. Clean. Prod. 2016, 112, 3774–3784. [Google Scholar] [CrossRef]
- Chaiyapong, P.; Chavalparit, O. Enhancement of biogas production potential from Acacia leaf waste using alkaline pre-treatment and co-digestion. J. Mater. Cycles Waste Manag. 2016, 18, 427–436. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Andriamanohiarisoamanana, F.J.; Yasui, S.; Iwasaki, M.; Nishida, T.; Ihara, I.; Umetsu, K. Feasibility study of a centralized biogas plant performance in a dairy farming area. J. Mater. Cycles Waste Manag. 2018, 20, 314–322. [Google Scholar] [CrossRef]
- American Biogas Council American Biogas Council Announces 2016 Biogas Industry Awardees. Available online: http://americanbiogascouncil.org/pdf/ABC%20Press%20Release-2016%20Biogas%20Award%20Winners.pdf (accessed on 4 July 2018).
- Pasqual, J.; Bollmann, H.; Scott, C.; Edwiges, T.; Baptista, T.; Pasqual, J.C.; Bollmann, H.A.; Scott, C.A.; Edwiges, T.; Baptista, T.C. Assessment of collective production of biomethane from livestock waste for urban transportation mobility in Brazil and the United States. Energies 2018, 11, 997. [Google Scholar] [CrossRef]
- Sam, A.; Bi, X.; Farnsworth, D. How incentives affect the adoption of anaerobic digesters in the United States. Sustainability 2017, 9, 1221. [Google Scholar] [CrossRef]
- Wirba, A.V.; Abubakar Mas’ud, A.; Muhammad-Sukki, F.; Ahmad, S.; Mat Tahar, R.; Abdul Rahim, R.; Munir, A.B.; Karim, M.E. Renewable energy potentials in Cameroon: Prospects and challenges. Renew. Energy 2015, 76, 560–565. [Google Scholar] [CrossRef] [Green Version]
- Mwirigi, J.; Balana, B.B.; Mugisha, J.; Walekhwa, P.; Melamu, R.; Nakami, S.; Makenzi, P. Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: A review. Biomass Bioenergy 2014, 70, 17–25. [Google Scholar] [CrossRef]
- Salih, M.A.M.; Tedla, S. Environmental Planning, Policies and Politics in Eastern and Southern Africa; Springer: London, UK, 2016; ISBN 978-1-349-27693-6. [Google Scholar]
- Colby Environmental Policy Group. Environmental Policy Update 2012: Development Strategies and Environmental Policy in East Africa; Colby College Environmental Studies Program: Waterville, ME, USA, 2012. [Google Scholar]
- Lönnqvist, T.; Sandberg, T.; Birbuet, J.C.; Olsson, J.; Espinosa, C.; Thorin, E.; Grönkvist, S.; Gómez, M.F. Large-scale biogas generation in Bolivia—A stepwise reconfiguration. J. Clean. Prod. 2018, 180, 494–504. [Google Scholar] [CrossRef]
- Meyer, A.K.P.; Ehimen, E.A.; Holm-Nielsen, J.B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Budych-Gorzna, M.; Smoczynski, M.; Oleskowicz-Popiel, P. Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste. Appl. Energy 2016, 161, 387–394. [Google Scholar] [CrossRef]
- Gazda, W.; Stanek, W. Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system. Appl. Energy 2016, 169, 138–149. [Google Scholar] [CrossRef]
- Tufaner, F.; Avşar, Y. Effects of co-substrate on biogas production from cattle manure: A review. Int. J. Environ. Sci. Technol. 2016, 13, 2303–2312. [Google Scholar] [CrossRef]
- Poeschl, M.; Ward, S.; Owende, P. Prospects for expanded utilization of biogas in Germany. Renew. Sustain. Energy Rev. 2010, 14, 1782–1797. [Google Scholar] [CrossRef]
- ECOWAS Centre for Renewable Energy and Energy Efficiency. Renewable Energy Policy. Available online: www.ecreee.org/sites/default/files/documents/ecowas_renewable_energy_policy.pdf (accessed on 22 July 2018).
- Ojha, K. Status of MSW management system in northern India-an overview. Environ. Dev. Sustain. 2011, 13, 203–215. [Google Scholar] [CrossRef]
- Patrizio, P.; Leduc, S.; Chinese, D.; Kraxner, F. Internalizing the external costs of biogas supply chains in the Italian energy sector. Energy 2017, 125, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Lutge, B.; Standish, B. Assessing the potential for electricity generation from animal waste biogas on South African farms. Agrekon 2013, 52, 1–24. [Google Scholar] [CrossRef]
- Meyer, N.I. Learning from wind energy policy in the EU: Lessons from Denmark, Sweden and Spain. Eur. Environ. 2007, 17, 347–362. [Google Scholar] [CrossRef]
- Emodi, N.V.; Ebele, N.E. Policies enhancing renewable energy development and implications for Nigeria. Sustain. Energy 2016, 4, 7–16. [Google Scholar] [CrossRef]
- Frondel, M.; Ritter, N.; Schmidt, C.M.; Vance, C. Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy 2010, 38, 4048–4056. [Google Scholar] [CrossRef] [Green Version]
- Dinuccio, E.; Balsari, P.; Gioelli, F.; Menardo, S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour. Technol. 2010, 101, 3780–3783. [Google Scholar] [CrossRef] [PubMed]
- Gaworski, M.; Jabłoński, S.; Pawlaczyk-Graja, I.; Ziewiecki, R.; Rutkowski, P.; Wieczyńska, A.; Gancarz, R.; Łukaszewicz, M. Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion. Biotechnol. Biofuels 2017, 10, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrimali, G.; Srinivasan, S.; Goel, S.; Nelson, D. The effectiveness of federal renewable policies in India. Renew. Sustain. Energy Rev. 2017, 70, 538–550. [Google Scholar] [CrossRef]
- Surendra, K.C.; Takara, D.; Hashimoto, A.G.; Khanal, S.K. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew. Sustain. Energy Rev. 2014, 31, 846–859. [Google Scholar] [CrossRef]
- Buysman, E.; Mol, A.P.J. Market-based biogas sector development in least developed countries—The case of Cambodia. Energy Policy 2013, 63, 44–51. [Google Scholar] [CrossRef]
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Vaish, B.; Srivastava, V.; Singh, P.; Singh, A.; Singh, P.K.; Singh, R.P. Exploring untapped energy potential of urban solid waste. Energy Ecol. Environ. 2016, 1, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Brunner, P.H.; Rechberger, H. Waste to energy—Key element for sustainable waste management. Waste Manag. 2015, 37, 3–12. [Google Scholar] [CrossRef] [PubMed]
Area | Developer or Biomass Source | Capacity (MW) | Country |
---|---|---|---|
Alice | University of Port Hare | 0.2 | South Africa |
Athlone | Clean Energy Africa and Wastemart | 4.0 | South Africa |
Bredasdorp | iBert | 0.10 | South Africa |
Cavalter | iBert | 0.50 | South Africa |
Cavalter | EnviroServ/Chloorkop LFG Cullinan | 0.19 | South Africa |
Darling Uilenkraal | Uilenkraal dairy farm | 0.60 | South Africa |
Durban | Bisasar road LFG | 6.00 | South Africa |
Durban | Marrianhill LFG | 1.50 | South Africa |
Grabouw | Elgin Fruit and Juices | 0.50 | South Africa |
Jan Kempdorp | iBert | 0.135 | South Africa |
Jan Kempdorp | Jacobsdale | 0.15 | South Africa |
Johannesburg | WEC Projects/Northern Waste Water Treatment Works | 1.20 | South Africa |
Johannesburg | Robinson Deep | 19.00 | South Africa |
Klipheuwel | Farmsecure | 0.60–0.70 | South Africa |
Mossel Bay | Biotherm Energy | 4.20 | South Africa |
Paarl | Drakenstein municipality | 14.00 | South Africa |
Pretoria | Bio2watt/Bronkhorst-Spruit | 4.60 | South Africa |
Riverdale | iBert | 0.10 | South Africa |
Riverdale | Robertson | 0.15 | South Africa |
Springs | BiogasSA/Morgan Springs Abattoir | 0.40 | South Africa |
Springs | Selectra | 0.50 | South Africa |
Springs | Selectra | 1.00 | South Africa |
Springs | Selectra | 1.00 | South Africa |
Chaka | Afrisol | 0.060 | Kenya |
Dagoretti | Slaughterhouse waste | 0.030 | Kenya |
Isinya | P. J. Dave Flower Farms Ltd (PPP) | 0.10 | Kenya |
Keekonyoike | Slaughterhouse waste | 0.020 | Kenya |
Kericho | James Finlay Ltd | 0.160 | Kenya |
Kilifi | Pine Power Ltd | 0.150 | Kenya |
Naivasha | Bio-joule Kenya | 2.20 | Kenya |
Sagana | Oilvado Company Ltd | 0.340 | Kenya |
Simbi Roses | Ereka Holdings Ltd (PPP) | 0.055 | Kenya |
Adeiso | Assorted fruit waste and poultry manure | 0.90 | Ghana |
Ashaiman | Market and faecal waste | 0.10 | Ghana |
Kwae | Oil palm waste | 2.00 | Ghana |
Country | Installed Biogas Power Capacity in 2016 (MW) * | Support for Biogas Projects |
---|---|---|
Austria | 194 | Feed-in-tariff, which varies based on the capacity, the technology of the plant and origin of the biogas |
Brazil | 451 | Incentives for energy from waste resources |
Bulgaria | 30 | Projects receive up to 20% grant |
Czech Republic | 369 | Subsidy to support construction |
Denmark | 110 | Uses “Green Pricing” to provide incentives for manufacturers that use biogas to generate electricity. |
Italy | 1387 | Fee-in-tariff, which favours smaller plants with less than 500 kW capacity |
South Africa | 22 | Investment incentives |
Sweden | 2 | Vehicle fleet to be independent of fossil fuels by 2030. Methane will be one of the principal fuels |
Thailand | 435 | Increase biogas capacity to 600 MW by 2030 |
United Kingdom | 1667 | Feed-in-tariff |
United States | 2438 | The federal government provides tax incentives, grants, performance-based incentives, soft loans. Various state governments provide tax credits and grants. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemausuor, F.; Adaramola, M.S.; Morken, J. A Review of Commercial Biogas Systems and Lessons for Africa. Energies 2018, 11, 2984. https://doi.org/10.3390/en11112984
Kemausuor F, Adaramola MS, Morken J. A Review of Commercial Biogas Systems and Lessons for Africa. Energies. 2018; 11(11):2984. https://doi.org/10.3390/en11112984
Chicago/Turabian StyleKemausuor, Francis, Muyiwa S. Adaramola, and John Morken. 2018. "A Review of Commercial Biogas Systems and Lessons for Africa" Energies 11, no. 11: 2984. https://doi.org/10.3390/en11112984