Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Phase Change Materials
2.1.2. Wood-Based Panels Integrated with Puretemp©23
2.2. Facilities
2.2.1. Structure of the Huts
2.2.2. Equipment and Instrumentation
2.3. Methodology
3. Results and Discussion
3.1. Heating Season
3.1.1. Huts Behaviour for High Solar Gains Days
3.1.2. Huts Behaviour for Low Solar Gains Days
3.1.3. Huts Behaviour over Consecutive Days
3.1.4. Average Heating Consumptions
3.2. Summer/Hot Season
3.2.1. Days with Cold Nights
3.2.2. Days with Hot Nights
3.2.3. Average Performance of the Panels
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khudhair, A.M.; Farid, M.M. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 2004, 45, 263–275. [Google Scholar] [CrossRef]
- Entrop, A.G.; Brouwers, H.J.H.; Reinders, A. Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses. Sol. Energy 2011, 85, 1007–1020. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castellon, C.; Nogues, M.; Medrano, M.; Leppers, R.; Zubillaga, O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007, 39, 113–119. [Google Scholar] [CrossRef]
- Zalba, B.; Marin, J.; Cabeza, L.; Mehling, H. Free-cooling of buildings with phase change materials. Int. J. Refrig. 2004, 27, 839–849. [Google Scholar] [CrossRef]
- Pomianowski, M.; Heiselberg, P.; Zhang, Y. Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 2013, 67, 56–69. [Google Scholar] [CrossRef]
- Shapiro, M.M.; Feldman, D.; Hawes, D.; Banu, D. PCM Thermal storage in drywall using organic phase-change material. Passive Sol. J. 1987, 4, 201–216. [Google Scholar]
- Sharma, R.; Ganesan, P.; Tyagi, V.; Metselaar, H.; Sandaran, S.C. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 2015, 95, 193–228. [Google Scholar] [CrossRef]
- Kośny, J. PCM-Enhanced Building Components: An Application of Phase Change Materials in Building Envelopes and Internal Structures; Springer: Berlin, Germany, 2015. [Google Scholar]
- Kuznik, F.; Virgone, J.; Johannes, K. In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew. Energy 2011, 36, 1458–1462. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Nghana, B.; Tariku, F. Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate. Build. Environ. 2016, 99, 221–238. [Google Scholar] [CrossRef]
- Shilei, L.; Guohui, F.; Neng, Z.; Li, D. Experimental study and evaluation of latent heat storage in phase change materials wallboards. Energy Build. 2007, 39, 1088–1091. [Google Scholar] [CrossRef]
- Mathis, D.; Blanchet, P.; Landry, V.; Lagière, P.J.G.E. Environment. Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage. Green Energy Environ. 2018. [Google Scholar] [CrossRef]
- Vasco, D.A.; Salinas-Lira, C.; Barra-Reyes, I.; Elustondo, D.M. Kinematic characterization of the pressure-dependent PCM impregnation process for radiata pine wood samples. Eur. J. Wood Wood Prod. 2018, 76, 1461–1469. [Google Scholar] [CrossRef]
- Liang, J.; Zhimeng, L.; Ye, Y.; Yanjun, W.; Jingxin, L.; Changlin, Z. Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage. Energy Build. 2018, 171, 88–99. [Google Scholar] [CrossRef]
- Li, J.L.; Xue, P.; Ding, W.Y.; Han, J.M.; Sun, G.L. Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2009, 93, 1761–1767. [Google Scholar] [CrossRef]
- Athienitis, A.; Liu, C.; Hawes, D.; Banu, D.; Feldman, D. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 1997, 32, 405–410. [Google Scholar] [CrossRef]
- Kuznik, F.; Virgone, J.; Roux, J. Energetic efficiency of room wall containing PCM wallboard: A full-scale experimental investigation. Energy Build. 2008, 40, 148–156. [Google Scholar] [CrossRef]
- Barreneche, C.; Navarro, L.; de Gracia, A.; Fernandez, A.I.; Cabeza, L.F. In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications. Renew. Energy 2016, 85, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Wang, X.; Zhang, Y. A new method to estimate optimal phase change material characteristics in a passive solar room. Energy Convers. Manag. 2011, 52, 2437–2441. [Google Scholar] [CrossRef]
- Mazzeo, D.; Oliveti, G.; Arcuri, N. A method for thermal dimensioning and for energy behavior evaluation of a building envelope PCM layer by using the characteristic days. Energies 2017, 10, 659. [Google Scholar] [CrossRef]
- Cuadrado, J.; Zubizarreta, M.; Pelaz, B.; Marcos, I. Methodology to assess the environmental sustainability of timber structures. Constr. Build. Mater. 2015, 86, 149–158. [Google Scholar] [CrossRef]
- Gregory, K.; Moghtaderi, B.; Sugo, H.; Page, A. Effect of thermal mass on the thermal performance of various Australian residential constructions systems. Energy Build. 2008, 40, 459–465. [Google Scholar] [CrossRef]
- Balaras, C.A. The role of thermal mass on the cooling load of buildings. An overview of computational methods. Energy Build. 1996, 24, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Heeren, N.; Mutel, C.L.; Steubing, B.; Ostermeyer, Y.; Wallbaum, H.; Hellweg, S. Environmental Impact of Buildings What Matters? Environ. Sci. Technol. 2015, 49, 9832–9841. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Degrés-Jours de Chauffage (18 °C)–Données Annuelles Pour Québec. Available online: https://quebec.weatherstats.ca/charts/hdd-yearly.html (accessed on 16 September 2018).
- Ferrer, G.; Solé, A.; Barreneche, C.; Martorell, I.; Cabeza, L.F. Review on the methodology used in thermal stability characterization of phase change materials. Renew. Sustain. Energy Rev. 2015, 50, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, D.; Oliveti, G.; De Gracia, Á.; Coma, J.; Solé, A.; Cabeza, L.F. Experimental validation of the exact analytical solution to the steady periodic heat transfer problem in a PCM layer. Energy 2017, 140, 1131–1147. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. Quelle Est la Proportion de Surface Vitrée Nécessaire Dans Une Maison? Available online: https://www.ecohabitation.com/guides/2659/quelle-est-la-proportion-de-surface-vitree-necessaire-dans-une-maison/ (accessed on 16 September 2018).
- Muruganantham, K.; Phelan, P.; Horwath, P.; Ludlam, D.; McDonald, T. Experimental investigation of a bio-based phase change material to improve building energy performance. In Proceedings of the ASME 2010 4th International Conference on Energy Sustainability, Phoenix, AZ, USA, 17–22 May 2010; pp. 979–984. [Google Scholar]
- Tardieu, A.; Behzadi, S.; Chen, J.J.; Farid, M.M. Computer simulation and experimental measurements for an experimental PCM-impregnated office building. In Proceedings of the Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 14–16 November 2011; pp. 56–63. [Google Scholar]
- Anonymous. Fichiers météo pour le Québec. Available online: https://www.simeb.ca:8443/index_fr.jsp (accessed on 8 September 2018).
Material | Density (kg/m3) | Modulus of Rupture (N/mm2) | Resin | Thickness (mm) | Reference |
---|---|---|---|---|---|
MDF | 525 | 15 | Urea-formaldehyde | 13 mm | Uniboard® |
HDF | 900 | 42.7 | Urea-formaldehyde | 4.8 mm | Goodfellow® |
Date | Control Hut Maximum Dry Temperature (°C) | PCM Hut Maximum Dry Temperature (°C) | Outdoor Average Temperature (°C) | Heating Consumption of the PCM Hut (kWh) | Reduction of Consumption for the PCM Hut |
---|---|---|---|---|---|
13/02 | 36.6 | 31.9 | −12.4 °C | 2.5 | 8.0% |
19/03 | 32.8 | 29.9 | −8.1 °C | 1.8 | 5.5% |
20/03 | - | - | −6.6 °C | 1.7 | 14.9% |
25/04 | 26.0 | 25.9 | 11.3 °C | 0.6 | 73.8% |
07/05 | - | 28.4 | 7.5 °C | 0.3 | 77.0% |
Date | Control Hut Maximum Dry Temperature (°C) | PCM Hut Maximum Dry Temperature (°C) | Outdoor Average Temperature (°C) | Heating Consumption of the PCM Hut (kWh) | Excess Consumption of the PCM Hut |
---|---|---|---|---|---|
30/01 | 22.3 | 21.5 | −12.2 °C | 4.8 | +2.4% |
13/03 | 22.3 | 22.2 | 0.2 °C | 3.5 | +2.0% |
14/03 | 22.3 | 22.0 | −0.9 °C | 3.5 | +1.3% |
Month | December | January | February | March | April | May |
---|---|---|---|---|---|---|
Reduction of heating for the PCM hut | 2.0% | 0.8% | 2.8% | 8.7% | 9.0% | 41.0% |
Monthly heating need PCM hut (kW·h) | 165.4 | 308.9 | 57.0 | 69.7 | 46.4 | 7.1 |
Day | Control Hut Dry Max T° (°C) | PCM Hut Dry Max T° (°C) | Δ Temperature Max (°C) | Outdoor Night Average Temperature (°C) 12 pm–6 am |
---|---|---|---|---|
13/07 | 34.5 | 33.7 | 0.8 | 14.6 |
23/08 | 31.0 | 29.7 | 1.3 | 13.8 |
31/08 | 35.0 | 33.0 | 2.0 | 10.1 |
Day | Control Hut Dry Max T° (°C) | PCM Hut Dry Max T° (°C) | Δ Max Temperature (°C) | Outdoor Average Night Temperature (°C) |
---|---|---|---|---|
08/07 | 31.3 | 31.2 | 0.1 | 16.4 |
02/08 | 32.4 | 32.2 | 0.2 | 21.6 |
29/08 | 29.4 | 29.2 | 0.2 | 18.3 |
Period | Control Hut Average Max Temperature (°C) | PCM Hut Average Max Temperature (°C) | Control Hut Average Diurnal Temperature (°C) | PCM Hut Average Diurnal Temperature (°C) | Outdoor Average Night Temperature (°C) |
---|---|---|---|---|---|
16–30 June | 28.1 | 28.2 | 26.0 | 25.8 | 13.2 |
1–15 July | 32.5 | 31.9 | 28.1 | 27.8 | 17.0 |
16–31 July | 33.6 | 33.3 | 30.8 | 30.7 | 17.6 |
1–15 August | 34.2 | 34.2 | 30.6 | 30.7 | 18.2 |
16–31 August | 34.1 | 33.4 | 29.1 | 29.3 | 15.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathis, D.; Blanchet, P.; Lagière, P.; Landry, V. Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts. Energies 2018, 11, 3093. https://doi.org/10.3390/en11113093
Mathis D, Blanchet P, Lagière P, Landry V. Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts. Energies. 2018; 11(11):3093. https://doi.org/10.3390/en11113093
Chicago/Turabian StyleMathis, Damien, Pierre Blanchet, Philippe Lagière, and Véronic Landry. 2018. "Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts" Energies 11, no. 11: 3093. https://doi.org/10.3390/en11113093