Multifunctional Composites for Future Energy Storage in Aerospace Structures
Abstract
:1. Introduction
2. Multifunctional Energy-Storing Composites
2.1. Scales and Degrees of Structural Integration
2.2. State of the Art of Structural Energy Storage
2.2.1. Functional Separation (0)
2.2.2. Integrated Conventional Storages (I)
2.2.3. Thin-Film-Based Approaches (II)
2.2.4. Single-Ply Functionalization (III)
2.2.5. Constituent Functionalization
2.3. General and Aerospace-Specific Potentials of Structural Energy Storage
3. Experiments, Materials and Methods
3.1. Synthesis Process of the Li1.4Al0.4Ti1.6(PO4)3 (LATP) Solid Electrolyte
3.2. Manufacturing of Li1.4Al0.4Ti1.6(PO4)3 Solid Electrolyte-Based Multifunctional Composites
3.3. Characterization of Microstructure, Electrical, and Mechanical Properties
3.4. Data Evaluation
3.4.1. Capacitance Calculation
3.4.2. Bending Strength and Young’s Modulus Calculation
4. Results and Discussions
4.1. Morphological Investigations
4.2. Electrochemical Measurements
4.3. Mechanical Tests and Failure Modes
4.3.1. Mechanical Properties
4.3.2. Failure Behavior
4.4. Impact of Mechanical Loads on the Capacitance
5. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moore, M.; Fredericks, B. Misconception of electric propulsion aircraft and their emergent aviation markets. In Proceedings of the 52nd AIAA Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef]
- Winkler. Siemens und das Verkehrswesen 1847–1922. Verkehrstechnik 1923, 2, 12. [Google Scholar]
- Schrader, H. Deutsche Autos Band 1, 1885–1920, 1st ed.; Motorbuch Verlag: Stuttgart, Germany, 2002; p. 182. ISBN 3613022117. [Google Scholar]
- Boschert, S. Plug-in Hybrids: The Cars that Will Recharge America, 1st ed.; New Society Publishers: Gabriola Island, BC, Canada, 2006; ISBN 0865715718. [Google Scholar]
- The History of Electric Car. Available online: https://energy.gov/articles/history-electric-car (accessed on 26 October 2017).
- Hepperle, M. Electric Flight—Potential and Limitations, Energy Efficient Technologies and Concepts of Operation; Paper STO-MP-AVT-209; NATO Science and Technology Organization: Lisbon, Portugal, 2012. [Google Scholar]
- Moulton, R. An electric aero-plane. Flight Int. 1973, 104, 946. [Google Scholar]
- A Green Machine. Available online: http://www.boeing.com/news/frontiers/archive/2008/may/ts_sf04.pdf (accessed on 26 October 2017).
- Taurus Electro. Available online: http://www.pipistrel.si/plane/taurus-electro/overview (accessed on 26 October 2017).
- Our Story. Available online: http://www.solarimpulse.com/our-story (accessed on 26 October 2017).
- Airbus E-Fan the Future of Electric Aircraft. Available online: company.airbus.com/responsibility/airbus-e-fan-the-future-of-electric-aircraft.html (accessed on 26 October 2017).
- EFusion. Available online: http://magnusaircraft.com/efusion2/ (accessed on 26 October 2017).
- Emissionsfreier Antrieb für die Luftfahrt: Erstflug des Viersitzigen Passagierflugzeugs HY4. Available online: http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151_read-19469/ (accessed on 27 October 2017).
- Electric Motor Sets Two Speed Records. Available online: siemens.com/press/en/pressrelease/2017/corporate/pr2017040256coen.htm (accessed on 26 October 2017).
- NASA’s X-57 Electric Research Plane. Available online: nasa.gov/image-feature/nasas-x-57-electric-research-plane/ (accessed on 26 October 2017).
- Asp, L.E.; Greenhalgh, E.S. Structural power composites. Compos. Sci. Technol. 2014, 101, 41–61. [Google Scholar] [CrossRef]
- Snyder, J.F.; O’Brien, D.J.; Wetzel, E.D. Structural Batteries, Capacitors and Supercapacitors. In Handbook of Solid State Batteries, 2nd ed.; Dudney, N.J., West, W.C., Nanda, J., Eds.; World Scientific Publishing Co. Pte Ltd.: Singapore, 2015; pp. 657–699. ISBN 9814651893. [Google Scholar]
- Liu, P.; Ross, R.; Newman, A. Long-range, low-cost electric vehicles enabled by robust energy storage. MRS Energy Sustain. 2015, 2, 1–13. [Google Scholar] [CrossRef]
- Ladpli, P.; Nardari, R.; Kopsaftopoulos, F.; Wang, Y.; Chang, F.-K. Design of Multifunctional Structural Batteries with Health Monitoring Capabilites. In Proceedings of the 8th European Workshop on Structural Health Monitoring (EWSHM 2016), Bilbao, Spain, 5–8 July 2016. [Google Scholar]
- Asp, L.E.; Leijonmarck, S.; Carlson, T.; Lindbergh, G. Realisation of Structural Battery Composite Materials. In Proceedings of the 20th International Conference on Composite Materials (ICCM 2015), Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Aerocomposites: The Move to Multifunctionality. Available online: https://www.compositesworld.com/articles/aerocomposites-the-move-to-multifunctionality (accessed on 30 November 2017).
- Thomas, J.P.; Qidwai, M.A. Mechanical design and performance of composite multifunctional materials. Acta Mater. 2004, 52, 2155–2164. [Google Scholar] [CrossRef]
- Momoda, L.A. The Future of Engineering Materials: Multifunction for Performance-Tailored Structures. In Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2004 NAE Symposium on Frontiers of Engineering; The National Academies Press: Washington, DC, USA, 2005; Volume 1, pp. 47–152. [Google Scholar] [CrossRef]
- Qidwai, M.A.; Thomas, J.; Matic, P. Structure-battery multifunctional composite design. In Proceedings of the SPIE Conference on Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, 17–21 March 2002; Rivas McGowan, A.-M., Ed.; SPIE-Press: Bellingham, WA, USA, 2002; Volume 4698, pp. 180–191, ISBN 9780819444462. [Google Scholar]
- Christodoulou, L.; Venables, J.D. Multifunctional material systems: The first generation. J. Miner. Met. Mater. Soc. 2003, 55, 39–45. [Google Scholar] [CrossRef]
- Gibson, R.F. A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 2010, 92, 2793–2810. [Google Scholar] [CrossRef]
- Wetzel, E.D. Reducing Weight: Multifunctional Composites Integrate Power, Communications, and Structure. AMPTIAC Q. 2004, 8, 91–95. [Google Scholar]
- Robert, O.; Bhushan, L.; Karihaloo, I.; Milne, I. Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2003; p. X. ISBN 0080437494. [Google Scholar]
- Thomas, J.P.; Qidwai, W.R.; Pogue, W.R., III; Pham, G. Multifunctional Structure-Battery composites for marine systems. J. Compos. Mater. 2012, 47, 5–26. [Google Scholar] [CrossRef]
- Thomas, J.P.; Keennon, M.T.; DuPasquier, A.; Qidwai, M.A.; Matic, P. Multifunctional Structure-Battery Materials for Enhanced Performance in Small Unmanned Air Vehicles. In Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition Materials, Washington, DC, USA, 15–21 November 2003; pp. 289–292. [Google Scholar] [CrossRef]
- Owens, B.B. Solid state electrolytes: Overview of materials and applications during the last third of the twentieth century. J. Power Sources 2000, 90, 2–8. [Google Scholar] [CrossRef]
- Gasco, F.; Feraboli, P. Hybrid Thin Film lithium Ion-Graphite Composite Battery Laminates: An Experimental Quasi-static Characterization. J. Multifunct. Compos. 2013, 1, 49–70. [Google Scholar] [CrossRef]
- Gasco, F.; Feraboli, P. Manufacturability of composite laminates with integrated thin film Li-ion batteries. J. Compos. Mater. 2014, 48, 899–919. [Google Scholar] [CrossRef]
- Mullenax, J.; Browning, P.; Huebsch, W.; Gautam, M.; Sabolsky, E.M. Composite Multifunctional Lithium-Ion Batteries in ECS Trans. In Proceedings of the 220th ECS Meeting, Boston, MA, USA, 9–14 October 2011; Sunkara, M., Abraham, K., Smart, M., Brodd, R., Bugga, R., Eds.; The Electrochemical Society: Pennington, NJ, USA, 2012; Volume 41, pp. 175–185. [Google Scholar] [CrossRef]
- Pereira, T.; Guo, Z.; Nieh, S.; Arias, J.; Hahn, T. Energy Storage Structural Composites: A Review. J. Compos. Mater. 2009, 43, 549–560. [Google Scholar] [CrossRef]
- Pereira, T.; Guo, Z.; Nieh, S.; Arias, J.; Hahn, T. Embedding thin-film lithium energy cells in structural composites. Compos. Sci. Technol. 2008, 68, 1935–1941. [Google Scholar] [CrossRef]
- Shirshova, N.; Qian, H.; Shaffer, M.S.P.; Steinke, J.H.G.; Greenhalgh, E.S.; Curtis, P.T.; Kucernak, A.; Bismarck, A. Structural composite supercapacitors. Compos. Appl. Sci. Manuf. 2013, 46, 96–107. [Google Scholar] [CrossRef]
- Qian, H.; Kucernak, A.; Greenhalgh, E.S.; Bismark, A.; Shaffner, M.S.P. Multifunctional structural power composites based on carbon aerogel modified high performance fabrics. In Proceeding of the 19th International Conference on Composite Materials (ICCM 19), Montreal, QC, Canada, 28 July–2 August 2013. [Google Scholar]
- Greenhalgh, E.S.; Asp, L.E. Storage—Final Publishable Summary Report; Imperial College: London, UK, 2013. [Google Scholar]
- Qian, H.; Diao, H.; Shirshova, N.; Greenhalgh, E.S.; Steinke, J.H.G.; Shaffer, M.S.P.; Bismarck, A. Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors. J. Colloid Interface Sci. 2012, 395, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.L.; Baechele, D.M.; Xu, K.; Carter, R.H.; Snyder, J.F.; Wetzel, E.D. Design and processing of structural composite batteries. In Proceedings of the Society for the Advancement of Material and Process Engineering (SAMPE), Baltimore, MD, USA, 3–7 June 2007. [Google Scholar]
- Asp, L.E. Multifunctional composite materials for energy storage in structural load path. Plast. Rubber Compos. 2013, 42, 144–149. [Google Scholar]
- Yu, Z.; Thomas, J. Energy Storing Electrical Cabels: Integrating Energy Storage and Electrical Conduction. Adv. Mater. 2014, 26, 4279–4285. [Google Scholar] [CrossRef] [PubMed]
- Leijonmarck, S.; Carlson, T.; Lindbergh, G.; Asp, E.S.; Maples, H.; Bismarck, A. Solid polymer electrolyte coated carbon fibers for structural and novel micro batteries. Compos. Sci. Technol. 2013, 149–157. [Google Scholar] [CrossRef]
- Geiß, I.; Voit-Nitschmann, R. Sizing of fuel-based systems for electric aircrafts. Proc. IME G J. Aerosp. Eng. 2017, 231, 2295–2304. [Google Scholar] [CrossRef]
- Patterson, M.; German, B. Performance Analysis and Design of On-Demand Electric Aircraft Concepts. In Proceedings of the 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Aviation Technology, Integration, and Operations (ATIO) Conferences, Indianapolis, IN, USA, 17–19 September 2012. [Google Scholar] [CrossRef]
- Patterson, M.; Daskilewicz, M.; German, B. Conceptual Design of Electric Aircraft with Distributed Propellers: Multidisciplinary Analysis Needs and Aerodynamics Modeling Development. In Proceedings of the 52nd Aerospace Sciences Meeting, AIAA SciTech Forum 2014, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef]
- McDonald, R. Electric Propulsion Modeling for Conceptual Aircraft Design. In Proceedings of the 52nd Aerospace Sciences Meeting, AIAA SciTech Forum 2014, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef]
- Frosina, E.; Caputo, C.; Marinaro, G.; Senatore, A.; Pascarella, C.; Lorenzo, G. Modelling of a hybrid-electric Light Aircraft. Energy Procedia 2017, 126, 1155–1162. [Google Scholar] [CrossRef]
- Pornet, C.; Isikveren, A.T. Conceptual Design of hybrid-electric transport aircraft. Prog. Aerosp. Sci. 2015, 79, 114–135. [Google Scholar] [CrossRef]
- ISO. DIN EN ISO 527-4:1997, Plastics—Determination of Tensile Properties—Part 4: Test Conditions for Isotropic and Anisotropic Fibre-Reinforced Plastic Composites (ISO 527-4:1997); German Version (EN ISO 527-4:1997); ISO: London, UK, 1997. [Google Scholar]
- ISO. DIN EN ISO 14125:2011, Fibre-Reinforced Plastic Composites—Determination of Flexural Properties (ISO 14125:1998 + Cor.1:2001 + Amd.1:2011); German Version (EN ISO 14125:1998); ISO: London, UK, 2011. [Google Scholar]
- IEC. DIN EN 62391-1:2016, Fixed Electric Double-Layer Capacitors for Use in Electric and Electronic Equipment—Part 1: Generic Specification (IEC 62391-1:2015); German Version (EN 62391-1:2016); IEC: London, UK, 2016. [Google Scholar]
Four-Point Bending Test (4 Specimens) | Tensile Test (2 Specimens) | |||||
---|---|---|---|---|---|---|
E-Modulus (MPa) | Strength (MPa) | Strain at Rupture (%) | E-Modulus (MPa) | Strength (MPa) | Strain at Rupture (%) | |
Reference | 29770 ± 1918 | 735 ± 31 | 3.03 ± 0.04 | 28896 | 565.1 | 2.57 |
LATP–GFRP | 27651 ± 3907 | 651 ± 26 | 2.66 ± 0.05 | 27104 | 456.4 | 2.53 |
Ratio | 92.9% | 88.5% | 87.8% | 93.8% | 80.8% | 98.4% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam, T.J.; Liao, G.; Petersen, J.; Geier, S.; Finke, B.; Wierach, P.; Kwade, A.; Wiedemann, M. Multifunctional Composites for Future Energy Storage in Aerospace Structures. Energies 2018, 11, 335. https://doi.org/10.3390/en11020335
Adam TJ, Liao G, Petersen J, Geier S, Finke B, Wierach P, Kwade A, Wiedemann M. Multifunctional Composites for Future Energy Storage in Aerospace Structures. Energies. 2018; 11(2):335. https://doi.org/10.3390/en11020335
Chicago/Turabian StyleAdam, Till Julian, Guangyue Liao, Jan Petersen, Sebastian Geier, Benedikt Finke, Peter Wierach, Arno Kwade, and Martin Wiedemann. 2018. "Multifunctional Composites for Future Energy Storage in Aerospace Structures" Energies 11, no. 2: 335. https://doi.org/10.3390/en11020335
APA StyleAdam, T. J., Liao, G., Petersen, J., Geier, S., Finke, B., Wierach, P., Kwade, A., & Wiedemann, M. (2018). Multifunctional Composites for Future Energy Storage in Aerospace Structures. Energies, 11(2), 335. https://doi.org/10.3390/en11020335