Modulation Strategy of a 3 × 5 Modular Multilevel Matrix Converter
Abstract
:1. Introduction
2. Basic Operation Principles of 3 × 5 M3C
- Due to the existence of inductor on input and output side of 3 × 5 M3C, the continuity of current on both sides should be ensured so that the input/output phase should not open. Otherwise, the high voltage induced by the inductance current in the open circuit will damage the switch device;
- In order to effectively avoid the high voltage stress on the IGBT element, the total charge through the open switching unit should not exceed the capacitance voltage Ucap.
- All branches of M3C in the switch matrix should not be short-circuited, otherwise, short-circuit current will damage the converter.
- There is at most one branch connection between any input and output phase.
- If any of the inputs are only connected to one of the outputs, the remaining two-phase inputs must also be connected to this output phase.
- The adjacent two phases of outputs must be connected to the same input phase, otherwise the required output voltage cannot be synthesized.
3. Vector Synthesis and Time Calculation
- ti0 = 0.4883Ts, ti5 = 0.3340Ts, ti6 = 0.1777Ts,
- to0 = 0.8389Ts, to1 = 0.0413Ts, to2 = 0.1198Ts
4. Simulation and Experimental Analysis of 3 × 5 M3C
4.1. Simulation
4.2. Experiment
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mengoni, M.; Zarri, L.; Tani, A.; Parsa, L.; Serra, G.; Casadei, D. High-torque-density control of multiphase induction motor drives operating over a wide speed range. IEEE Trans. Ind. Electron. 2015, 62, 814–825. [Google Scholar] [CrossRef]
- Jin, L.; Norrga, S.; Zhang, H.; Wallmark, O. Evaluation of a multiphase drive system in EV and HEV applications. In Proceedings of the 2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d’Alene, ID, USA, 10–13 May 2015; pp. 941–945. [Google Scholar] [CrossRef]
- Munim, W.N.W.A.; Che, H.S.; Hew, W.P. Fault tolerant capability of symmetrical multiphase machines under one open-circuit fault. In Proceedings of the IET International Conference on Clean Energy and Technology, Kuala Lumpur, Malaysia, 14–15 November 2016. [Google Scholar] [CrossRef]
- Bojoi, R.; Cavagnino, A.; Tenconi, A.; Tessarolo, A.; Vaschetto, S. Multiphase electrical machines and drives in the transportation electrification. In Proceedings of the 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), Turin, Italy, 16–18 September 2015; pp. 205–212. [Google Scholar] [CrossRef]
- Baneira, F.; Doval-Gandoy, J.; Yepes, A.G.; López, Ó.; Pérez-Estévez, D. Control strategy for multiphase drives with minimum losses in the full torque operation range under single open-phase fault. IEEE Trans. Power Electron. 2017, 32, 6275–6285. [Google Scholar] [CrossRef]
- Levi, E.; Barrero, F.; Duran, M.J. Multiphase machines and drives—Revisited. IEEE Trans. Ind. Electron. 2016, 63, 429–432. [Google Scholar] [CrossRef]
- Mehrasa, M.; Pouresmaeil, E.; Akorede, M.F.; Zabihi, S.; Catalão, J.P.S. Function-based modulation control for modular multilevel converters under varying loading and parameters conditions. IET Gener. Transm. Distrib. 2017, 11, 3222–3230. [Google Scholar] [CrossRef]
- Mehrasa, M.; Pouresmaeil, E.; Taheri, S.; Vechiu, I.; Catalão, J.P.S. Novel Control Strategy for Modular Multilevel Converters Based on Differential Flatness Theory. IEEE J. Emerg. Sel. Top. Power Electron. 2017. [Google Scholar] [CrossRef]
- Mehrasa, M.; Pouresmaeil, E.; Zabihi, S.; Vechiu, I.; Catalão, J.P.S. A multi-loop control technique for the stable operation of modular multilevel converters in HVDC transmission systems. Int. J. Electr. Power Energy Syst. 2018, 194–207. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, S.; Jiang, J. Integrated current-energy modeling and control for modular multilevel matrix converter. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–10. [Google Scholar] [CrossRef]
- Diaz, M.; Cardenas, R.; Espinoza, M.; Andrés Mora, F.R.; Clare, J.C.; Wheeler, P. Control of wind energy conversion systems based on the modular multilevel matrix converter. IEEE Trans. Ind. Electron. 2017, 64, 8799–8810. [Google Scholar] [CrossRef]
- Fan, B.; Wang, K.; Zheng, Z.; Xu, L.; Li, Y. Optimized branch current control of modular multilevel matrix converters under branch fault conditions. IEEE Trans. Power Electron. 2017. [Google Scholar] [CrossRef]
- Nademi, H.; Norum, L.E.; Soghomonian, Z.; Undeland, T. Low frequency operation of modular multilevel matrix converter using optimization-oriented predictive control scheme. In Proceedings of the 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 27–30 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Bessegato, L.; Norrga, S.; Ilves, K.; Harnefors, L. Control of modular multilevel matrix converters based on capacitor voltage estimation. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 3447–3452. [Google Scholar] [CrossRef]
- Mora, A.; Espinoza, M.; Díaz, M.; Cárdenas, R. Model predictive control of modular multilevel matrix converter. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 1074–1079. [Google Scholar] [CrossRef]
- Fan, B.; Wang, K.; Wheeler, P.; Gu, C.; Li, Y. A branch current reallocation based energy balancing strategy for the modular multilevel matrix monverter operating around equal frequency. IEEE Trans. Power Electron. 2018, 33, 1105–1117. [Google Scholar] [CrossRef]
- Erickson, R.; Angkititrakul, S.; Almazeedi, K. New Family of Multilevel Matrix Converters for Wind Power Applications: Final Report, July 2002–March 2006; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2006. [Google Scholar] [CrossRef]
A | B | C |
---|---|---|
1 | 1 | 5 |
1 | 2 | 4 |
1 | 3 | 3 |
1 | 5 | 1 |
1 | 4 | 2 |
2 | 2 | 3 |
2 | 3 | 2 |
2 | 4 | 1 |
2 | 1 | 4 |
3 | 1 | 3 |
3 | 3 | 1 |
4 | 2 | 1 |
4 | 1 | 2 |
5 | 1 | 1 |
Five-Phase Voltage | Voltage in d-q Axis | Vector | |||||
---|---|---|---|---|---|---|---|
uab | ubc | ucd | ucd | ucd | ud | uq | |
2Ucap | Ucap | −Ucap | −2Ucap | 0 | 1.8944Ucap | 0.6155Ucap | Vo1 |
Ucap | 2Ucap | 0 | −2Ucap | −Ucap | 1.1708Ucap | 1.6155Ucap | Vo2 |
0 | 2Ucap | Ucap | −Ucap | −2Ucap | 0 | 1.9919Ucap | Vo3 |
−Ucap | Ucap | 2Ucap | 0 | −2Ucap | −1.1708Ucap | 1.6115Ucap | Vo4 |
−2Ucap | 0 | 2Ucap | Ucap | −Ucap | −1.8944Ucap | 0.6115Ucap | Vo5 |
−2Ucap | −Ucap | Ucap | 2Ucap | 0 | −1.8944Ucap | −0.6155Ucap | Vo6 |
−Ucap | −2Ucap | 0 | 2Ucap | Ucap | −1.1708Ucap | −1.6115Ucap | Vo7 |
0 | −2Ucap | −Ucap | Ucap | 2Ucap | 0 | −1.9919Ucap | Vo8 |
Ucap | −Ucap | −2Ucap | 0 | 2Ucap | 1.1708Ucap | −1.6115Ucap | Vo9 |
2Ucap | 0 | −2Ucap | −Ucap | Ucap | 1.8944Ucap | −0.6155Ucap | Vo10 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | Vo0 |
Parameters | Value |
---|---|
Switching frequency | 5 kHz |
Number of H-bridge cells in each branch | 3 |
Capacitance of H-bridge cell | 1200 μF |
Capacitor voltage | 200 V |
Magnitude of input line voltage | 173 V |
Input frequency | 50 Hz |
Magnitude of output line voltage | 100 V |
Output frequency | 100 Hz |
Filter inductance in input and output side | 3 mH |
Resistance of load | 16 Ω |
Inductance of load | 12 mH |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Lei, D.; Zhao, Y.; Liu, C.; Hu, Y. Modulation Strategy of a 3 × 5 Modular Multilevel Matrix Converter. Energies 2018, 11, 464. https://doi.org/10.3390/en11020464
Wang R, Lei D, Zhao Y, Liu C, Hu Y. Modulation Strategy of a 3 × 5 Modular Multilevel Matrix Converter. Energies. 2018; 11(2):464. https://doi.org/10.3390/en11020464
Chicago/Turabian StyleWang, Rutian, Dapeng Lei, Yanfeng Zhao, Chuang Liu, and Yue Hu. 2018. "Modulation Strategy of a 3 × 5 Modular Multilevel Matrix Converter" Energies 11, no. 2: 464. https://doi.org/10.3390/en11020464
APA StyleWang, R., Lei, D., Zhao, Y., Liu, C., & Hu, Y. (2018). Modulation Strategy of a 3 × 5 Modular Multilevel Matrix Converter. Energies, 11(2), 464. https://doi.org/10.3390/en11020464