Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review
Abstract
:1. Introduction
2. Saudi Arabia’s Wind Power Research and Development Update
3. Wind Turbine Basics and Types
- (1)
- Based on the orientation of the rotor, these are classified as, Goldstein [70]
- (2)
- Based on the wind speed or the Reynolds number (Re) at which they operate, they are classified as [72,73]
- Low-speed wind turbine (Re < 103)
- Medium-speed wind turbine (103 < Re < 105)
- High-speed wind turbine (Re > 105)
- (3)
- Based on the positioning of turbine to flow direction, they are classified as, Kress et al. [74]
- Upwind positioned wind turbine
- Downwind positioned wind turbine
- (4)
- Based on type of aerodynamics [72]
- Drag type wind turbine
- Lift type wind turbine
- (5)
- Based on the number of blades on the rotor, Morcos [75]
- Single-bladed wind turbine
- Multi-bladed wind turbine
- (6)
- Based on the location of the wind turbine [69]
- Offshore wind turbine
- Onshore wind turbine
- Flat-plate airfoil
- Symmetric airfoil
- Circular-arc airfoil
4. Description of Wind Flow around an Airfoil and its Effect on its Performance
5. Approaches used to Design Wind Turbine Blades
5.1. Experimental Approach to Blade Design and Analysis
5.2. Numerical Investigations of Blade Design and Analysis
5.3. Theoretical and Analytical Approaches for Blade Design and Analysis
6. Approaches Used to Study the Performance of Wind Turbine
6.1. Experimental Approaches for Wind Turbine Performance Analysis
6.2. Numerical Investigations for Wind Turbine Performance Analysis
6.3. Analytical Approaches for Wind Turbine Performance Analysis
6.3.1. Blade Element Momentum Theory
6.3.2. Other Proposed Theories
7. Wind Turbine’s Performance Optimization Techniques
8. Dynamic Load Mitigation on Wind Turbines
9. Flow Separation Techniques for Wind Turbine’s Efficiency Enhancement
9.1. Active Flow Control Techniques
9.2. Passive Flow Control Techniques
10. Stall Control
- (1)
- Increase the energy capture
- (2)
- Drivetrain loads are reduced
- (3)
- Run smoothly
- (4)
- The quality of power is enhanced
- (5)
- Most importantly, doesn’t require a flow control technique which burdens the turbine mechanically and economically.
11. Cut-in-Speed Reduction Techniques
12. Starting Behavior of the Wind Turbines
13. Wind Turbine Blade Materials
14. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
AEY | Annual Energy Yield |
AIF | Axial Induction Factor |
BEM | Blade Element Momentum theory |
BF | Blade Fatigue |
BM | Blade Mass |
BK | Buckling |
COE | Cost of Energy |
CFD | Computational Fluid Dynamics |
CKS | Control Kind of Stall |
DRT | Drive Train |
DT | Displacement |
DSF | Damage and Static Failure |
FEM | Finite Element Modeling |
GC | Ground Clearance |
GCI | Grid Convergence Index |
GRE | General Richardson Extrapolation |
GW | Giga Watt |
HAWT | Horizontal Axis Wind Turbine |
HH | Hub Height |
HWA | Hot Wire Anemometry |
kW | Kilo Watt |
kWh | Kilo Watt hour |
LI | Linear Inequality |
LSV | Laser Sheet Visualization |
MC | Maximum Chord |
MW | Mega Watt |
MWh | Mega Watt hour |
NF | Natural Frequency |
NL | Noise Level |
PIV | Particle Image Velocimetry |
RP | Rated Power |
SN | Strain |
SS | Stress |
SL | Solidity |
SAT | Shell and Airfoil Thickness |
SP | Separation Point |
SFV | Smoke Flow Visualization |
ST | Shaft Torque |
TV | Tower Vibrations |
TR | Thrust |
VAWT | Vertical axis wind turbine |
WFA | Wind Farm Area |
WTP | Wind Turbine Power |
CD | Drag coefficient |
CL | Lift coefficient |
CP | Power coefficient |
References
- Soler-Bientz, R. Preliminary results from a network of stations for wind resource assessment at North of Yucatan Peninsula. Energy 2011, 36, 538–548. [Google Scholar] [CrossRef]
- Global Wind Report (GWEC). Available online: http://www.gwec.net/wp-content/uploads/vip/GWEC_PRstats2016_EN_WEB.pdf (accessed on 11 January 2018).
- Wind Turbine Schematic. Available online: http://www.delahyde.com/lubang/imagesl_2013/Wind_Turbine_Schematic_M.jpg (accessed on 11 January 2018).
- Tsai, K.; Pan, C.; Cooperman, A.M.; Johnson, S.J.; Dam, C.P. Van An Innovative Design of a Microtab Deployment Mechanism for Active Aerodynamic Load Control. Energies 2015, 8, 5885–5897. [Google Scholar] [CrossRef]
- Fernandez-gamiz, U.; Zulueta, E.; Boyano, A.; Ramos-hernanz, J.A.; Lopez-guede, J.M. Microtab Design and Implementation on a 5 MW Wind Turbine. Appl. Sci. 2017, 7, 536. [Google Scholar] [CrossRef]
- KACARE White Paper. Available online: https://www.kacare.gov.sa/en/FutureEnergy/RenewableEnergy/Pages/default.aspx (accessed on 11 January 2018).
- Elsevier BV. Scopus Journal Analyzer. 2014. Available online: http://www.scopus.com/source/eval.url (accessed on 11 January 2018).
- Zheng, Q.; Rehman, S.; Alam, M.; Alhems, L.M.; Lashin, A. Decomposition of wind speed fluctuations at different time scales. J. Earth Syst. Sci. 2017, 126. [Google Scholar] [CrossRef]
- Alam, M.M.; Rehman, S.; Al-Hadhrami, L.M.; Meyer, J.P. Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustain. Dev. 2014, 22, 34–47. [Google Scholar] [CrossRef]
- Siddiqi, A.H.; Khan, S.; Rehman, S. Wind Speed Simulation Using Wavelets. Am. J. Appl. Sci. 2005, 2, 557–564. [Google Scholar] [CrossRef]
- Rehman, S.; Ali, S.; Khan, S. Wind Farm Layout Design Using Cuckoo Search Algorithms. Appl. Artif. Intell. 2016, 30, 899–9224. [Google Scholar] [CrossRef]
- Rehman, S.; Khan, S. Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia. Energies 2016, 9, 872. [Google Scholar] [CrossRef]
- Shoaib, M.; Siddiqui, I.; Rehman, S.; Rehman, S.; Khan, S.; Lashin, A. Comparison of Wind Energy Generation Using the Maximum Entropy Principle and the Weibull Distribution Function. Energies 2016, 9, 842. [Google Scholar] [CrossRef]
- Mohandes, M.; Rehman, S.; Abido, M.; Badran, S. Convertible wind energy based on predicted wind speed at hub-height. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 140–148. [Google Scholar] [CrossRef]
- Mohandes, M.; Rehman, S.; Rahman, S.M. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl. Energy 2011, 88, 4024–4032. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Rehman, S.; Rahman, S.M. Spatial estimation of wind speed. Int. J. Energy Res. 2012, 36, 545–552. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Rehman, S. Short term wind speed estimation in Saudi Arabia. J. Wind Eng. Ind. Aerodyn. 2014, 128, 37–53. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Renew. Energy 2004, 29, 939–947. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Rehman, S.; Halawani, T.O. A neural networks approach for wind speed prediction. Renew. Energy 1998, 13, 645–654. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Mihalakakou, G.; Rehman, S.; Al-Hadhrami, L.M. Wind power potential assessment for three buoys data collection stations in the Ionian Sea using Weibull distribution function. Int. J. Green Energy 2016, 13, 703–714. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Mihalakakou, G.; Rehman, S.; Al-Hadhrami, L.M. Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas. J. Earth Syst. Sci. 2012, 121, 975–987. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Mihalakakou, G.; Rehman, S.; Al-Hadhrami, L.M. Wind power potential assessment for seven buoys data collection stations in Aegean Sea using Weibull distribution function. J. Renew. Sustain. Energy 2012, 4. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Giouli, M.; Rehman, S.; Al-Hadhrami, L.M. Weibull parameters estimation using four different methods and most energy-carrying wind speed analysis. Int. J. Green Energy 2011, 8, 529–554. [Google Scholar] [CrossRef]
- Rehman, S.; Al-hadhrami, L.M.; Bagiorgas, H.S. Offshore Wind Characteristics in Ionian Sea. Trans. Control Mech. Syst. 2012, 1, 229–234. [Google Scholar]
- Himri, Y.; Rehman, S.; Himri, S.; Mohammadi, K.; Sahin, B.; Malik, A.S. Investigation of wind resources in Timimoun region, Algeria. Wind Eng. 2016, 40, 250–260. [Google Scholar] [CrossRef]
- Himri, Y.; Rehman, S.; Agus Setiawan, A.; Himri, S. Wind energy for rural areas of Algeria. Renew. Sustain. Energy Rev. 2012, 16, 2381–2385. [Google Scholar] [CrossRef]
- Himri, Y.; Rehman, S.; Draoui, B.; Himri, S. Wind power potential assessment for three locations in Algeria. Renew. Sustain. Energy Rev. 2008, 12, 2488–2497. [Google Scholar] [CrossRef]
- Khan, S.A.; Rehman, S. Iterative non-deterministic algorithms in on-shore wind farm design: A brief survey. Renew. Sustain. Energy Rev. 2013, 19, 370–384. [Google Scholar] [CrossRef]
- Bassyouni, M.; Gutub, S.; Javaid, U.; Awais, M.; Rehman, S.; Abdel-Hamid, S.; Abdel-Aziz, M.; Abouel-Kasem, A.; Shafeek, H. Assessment and analysis of wind power resource using weibull parameters. Energy Explor. Exploit. 2015, 33, 105–122. [Google Scholar] [CrossRef]
- Baseer, M.A.; Meyer, J.P.; Alam, M.M.; Rehman, S. Wind speed and power characteristics for Jubail industrial city, Saudi Arabia. Renew. Sustain. Energy Rev. 2015, 52, 1193–1204. [Google Scholar] [CrossRef]
- Rehman, S.; El-Amin, I.M.; Ahmad, F.; Shaahid, S.M.; Al-Shehri, A.M.; Bakhashwain, J.M. Wind power resource assessment for Rafha, Saudi Arabia. Renew. Sustain. Energy Rev. 2007, 11, 937–950. [Google Scholar] [CrossRef]
- Rehman, S.; Alam, M.M.; Meyer, J.P.; Al-Hadhrami, L.M. Wind speed characteristics and resource assessment using Weibull parameters. Int. J. Green Energy 2012, 9, 800–814. [Google Scholar] [CrossRef]
- Rehman, S.; Halawani, T.O.; Mohandes, M. Wind power cost assessment at twenty locations in the Kingdom of Saudi Arabia. Renew. Energy 2003, 28, 573–583. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmad, A. Assessment of wind energy potential for coastal locations of the Kingdom of Saudi Arabia. Energy 2004, 29, 1105–1115. [Google Scholar] [CrossRef]
- Proietti, S.; Sdringola, P.; Castellani, F.; Astolfi, D.; Vuillermoz, E. On the contribution of renewable energies for feeding a high altitude Smart Mini Grid. Appl. Energy 2017, 185, 1694–1701. [Google Scholar] [CrossRef]
- Rehman, S. Wind energy resources assessment for Yanbo, Saudi Arabia. Energy Convers. Manag. 2004, 45, 2019–2032. [Google Scholar] [CrossRef]
- Rehman, S. Offshore wind power assessment on the east coast of Saudi Arabia. Wind Eng. 2005, 29, 409–419. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmad, A.; El-Amin, I.; Al-Hadhrami, L.M. Assessment of wind power, wind exponent, local air density and air turbulence intensity for an isolated site. Int. J. Sustain. Energy 2009, 28, 217–230. [Google Scholar] [CrossRef]
- Rehman, S.; Sahin, A.Z. A wind-solar PV hybrid power system with battery backup for water pumping in remote localities. Int. J. Green Energy 2016, 13, 1075–1083. [Google Scholar] [CrossRef]
- Ur Rehman, S.; Rehman, S.; Qazi, M.U.; Shoaib, M.; Lashin, A. Feasibility study of hybrid energy system for off-grid rural electrification in southern Pakistan. Energy Explor. Exploit. 2016, 34, 468–482. [Google Scholar] [CrossRef]
- Rehman, S.; El-Amin, I. Study of a solar pv/wind/diesel hybrid power system for a remotely located population near Arar, Saudi Arabia. Energy Explor. Exploit. 2015, 33, 591–620. [Google Scholar] [CrossRef]
- Rehman, S.; Alam, M.M.; Meyer, J.P.; Al-Hadhrami, L.M. Feasibility study of a wind-pv-diesel hybrid power system for a village. Renew. Energy 2012, 38, 258–268. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia. Energy 2010, 35, 4986–4995. [Google Scholar] [CrossRef]
- Rehman, S.; El-Amin, I.M.; Ahmad, F.; Shaahid, S.M.; Al-Shehri, A.M.; Bakhashwain, J.M.; Shash, A. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renew. Sustain. Energy Rev. 2007, 11, 635–653. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S. Prospects of wind farm development in Saudi Arabia. Renew. Energy 2005, 30. [Google Scholar] [CrossRef]
- Rehman, S.; Baseer, M.A.; Meyer, J.P.; Alam, M.M.; Alhems, L.M.; Lashin, A.; Al Arifi, N. Suitability of utilizing small horizontal axis wind turbines for off grid loads in eastern region of Saudi Arabia. Energy Explor. Exploit. 2016, 34, 449–467. [Google Scholar] [CrossRef]
- Rehman, S. Performance Evaluation of Vertical Axis Wind Turbine for Small off grid loads in North-Eastern Region of Saudi Arabia Performance Evaluation of Vertical Axis Wind Turbine for Small off grid loads in North-Eastern Region of Saudi Arabia. Wulfenia J. 2015, 22, 146–165. [Google Scholar]
- Rehman, S.; Sahin, A. Comparing the use of diesel and wind power in pumping water in Saudi Arabia. Energy Environ. 2014, 25, 369–388. [Google Scholar] [CrossRef]
- Rehman, S.; Sahin, A.Z. Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A techno-economical review. Renew. Sustain. Energy Rev. 2012, 16, 4470–4478. [Google Scholar] [CrossRef]
- Baseer, M.A.; Meyer, J.P.; Rehman, S.; Alam, M.M.; Al-Hadhrami, L.M.; Lashin, A. Performance evaluation of cup-anemometers and wind speed characteristics analysis. Renew. Energy 2016, 86, 733–744. [Google Scholar] [CrossRef]
- Rehman, S. Tower distortion and scatter factors of co-located wind speed sensors and turbulence intensity behavior. Renew. Sustain. Energy Rev. 2014, 34, 20–29. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M.; Meyer, J.P. Empirical correlation between hub height and local wind shear exponent for different sizes of wind turbines. Sustain. Energy Technol. Assess. 2013, 4, 45–51. [Google Scholar] [CrossRef]
- Alam, M.M.; Rehman, S.; Meyer, J.P.; Al-Hadhrami, L.M. Review of 600–2500 kW sized wind turbines and optimization of hub height for maximum wind energy yield realization. Renew. Sustain. Energy Rev. 2011, 15, 3839–3849. [Google Scholar] [CrossRef]
- Rehman, S. Long-term wind speed analysis and detection of its trends using Mann-Kendall test and linear regression method. Arab. J. Sci. Eng. 2013, 38, 421–437. [Google Scholar] [CrossRef]
- Rahman, F.; Rehman, S.; Abdul-Majeed, M.A. Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia. Renew. Sustain. Energy Rev. 2012, 16, 274–283. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmad, A.; Al-Hadhrami, L.M. Development and economic assessment of a grid connected 20 MW installed capacity wind farm. Renew. Sustain. Energy Rev. 2011, 15, 833–838. [Google Scholar] [CrossRef]
- Rehman, S.; Ahmad, A.; Al-Hadhrami, L.M. Detailed analysis of a 550-MW installed capacity wind farm in Saudi Arabia. Int. J. Green Energy 2010, 7, 410–421. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind power characteristics on the North West coast of Saudi Arabia. Energy Environ. 2009, 20–21, 1257. [Google Scholar] [CrossRef]
- Al-Abbadi, N.M.; Rehman, S. Wind speed and wind power characteristics for Gassim, Saudi Arabia. Int. J. Green Energy 2009, 6, 201–217. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind shear coefficient, turbulence intensity and wind power potential assessment for Dhulom, Saudi Arabia. Renew. Energy 2008, 33, 2653–2660. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind shear coefficients and energy yield for Dhahran, Saudi Arabia. Renew. Energy 2007, 32, 738–749. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind shear coefficients and their effect on energy production. Energy Convers. Manag. 2005, 46, 2578–2591. [Google Scholar] [CrossRef]
- Rehman, S.; Halawani, T.O. Statistical characteristics of wind in Saudi Arabia. Renew. Energy 1994, 4, 949–956. [Google Scholar] [CrossRef]
- Rehman, S.; Halawani, T.O.; Husain, T. Weibull parameters for wind speed distribution in Saudi Arabia. Sol. Energy 1994, 53, 473–479. [Google Scholar] [CrossRef]
- Alam, M.; Rehman, S.; Al-hadhrami, L.M.; Russel, M.; Meyer, J.P. Quantifying the contributions of different time-scales to wind speed using wavelets. In Proceedings of the International Conference on Mechanical, Industrial and Energy Engineering, Khulna, Bangladesh, 25–26 December 2014. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wind Power. 2014. Available online: http://energystorage.org/energy-storage/applications-energy-storage-technology (accessed on 11 January 2018).
- Fthenakis, V.; Kim, H.C. Land use and electricity generation: A life-cycle analysis. Renew. Sustain. Energy Rev. 2009, 13, 1465–1474. [Google Scholar] [CrossRef]
- Wind Energy Technologies and Applications. Available online: https://energy.gov/sites/prod/files/2016/08/f33/2015-Wind-Technologies-Market-Report-08162016.pdf (accessed on 11 January 2018).
- Goldstein, L. A proposal and a theoretical analysis of a novel concept of a tilted-axis wind turbine. Energy 2015, 84, 247–254. [Google Scholar] [CrossRef]
- Ohya, Y.; Karasudani, T. A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology. Energies 2010, 3, 634–649. [Google Scholar] [CrossRef]
- Savonius Wind Power Report. Available online: http://www.uvm.edu/extension/cropsoil/wp-content/uploads/savonius_windpower_report.pdf (accessed on 11 January 2018).
- Chen, J.; Yang, H.; Yang, M.; Xu, H.; Hu, Z. A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine. Renew. Sustain. Energy Rev. 2015, 51, 1709–1720. [Google Scholar] [CrossRef]
- Kress, C.; Chokani, N.; Abhari, R.S. Passive minimization of load fluctuations on downwind turbines. Renew. Energy 2016, 89, 543–551. [Google Scholar] [CrossRef]
- Morcos, V.H. Aerodynamic performance analysis of horizontal axis wind turbines. Renew. Energy 1994, 4, 505–518. [Google Scholar] [CrossRef]
- Malhotra, P.; Hyers, R.W.; Manwell, J.F.; McGowan, J.G. A review and design study of blade testing systems for utility-scale wind turbines. Renew. Sustain. Energy Rev. 2012, 16, 284–292. [Google Scholar] [CrossRef]
- Ma, P.C.; Zhang, Y. Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials. Renew. Sustain. Energy Rev. 2014, 30, 651–660. [Google Scholar] [CrossRef]
- White, F. Fluid Mechanics, 8th ed.; McGraw-Hill: New York, NY, USA, 2015. [Google Scholar]
- Moshfeghi, M.; Song, Y.J.; Xie, Y.H. Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2012, 107–108, 94–105. [Google Scholar] [CrossRef]
- Lu, K.; Xie, Y.; Zhang, D.; Xie, G. Systematic investigation of the flow evolution and energy extraction performance of a flapping-airfoil power generator. Energy 2015, 89, 138–147. [Google Scholar] [CrossRef]
- Chang, J.; Zhu, W.; Fischer, A.; Garcla, N.R.; Madsen, J.; Chen, J.; Shen, W.Z. Design and validation of the high performance and low noise CQU-DTU-LN1 airfoils. Wind Energy 2014, 17, 1817–1833. [Google Scholar] [CrossRef]
- Yavuz, T.; Koc, E.; Kilkis, B.; Erol, O.; Balas, C.; Aydemir, T. Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications. Renew. Energy 2015, 74, 414–421. [Google Scholar] [CrossRef]
- Singh, R.K.; Ahmed, M.R.; Zullah, M.A.; Lee, Y.-H. Design of a low Reynolds number airfoil for small horizontal axis wind turbines. Renew. Energy 2012, 42, 66–76. [Google Scholar] [CrossRef]
- Devinant, P.; Laverne, T.; Hureau, J. Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerodyn. 2002, 90, 689–707. [Google Scholar] [CrossRef]
- McTavish, S.; Feszty, D.; Nitzsche, F. Evaluating Reynolds number effects in small-scale wind turbine experiments. J. Wind Eng. Ind. Aerodyn. 2013, 120, 81–90. [Google Scholar] [CrossRef]
- Bons, J.P.; Sondergaard, R.; Rivir, R.B. The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets. J. Turbomach. 2002, 124, 77. [Google Scholar] [CrossRef]
- Gul, M.; Uzol, O.; Akmandor, I.S. An Experimental Study on Active Flow Control Using Synthetic Jet Actuators over S809 Airfoil. J. Phys. Conf. Ser. 2014, 524, 12101. [Google Scholar] [CrossRef]
- Aramendia, I.; Fernandez-Gamiz, U.; Ramos-Hernanz, J.; Sancho, J.; Lopez-Guede, J.; Zulueta, E. Flow Control Devices for Wind Turbines; Springer International Publishing: Munchem, Germany, 2017; pp. 629–655. [Google Scholar]
- Aramendia, I.; Fernández-Gámiz, U.; Sancho, J.; Zulueta, E. State of the Art of Active and Passive Flow Control. Fluid Mech. 2016, 1–9. [Google Scholar] [CrossRef]
- Abdulrahim, A.; Anik, E.; Ostovan, Y.; Uzol, O. Effects of tip injection on the performance and near wake characteristics of a model wind turbine rotor. Renew. Energy 2016, 88, 73–82. [Google Scholar] [CrossRef]
- Gharali, K.; Johnson, D.A. Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies. Appl. Energy 2012, 93, 45–52. [Google Scholar] [CrossRef]
- Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M. The Application of Non-Destructive Techniques to the Testing of a Wind Turbine Blade; Sandia National Laboratories: Springfield, VA, USA, 1994; p. 22161.
- Zarouchas, D.S.; Makris, A.A.; Sayer, F.; Van Hemelrijck, D.; Van Wingerde, A.M. Investigations on the mechanical behavior of a wind rotor blade subcomponent. Compos. Part B 2012, 43, 647–654. [Google Scholar] [CrossRef]
- Asl, M.; Niezrecki, C.; Sherwood, J.; Peter, A. Scaled Composite I-Beams for Subcomponent Testing of Wind Turbine Blades: An Experimental Study. In Mechanics of Composite and Multi-Functional Materials; Springer International Publishing: Munchem, Germany, 2018; pp. 71–78. [Google Scholar]
- Asl, M.E.; Niezrecki, C.; Sherwood, J.; Avitabile, P. Similitude analysis of thin-walled composite I-beams for subcomponent testing of wind turbine blades. Wind Eng. 2017, 41, 297–312. [Google Scholar] [CrossRef]
- Lee, S.G.; Park, S.J.; Lee, K.S.; Chung, C. Performance prediction of NREL (National Renewable Energy Laboratory) Phase VI blade adopting blunt trailing edge airfoil. Energy 2012, 47, 47–61. [Google Scholar] [CrossRef]
- Wood, D.H. Some effects of compressibility on small horizontal-axis wind turbines. Renew. Energy 1997, 10, 11–17. [Google Scholar] [CrossRef]
- Almohammadi, K.M.; Ingham, D.B.; Ma, L.; Pourkashan, M. Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 2013, 58, 483–493. [Google Scholar] [CrossRef]
- Whale, J.; Fisichella, C.J.; Selig, M.S. Correcting Inflow Measurements from Wind Turbines Using a Lifting-Surface Code. J. Sol. Energy Eng. 2000, 122, 196–202. [Google Scholar] [CrossRef]
- Giguère, P.; Selig, M.S.; Tangler, J.L. Blade Design Trade-Offs Using Low-Lift Airfoils for Stall-Regulated HAWTs. J. Sol. Energy Eng. 1999, 121, 217–223. [Google Scholar] [CrossRef]
- Selig, M.S.; Tangler, J.L. Development and Application of a Multipoint Inverse Design Method for Horizontal Axis Wind Turbines. Wind Eng. 1995, 19, 91–105. [Google Scholar]
- Selig, M.S. Multipoint Inverse Design of an Infinite Cascade of Airfoils. AIAA J. 1994, 32, 774–782. [Google Scholar] [CrossRef]
- Selig, M.S.; Maughmert, M.D. Generalized Multipoint Inverse Airfoil Design. AIAA J. 1992, 30, 2618–2625. [Google Scholar] [CrossRef]
- Selig, M.S.; Maughmert, M.D. Multipoint Inverse Airfoil Design Method Based on Conformal Mapping. AIAA J. 1992, 30, 1162–1170. [Google Scholar] [CrossRef]
- Bermúdez, L.; Velázquez, A.; Matesanz, A. Viscous-inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow. J. Wind Eng. Ind. Aerodyn. 2002, 90, 643–661. [Google Scholar] [CrossRef]
- Filippone, A. Airfoil inverse design and optimization by means of viscous-inviscid techniques. J. Wind Eng. Ind. Aerodyn. 1995, 56, 123–136. [Google Scholar] [CrossRef]
- Cyr, S.; Newman, B.G. Flow past two-dimensional membrane aerofoils with rear separation. J. Wind Eng. Ind. Aerodyn. 1996, 63, 1–16. [Google Scholar] [CrossRef]
- Johansen, J.; Madsen, H.A.; Gaunaa, M.; Bak, C.; Srensen, N.N. Design of a wind turbine rotor for maximum aerodynamic efficiency. Wind Energy 2009, 12, 261–273. [Google Scholar] [CrossRef]
- Rocha, P.A.C.; Rocha, H.H.B.; Carneiro, F.O.M.; da Silva, M.E.V.; de Andrade, C.F. A case study on the calibration of the k-ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils. Energy 2016, 97, 144–150. [Google Scholar] [CrossRef]
- Grant, I.; Mo, M.; Pan, X.; Parkin, P.; Powell, J.; Reinecke, H.; Shuang, K.; Coton, F.; Lee, D. An experimental and numerical study of the vortex filaments in the wake of an operational, horizontal-axis, wind turbine. J. Wind Eng. Ind. Aerodyn. 2000, 85, 177–189. [Google Scholar] [CrossRef]
- Hirahara, H.; Hossain, M.Z.; Kawahashi, M.; Nonomura, Y. Testing basic performance of a very small wind turbine designed for multi-purposes. Renew. Energy 2005, 30, 1279–1297. [Google Scholar] [CrossRef]
- Wood, D. Green Energy and Technology, 1st ed.; Springer: London, UK; Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; Calgary, AB, Canada, 2011; ISBN 978-1-84996-174-5. [Google Scholar]
- Sedaghat, A.; Samani, I.; Ahmadi-baloutaki, M.; El Assad, M.; Gaith, M. Computational Study on Novel circulating Aerofoils for use in Magnus wind turbine blades. Energy 2015, 91, 393–403. [Google Scholar] [CrossRef]
- Bottasso, C.L.; Croce, A.; Gualdoni, F.; Montinari, P. Load mitigation for wind turbines by a passive aeroelastic device. J. Wind Eng. Ind. Aerodyn. 2016, 148, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Yan, P.; Han, W.; He, Y. Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy. Energy 2015, 89, 687–701. [Google Scholar] [CrossRef]
- Elfarra, M.A.; Sezer-Uzol, N.; Akmandor, I.S. NREL VI rotor blade: Numerical investigation and winglet design and optimization using CFD. Wind Energy 2014, 17, 657–669. [Google Scholar] [CrossRef]
- Maldonado, V.; Castillo, L.; Thormann, A.; Meneveau, C. The role of free stream turbulence with large integral scale on the aerodynamic performance of an experimental low Reynolds number S809 wind turbine blade. J. Wind Eng. Ind. Aerodyn. 2015, 142, 246–257. [Google Scholar] [CrossRef]
- Lanzafame, R.; Mauro, S.; Messina, M. Wind turbine CFD modeling using a correlation-based transitional model. Renew. Energy 2013, 52, 31–39. [Google Scholar] [CrossRef]
- Yu, G.; Shen, X.; Zhu, X.; Du, Z. An insight into the separate flow and stall delay for HAWT. Renew. Energy 2011, 36, 69–76. [Google Scholar] [CrossRef]
- Wang, F.; Bai, L.; Fletcher, J.; Whiteford, J.; Cullen, D. The methodology for aerodynamic study on a small domestic wind turbine with scoop. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Bai, L.; Fletcher, J.; Whiteford, J.; Cullen, D. Development of small domestic wind turbine with scoop and prediction of its annual power output. Renew. Energy 2008, 33, 1637–1651. [Google Scholar] [CrossRef]
- Fagbenro, K.A.; Mohamed, M.A.; Wood, D.H. Computational modeling of the aerodynamics of windmill blades at high solidity. Energy Sustain. Dev. 2014, 22, 13–20. [Google Scholar] [CrossRef]
- Li, Y.; Castro, A.M.; Sinokrot, T.; Prescott, W.; Carrica, P.M. Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence. Renew. Energy 2015, 76, 338–361. [Google Scholar] [CrossRef]
- Li, C.; Lin, Q.; Ding, X.; Ye, X. Performance, aeroacoustics and feature extraction of an axial flow fan with abnormal blade angle. Energy 2016, 103, 322–339. [Google Scholar] [CrossRef]
- Bukala, J.; Damaziak, K.; Kroszczynski, K.; Krzeszowiec, M.; Malachowski, J. Investigation of parameters influencing the efficiency of small wind turbines. J. Wind Eng. Ind. Aerodyn. 2015, 146, 29–38. [Google Scholar] [CrossRef]
- Purazarm, P.; Modarres-Sadegh, Y.; Lackner, M. A parametric study of coupled-mode flutter for MW-size wind turbine blades. Wind Energy 2016, 19, 497–514. [Google Scholar] [CrossRef]
- Capuzzi, M.; Pirrera, A.; Weaver, P.M. A novel adaptive blade concept for large-scale wind turbines. Part II: Structural design and power performance. Energy 2014, 73, 25–32. [Google Scholar] [CrossRef]
- Capuzzi, M.; Pirrera, A.; Weaver, P.M. A novel adaptive blade concept for large-scale wind turbines. Part I: Aeroelastic behaviour. Energy 2014, 73, 15–24. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Kolios, A. State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renew. Sustain. Energy Rev. 2016, 64, 195–210. [Google Scholar] [CrossRef]
- Buck, J.A.; Garvey, S.D. Redefining the design objectives of large offshore wind turbine rotors. Wind Energy 2015, 18, 835–850. [Google Scholar] [CrossRef]
- Yang, H.; Shen, W.; Xu, H.; Hong, Z.; Liu, C. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD. Renew. Energy 2014, 70, 107–115. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, J.; Shen, W.Z.; Zhu, W.J. Improved blade element momentum theory for wind turbine aerodynamic computations. Renew. Energy 2016, 96, 824–831. [Google Scholar] [CrossRef]
- Sant, T. Improving BEM—Based Aerodynamic Models in Wind Turbine Design Codes Improving BEM—Based Aerodynamic Models Tonio Sant Tonio Sant Improving BEM-Based Aerodynamic Models in Wind Turbine Design Codes; Print Right Ltd., Marsa: Msida, Malta, 2007; ISBN 978-99932-0-483-1. [Google Scholar]
- Prado, R.A. Reformulation of the momentum theory applied to wind turbines. J. Wind Eng. Ind. Aerodyn. 1995, 58, 277–292. [Google Scholar] [CrossRef]
- Jamieson, P. Extraction in a Linear Constant Velocity Flow Field. Wind Energy 2008, 11, 445–457. [Google Scholar] [CrossRef]
- Liu, Y.; Yoshida, S. An extension of the Generalized Actuator Disc Theory for aerodynamic analysis of the diffuser-augmented wind turbines. Energy 2015, 93, 1852–1859. [Google Scholar] [CrossRef]
- Ohya, Y.; Karasudani, T.; Sakurai, A. Development of a shrouded wind turbine with a flanged diffuser. J. Wind Eng. Ind. Aerodyn. 2008, 96, 524–539. [Google Scholar] [CrossRef]
- Abe, K.; Nishida, M.; Sakurai, A.; Ohya, Y.; Kihara, H.; Wada, E.; Sato, K. Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser. J. Wind Eng. Ind. Aerodyn. 2005, 93, 951–970. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.X.; Song, J.J.; Xu, Y.; Xu, J.Z. Study on a new aerodynamic model of HAWT based on panel method and Reduced Order Model using Proper Orthogonal Decomposition. Renew. Energy 2012, 48, 436–447. [Google Scholar] [CrossRef]
- Ahmed, N.; Archer, R. Testing of highly loaded horizontal axis wind turbines designed for optimum performance. Renew. Energy 2002, 25, 613–618. [Google Scholar] [CrossRef]
- Sanderson, R.J.; Archer, R.D. Optimum propeller wind turbines. J. Energy 1983, 7, 695–701. [Google Scholar] [CrossRef]
- Narayana, M.; Putrus, G.A.; Jovanovic, M.; Leung, P.S.; McDonald, S. Generic maximum power point tracking controller for small-scale wind turbines. Renew. Energy 2012, 44, 72–79. [Google Scholar] [CrossRef]
- Thumthae, C.; Chitsomboon, T. Optimal angle of attack for untwisted blade wind turbine. Renew. Energy 2009, 34, 1279–1284. [Google Scholar] [CrossRef]
- Perkin, S.; Garrett, D.; Jensson, P. Optimal wind turbine selection methodology: A case-study for Búrfell, Iceland. Renew. Energy 2015, 75, 165–172. [Google Scholar] [CrossRef]
- Pandey, M.M.; Pandey, K.P.; Ojha, T.P. An analytical approach to optimum design and peak performance prediction for horizontal axis wind turbines. J. Wind Eng. Ind. Aerodyn. 1989, 32, 247–262. [Google Scholar] [CrossRef]
- Vu, D.; Marini, I.; Milas, Z. Numerical models for robust shape optimization of wind turbine blades. Renew. Energy 2016, 87, 849–862. [Google Scholar] [CrossRef]
- Zhu, W.J.; Shen, W.Z.; Sørensen, J.N. Integrated airfoil and blade design method for large wind turbines. Renew. Energy 2014, 70, 172–183. [Google Scholar] [CrossRef]
- Sessarego, M.; Dixon, K.R.; Rival, D.E.; Wood, D.H. A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization. Eng. Optim. 2015, 47, 1043–1062. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Wu, J.; Chen, G. Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design. Energy 2017, 120, 346–361. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Luo, Y. Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades. Appl. Math. Mech. 2011, 32, 739–748. [Google Scholar] [CrossRef]
- Shen, X.; Chen, J.-G.; Zhu, X.-C.; Liu, P.-Y.; Du, Z.-H. Multi-objective optimization of wind turbine blades using lifting surface method. Energy 2015, 90 Pt 1, 1–11. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, B.; Xu, J. Smart fatigue load control on the large-scale wind turbine blades using different sensing signals. Renew. Energy 2016, 87, 111–119. [Google Scholar] [CrossRef]
- Smit, J.; Bernhammer, L.O.; Navalkar, S.T.; Leonardo, B.; Gaunaa, M. Sizing and control of trailing edge flaps on a smart rotor for maximum power generation in low fatigue wind regimes. Wind Energy 2015, 19, 607–624. [Google Scholar] [CrossRef]
- Van Wingerden, J.W.; Hulskamp, A.W.; Barlas, T.; Marrant, B.; van Kuik, G.A.M.; Molenaar, D.P.; Varheagen, M. On the Proof of Concept of a “Smart” Wind Turbine Rotor Blade for Load Alleviation. Wind Energy 2008, 11, 265–280. [Google Scholar] [CrossRef]
- Hulskamp, A.W.; van Wingerden, J.W.; Barlas, T.; Champliaud, H.; Kuik, G.A.M.; Bersee, H.E.N.; Verhaegen, M. Design of a scaled wind turbine with a smart rotor for dynamic load control experiments. Wind Energy 2010, 14, 339–354. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer Science & Business Media: Munchem, Germany, 2003. [Google Scholar]
- Yousefi, K.; Saleh, R. Three-dimensional suction flow control and suction jet length optimization of NACA 0012 wing. Meccanica 2015, 50, 1481–1494. [Google Scholar] [CrossRef]
- MacPhee, D.W.; Beyene, A. Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor. Energy 2015, 90, 1055–1065. [Google Scholar] [CrossRef]
- McNally, J.; Fernandez, E.; Robertson, G.; Kumar, R.; Taira, K.; Alvi, F.; Yamaguchi, Y.; Murayama, K. Drag reduction on a flat-back ground vehicle with active flow control. J. Wind Eng. Ind. Aerodyn. 2015, 145, 292–303. [Google Scholar] [CrossRef]
- Vernet, J.A.; Örlü, R.; Alfredsson, P.H. Separation control by means of plasma actuation on a half cylinder approached by a turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 2015, 145, 318–326. [Google Scholar] [CrossRef]
- Walker, S.; Segawa, T. Mitigation of flow separation using DBD plasma actuators on airfoils: A tool for more efficient wind turbine operation. Renew. Energy 2012, 42, 105–110. [Google Scholar] [CrossRef]
- Oye, S. The effect of vortex generators on the performance of the Elkraft 1000 kW turbine. In Proceedings of the 9th Symposium on Aerodynamics of Wind Turbines, Stockholm, Sweden, 11–12 December 1995; pp. 9–14. [Google Scholar]
- Gao, L.; Zhang, H.; Liu, Y.; Han, S. Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines. Renew. Energy 2015, 76, 303–311. [Google Scholar] [CrossRef]
- Khan, Z.U.; Johnston, J.P. On vortex generating jets. Int. J. Heat Fluid Flow 2000, 21, 506–511. [Google Scholar] [CrossRef]
- Hwangbo, H.; Ding, Y.; Eisele, O.; Weinzierl, G.; Lang, U.; Pechlivanoglou, G. Quantifying the effect of vortex generator installation on wind power production: An academia-industry case study. Renew. Energy 2017, 113, 1589–1597. [Google Scholar] [CrossRef]
- Fernandez-gamiz, U.; Zulueta, E.; Boyano, A.; Ansoategui, I.; Uriarte, I. Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices. Energies 2017, 10, 742. [Google Scholar] [CrossRef]
- Urkiola, A.; Fernandez-gamiz, U.; Errasti, I.; Zulueta, E. Computational characterization of the vortex generated by a Vortex Generator on a flat plate for different vane angles. Aerosp. Sci. Technol. 2017, 65, 18–25. [Google Scholar] [CrossRef]
- Martı´nez-Filgueira, P.; Fernandez-Gamiz, U.; Zulueta, E.; Errasti, I.; Fernandez-Gauna, B. Parametric study of low-profile vortex generators. Int. J. Hydrogen Energy 2017, 42, 17700–17712. [Google Scholar] [CrossRef]
- Chamorro, L.P.; Arndt, R.E.A.; Sotiropoulos, F. Drag reduction of large wind turbine blades through riblets: Evaluation of Riblet geometry and application strategies. Renew. Energy 2013, 50, 1095–1105. [Google Scholar] [CrossRef]
- Belamadi, R.; Djemili, A.; Ilinca, A.; Mdouki, R. Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades. J. Wind Eng. Ind. Aerodyn. 2016, 151, 79–99. [Google Scholar] [CrossRef]
- Binci, L.; Clementi, G.; Alessandro, V.D.; Montelpare, S.; Ricci, R. Study of the flow field past dimpled aerodynamic surfaces: Numerical simulation and experimental verification Study of the flow field past dimpled aerodynamic surfaces: Numerical simulation and experimental verification. In Proceedings of the 35th UIT Heat Transfer Conference (UIT 2017), Ancona, Italy, 26–28 June 2017; IOP Publishing: Bristol, UK, 2017; p. 12030. [Google Scholar]
- Du, Z.; Selig, M.S. The effect of rotation on the boundary layer of a wind turbine blade. Renew. Energy 2000, 20, 167–181. [Google Scholar] [CrossRef]
- Hu, D.; Hua, O.; Du, Z. A study on stall-delay for horizontal axis wind turbine. Renew. Energy 2006, 31, 821–836. [Google Scholar] [CrossRef]
- Wood, D.H. A three-dimensional analysis of stall-delay on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 1991, 37, 1–14. [Google Scholar] [CrossRef]
- Lee, H.M.; Wu, Y. An experimental study of stall delay on the blade of a horizontal-axis wind turbine using tomographic particle image velocimetry. J. Wind Eng. Ind. Aerodyn. 2013, 123, 56–68. [Google Scholar] [CrossRef]
- Foussekis, D.; Frauni, P.; Bdguier, C. Steady and unsteady separated flows around a profile. Application on the wind turbines. J. Wind Eng. Ind. Aerodyn. 1992, 39, 41–49. [Google Scholar] [CrossRef]
- Muljadi, E.; Pierce, K.; Migliore, P. Soft-stall control for variable-speed stall-regulated wind turbines. J. Wind Eng. Ind. Aerodyn. 2000, 85, 277–291. [Google Scholar] [CrossRef]
- Singh, R.K.; Ahmed, M.R. Blade design and performance testing of a small wind turbine rotor for low wind speed applications. Renew. Energy 2013, 50, 812–819. [Google Scholar] [CrossRef]
- Ebert, P.R.; Wood, D.H. Observations of the Starting Behaviour of a Small Horizontal-Axis Wind Turbine. Renew. Energy 1997, 12, 1–13. [Google Scholar] [CrossRef]
- Pourrajabian, A.; Nazmi Afshar, P.A.; Ahmadizadeh, M.; Wood, D. Aero-structural design and optimization of a small wind turbine blade. Renew. Energy 2016, 87, 837–848. [Google Scholar] [CrossRef]
- Scappatici, L.; Bartolini, N.; Castellani, F.; Astol, D.; Garinei, A.; Pennicchi, M. Optimizing the design of horizontal-axis small wind turbines: From the laboratory to market. Int. J. Wind Eng. Ind. Aerodyn. 2016, 154, 58–68. [Google Scholar] [CrossRef]
- Larsen, K. Recycling wind turbine blades of larger and larger turbines. Renew. Energy Focus 2009, 9, 70–73. [Google Scholar] [CrossRef]
- Jackson, K.J.; Zuteck, M.D.; Van Dam, C.P.; Standish, K.J.; Berry, D. Innovative design approaches for large wind turbine blades. Wind Energy 2005, 8, 141–171. [Google Scholar] [CrossRef]
- Brøndsted, P.; Lilholt, H.; Lystrup, A. Composite Materials for WInd Power. Annu. Rev. Mater. Res. 2005, 35, 505–538. [Google Scholar] [CrossRef]
- De Goeij, W.C.; Van Tooren, M.J.L.; Beukers, A. Implementation of bending-torsion coupling in the design of a wind-turbine rotor-blade. Appl. Energy 1999, 63, 191–207. [Google Scholar] [CrossRef]
- Puterbaugh, M.; Beyene, A. Parametric dependence of a morphing wind turbine blade on material elasticity. Energy 2011, 36, 466–474. [Google Scholar] [CrossRef]
- Cherrington, R.; Goodship, V.; Meredith, J.; Wood, B.M.; Coles, S.R.; Vuillaume, A.; Feito-boirac, A.; Spee, F.; Kirwan, K. Producer responsibility : Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy 2012, 47, 13–21. [Google Scholar] [CrossRef]
- Asl, M.; Niezrecki, C.; Sherwood, J.; Avitabile, P. Static performance assessment of recyclable bio-based resin for wind turbine blades using sub-component testing. In Proceedings of the American Society for Composites—Thirty-Second Technical Conference, West Lafayette, IN, USA, 23–25 October 2017; DEStech Publications, Inc.: West Lafayette, IN, USA, 2017. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, S.; Alam, M.M.; Alhems, L.M.; Rafique, M.M. Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review. Energies 2018, 11, 506. https://doi.org/10.3390/en11030506
Rehman S, Alam MM, Alhems LM, Rafique MM. Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review. Energies. 2018; 11(3):506. https://doi.org/10.3390/en11030506
Chicago/Turabian StyleRehman, Shafiqur, Md. Mahbub Alam, Luai M. Alhems, and M. Mujahid Rafique. 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review" Energies 11, no. 3: 506. https://doi.org/10.3390/en11030506
APA StyleRehman, S., Alam, M. M., Alhems, L. M., & Rafique, M. M. (2018). Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review. Energies, 11(3), 506. https://doi.org/10.3390/en11030506