Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy
Abstract
:1. Introduction
2. Three-Phase Short-Circuit Current of VSC-Based Renewable Energy
2.1. Three-Phase Short-Circuit Current and Transient Equivalent Circuit of VSC-Based Renewable Energy
2.2. Experimental Test of Three-Phase Short-Circuit Current of a VSC-Based Renewable Energy
3. Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy
3.1. AC Component Calculation of Three-Phase Short-Circuit Current in Power Systems
3.2. Peak Value Calculation of Three-Phase Short-Circuit Current in Power Systems
4. Simulation Analysis
4.1. 500 kV Case in Huainan Area
4.2. 220 kV Case in Huaisu Area
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Related Parameters of PV Generator Set
Type | Photovoltaic Grid-Connected Inverter |
---|---|
Model number | SG500MX-M |
Rated AC output power | 500 kW |
Rated frequency | 50 Hz |
Maximum output voltage (VDC) | 1000 V |
MPPT voltage range (VDC) | 480~850 V |
Rated grid voltage (VAC) | 315 V |
Maximum continuous working current | 1018 A |
The power factor | ≥0.99 |
Appendix B. Branch Impedance Parameters of 220 kV Network
Equivalent Impedance between 220 kV Busbars Benchmark Capacity = 100 MVA | Positive Sequence Impedance | ||
---|---|---|---|
Busbar I | Busbar J | R1 (pu) | X1 (pu) |
Zonglou | Longhai | 0.009 | 0.0472 |
Zonglou | Huaierchang | 0.0059 | 0.0312 |
Zonglou | Huaibei | 0.0037 | 0.018 |
Xiaoxian | Longhai | 0.0071 | 0.0361 |
Xiaoxian | Guanqiao | 0.0014 | 0.0115 |
Xiaoxian | Fenghuangshan | 0.0026 | 0.0134 |
Xiaoxian | Zhaodikou | 0.0031 | 0.026 |
Yangliu | Wenchanggong | 0.0026 | 0.0214 |
Yangliu | Qiyuan | 0.0018 | 0.0145 |
Yangliu | Mengcheng | 0.0069 | 0.037 |
Wuliying | Suixi | 0.0008 | 0.0038 |
Wuliying | Fenghuangshan | 0.0015 | 0.0077 |
Guoyang | Wenchanggong | 0.0038 | 0.0317 |
Guoyang | Suixi | −0.1381 | 1.0474 |
Guoyang | Mengcheng | 0.0105 | 0.0794 |
Guoyang | Jiaolou | 0.0011 | 0.0058 |
Guoyang | Jiangnan | −0.1284 | 1.8228 |
Wenchanggong | Suixi | −1.7936 | 7.5312 |
Wenchanggong | Qiyuan | 0.0054 | 0.0399 |
Wenchanggong | Mengcheng | 0.0207 | 0.4638 |
Wenchanggong | Linhuan | 0.0004 | 0.0056 |
Wenchanggong | Jiangnan | −2.3867 | 13.3188 |
Tuohe | Sunan | 0.0001 | 0.0012 |
Tuohe | Sudongxin | 0.0005 | 0.0038 |
Tuohe | Jicun | 0.0002 | 0.0013 |
Suixi | Suwu | 0.0006 | 0.009 |
Suixi | Nanping | 0.0028 | 0.0143 |
Suixi | Mengcheng | −0.0662 | 0.9864 |
Suixi | Kuanglou | 0.0002 | 0.0032 |
Suixi | Jiaolou | 0.0071 | 0.0359 |
Suixi | Jiangnan | −0.0036 | 0.2195 |
Suixi | Huaibei | 0.0045 | 0.023 |
Suixi | Hushan | 0.0006 | 0.0079 |
Suwu | Liuyao | 0.0041 | 0.0226 |
Suwu | Lingbei | 0.0016 | 0.013 |
Suwu | Shuangqing | 0.0003 | 0.0026 |
Suwu | Caocun | 0.0012 | 0.0098 |
Suwu | Qianyingzi | 0.0015 | 0.0179 |
Sunan | Nanping | 0.0024 | 0.0123 |
Sudong | Jicun | 0.0014 | 0.0069 |
Sizhou | Liuyao | 0.0026 | 0.0134 |
Qiyuan | Mengcheng | 0.0015 | 0.0121 |
Nanping | Mengcheng | 0.0036 | 0.0184 |
Mengcheng | Jiangnan | 0.0831 | 1.3231 |
Longhai | Zhaodikou | 0.0008 | 0.0038 |
Liuyao | Jicun | 0.0091 | 0.0461 |
Kuanglou | Jianhe | 0.0005 | 0.0043 |
Kuanglou | Hushan | 0.0008 | 0.0111 |
Jiangnan | Huaierchang | 0.0069 | 0.0349 |
Jianhe | Huaibei | 0.0005 | 0.003 |
Jicun | Shuangqing | 0.0014 | 0.0069 |
Huaierchang | Bianhe | 0.0018 | 0.0092 |
Huaibei | Fenghuangshan | 0.0015 | 0.0077 |
Guanqiao | Caocun | 0.0004 | 0.0036 |
Bianhe | Shuangqing | 0.0014 | 0.0073 |
References
- Schellekens, G.; Battaglini, A.; Lilliestam, J.; McDonnell, J.; Patt, A. 100% Renewable Electricity: A Roadmap to 2050 for Europe and North Africa; PricewaterhouseCoopers: London, UK, 2010. [Google Scholar]
- Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures; Office of Scientific & Technical Information Technical Reports; National Renewable Energy Laboratory: Golden, CO, USA, 2017.
- Elliston, B.; Diesendorf, M.; MacGill, I. Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market. Energy Policy 2012, 45, 606–613. [Google Scholar] [CrossRef]
- Li, H.; Eseye A, T.; Zhang, J.; Zheng, D. Optimal energy management for industrial microgrids with high-penetration renewables. Prot. Control Mod. Power Syst. 2017, 2, 12. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, N.; Ye, L. Fault analysis for distribution networks with current-controlled three-phase inverter-interfaced distributed generators. IEEE Trans. Power Deliv. 2015, 30, 1532–1542. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, Z.; Yin, X.; Wen, M. Study of fault current characteristics of the DFIG considering dynamic response of the RSC. IEEE Trans. Energy Convers. 2014, 29, 278–287. [Google Scholar]
- Castilla, M.; Miret, J.; Sosa, J.L.; Matas, J.; de Vicuña, L.G. Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics. IEEE Trans. Power Electron. 2010, 25, 2930–2940. [Google Scholar] [CrossRef]
- Chapman, S.J. Electric Machinery and Power System Fundamentals; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Rizzo, R.; Piegari, L.; Tricoli, P. A comparison between line-start synchronous machines and induction machines in distributed generation. Prz. Elektrotech. 2012, 88, 187–189. [Google Scholar]
- Ouhrouche, M. Transient analysis of a grid connected wind driven induction generator usingareal-time simulation platform. Renew. Energy 2009, 34, 801–806. [Google Scholar] [CrossRef]
- Rashid, G.; Ali, M.H. A Modified Bridge-Type Fault Current Limiter for Fault Ride-Through Capacity Enhancement of Fixed Speed Wind Generator. IEEE Trans. Energy Convers. 2014, 29, 527–534. [Google Scholar]
- Moghadasi, A.; Sarwat, A.; Guerrero, J.M. A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators. Renew. Sustain. Energy Rev. 2016, 55, 823–839. [Google Scholar] [CrossRef]
- Guo, W.; Xiao, L.; Dai, S. Fault current limiter-battery energy storage system for the doubly-fed induction generator: Analysis and experimental verification. IET Gener. Transm. Distrib. 2016, 10, 653–660. [Google Scholar] [CrossRef]
- Shuai, Z.; Shen, C.; Yin, X.; Shen, J. Fault analysis of inverter-interfaced distributed generators with different control schemes. IEEE Trans. Power Deliv. 2017. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J. Indirect current control based seamless transfer of three-phase inverter in distributed generation. IEEE Trans. Power Electron. 2014, 29, 3368–3383. [Google Scholar] [CrossRef]
- Pan, Y.; Ren, W.; Ray, S.; Walling, R.; Reichard, M. Impact of inverter interfaced distributed generation on overcurrent protection in distribution systems. In Proceedings of the IEEE Power Engineering and Automation Conference, Wuhan, China, 8–9 September 2011; pp. 371–376. [Google Scholar]
- Kong, X.; Yuan, Y.; Li, P.; Wang, Y. Study on the fault current transient features of the PV inverter. In Proceedings of the International Conference on Renewable Power Generation, Beijing, China, 17–18 October 2015. [Google Scholar]
- Baran, M.E.; El-Markaby, I. Fault analysis on distribution feeders with distributed generators. IEEE Trans. Power Syst. 2005, 20, 1757–1764. [Google Scholar] [CrossRef]
- Plet, C.A.; Brucoli, M.; Mcdonald, J.D.F.; Green, T.C. Fault models of inverter-interfaced distributed generators: Ex-perimental verification and application to fault analysis. In Proceedings of the IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–8. [Google Scholar]
- Guo, W.; Mu, L.; Zhang, X. Fault models of inverter-interfaced distributed generators within a low-voltage microgrid. IEEE Trans. Power Deliv. 2017, 32, 453–461. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. A new current limiting strategy and fault model to improve fault ride-through capability of inverter interfaced DERs in autonomous microgrids. Sustain. Energy Technol. Assess. 2017, 24, 71–81. [Google Scholar] [CrossRef]
- Tristiu, I.; Bulac, C.; Costinas, S.; Toma, L.; Mandiş, A.; Zăbavă, T. A new and efficient algorithm for short-circuit calculation in distribution networks with distributed generation. In Proceedings of the 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 7–9 May 2015; pp. 816–821. [Google Scholar]
- Plet, C.A.; Green, T.C. Fault response of inverter interfaced distributed generators in grid-connected applications. Electr. Power Syst. Res. 2014, 106, 21–28. [Google Scholar] [CrossRef]
- Yang, S.; Tong, X. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation. Math. Probl. Eng. 2016, 2016, 9404951. [Google Scholar] [CrossRef]
- Tu, D.V.; Chaitusaney, S. Impacts of inverter-based distributed generation control modes on short-circuit currents in distribution systems. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 1645–1650. [Google Scholar]
- Tu, D.V.; Chaitusaney, S.; Yokoyama, A. Fault current calculation in distribution systems with inverter-based distributed generations. IEEJ Trans. Electr. Electron. Eng. 2013, 8, 470–477. [Google Scholar]
- Belkhayat, M.; Edwards, J.; Hoonchareon, N.; Marte, O.; Stenberg, D.; Walters, E. Transients in Power Systems; Wiley: New York, NY, USA, 2001. [Google Scholar]
- He, J.; Li, Y.W. Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters. IEEE Trans. Power Electron. 2012, 27, 1850–1861. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F.; Chen, Z. Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid. IEEE Trans. Ind. Appl. 2014, 50, 452–461. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Z.; Liu, J.; Wang, S.; You, Z. A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids. IEEE Trans. Power Electron. 2016, 31, 5587–5603. [Google Scholar] [CrossRef]
- Quesada, J.; Sainz J, A.; Sebastian, R.; Castro, M. Decoupled droop control techniques for inverters in low-voltage AC microgrids. In Proceedings of the 2014 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain, 11–14 February 2014; pp. 1–6. [Google Scholar]
- He, J.; Li, Y.W.; Munir, M.S. A flexible harmonic control approach through voltage-controlled DG–grid inter-facing converters. IEEE Trans. Industr. Electron. 2012, 59, 444–455. [Google Scholar] [CrossRef]
- Programmable DC Power Supply (Solar Array Simulation) Model 62000H-S Series. Available online: http://www.chromausa.com/pdf/62000H-S-E.pdf (accessed on 22 January 2018).
- Regenerative Grid Simulator Model 61800 Series. Available online: http://www.chromausa.com/pdf/Br-61800-Reg-Grid-Sim-122014.pdf (accessed on 22 January 2018).
- Wang, X.F.; Song, Y.; Irving, M. Modern Power Systems Analysis; Springer: New York, NY, USA, 2008. [Google Scholar]
- Yazdani, A.; Iravani, R. Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications; IEEE Press: Piscataway, NJ, USA; John Wiley: New York, NY, USA, 2010. [Google Scholar]
Region | Thermal Power | Photovoltaic Power | Wind Power |
---|---|---|---|
Huaisu | 3720 MW | 1410 MW | 326 MW |
Huainan | 2512 MW | 1440 MW | 38 MW |
Equivalent Impedance between 500 kV Busbars Benchmark Capacity = 100 MVA | Positive Sequence Impedance | ||
---|---|---|---|
Busbar I | Busbar J | R1 (pu) | X1 (pu) |
Feibei | Gaocheng | 0.0003 | 0.0089 |
Feibei | Kongdian | 0.0002 | 0.0035 |
Feibei | Luochang | 0.0016 | 0.0238 |
Fengtai | Tangzhuang | 0.0001 | 0.001 |
Gaocheng | Kongdian | 0.0170 | 0.1538 |
Gaocheng | Luochang | 0.0014 | 0.0212 |
Gaocheng | Tangzhuang | 0.0004 | 0.0072 |
Kongdian | Luochang | 0.0001 | 0.0011 |
Luochang | Tangzhuang | 0.0004 | 0.0051 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Wu, J.; Wang, Q. Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy. Energies 2018, 11, 537. https://doi.org/10.3390/en11030537
Zhou N, Wu J, Wang Q. Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy. Energies. 2018; 11(3):537. https://doi.org/10.3390/en11030537
Chicago/Turabian StyleZhou, Niancheng, Jiafang Wu, and Qianggang Wang. 2018. "Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy" Energies 11, no. 3: 537. https://doi.org/10.3390/en11030537
APA StyleZhou, N., Wu, J., & Wang, Q. (2018). Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy. Energies, 11(3), 537. https://doi.org/10.3390/en11030537