A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions
Abstract
:1. Introduction
2. Modeling Procedure
2.1. PV Module Model
2.2. Definition of Sub-Arrays
2.3. Calculation of the Sub-Array Current
Algorithm 1 Calculate . |
INPUT: , , , , , parameters matrices OUTPUT: |
2.4. Calculate the Array Current
2.5. Integration of the Proposed Solution with the Nodes Voltages Method
3. Experimental Validation of the Proposed Model
4. Simulation Results for a Medium PV Field
4.1. The SP Array
4.2. The Irregular Array
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International Energy Agency (IEA). Snapshot of Global PV Markets 2016; Technical Report; International Energy Agency: Paris, France, 2017. [Google Scholar]
- Islam, H.; Mekhilef, S.; Shad, N.B.M.; Soon, T.K.; Seyedmahmousian, M.; Horan, B.; Stojcevski, A. Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems. Energies 2018, 11, 365. [Google Scholar] [CrossRef]
- Ramaprabha, R.; Mathur, B.L. A Comprehensive Review and Analysis of Solar Photovoltaic Array Configurations under Partial Shaded Conditions. Int. J. Photoenergy 2012, 2012, 120214. [Google Scholar] [CrossRef]
- Villalva, M.; Gazoli, J.; Filho, E. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- Franzitta, V.; Orioli, A.; Gangi, A.D. Assessment of the Usability and Accuracy of the Simplified One-Diode Models for Photovoltaic Modules. Energies 2016, 9, 1019. [Google Scholar] [CrossRef]
- De Soto, W.; Klein, S.; Beckman, W. Improvement and validation of a model for photovoltaic array performance. Solar Energy 2006, 80, 78–88. [Google Scholar] [CrossRef]
- Li Vigni, V.; La Manna, D.; Riva, E.; Di Dio, V.; Romano, P.; Di Buono, P.; Pinto, M.; Miceli, R.; Giaconia, C. Proof of concept of irradiance estimation system for reconfigurable photovoltaic arrays. Energies 2015, 8, 6641–6657. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.; Agarwal, V. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics. IEEE Trans. Energy Convers. 2008, 23, 302–310. [Google Scholar] [CrossRef]
- Díaz-Dorado, E.; Cidrás, J.; Carrillo, C. Discrete I–V model for partially shaded PV-arrays. Solar Energy 2014, 103, 96–107. [Google Scholar] [CrossRef]
- Belhachat, F.; Larbes, C. Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions. Solar Energy 2015, 120, 399–418. [Google Scholar] [CrossRef]
- Moballegh, S.; Jiang, J. Modeling, Prediction, and Experimental Validations of Power Peaks of PV Arrays Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2014, 5, 293–300. [Google Scholar] [CrossRef]
- Wang, Y.J.; Hsu, P.C. An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy 2011, 36, 3069–3078. [Google Scholar] [CrossRef]
- Celik, B.; Karatepe, E.; Silvestre, S.; Gokmen, N.; Chouder, A. Analysis of spatial fixed PV arrays configurations to maximize energy harvesting in BIPV applications. Renew. Energy 2015, 75, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Orioli, A.; Gangi, A.D. A Criterion for Rating the Usability and Accuracy of the One-Diode Models for Photovoltaic Modules. Energies 2016, 9, 427. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.; Yadav, A.; Pachauri, R.; Chauhan, Y.; Yadav, V. Performance enhancement of PV system using proposed array topologies under various shadow patterns. Solar Energy 2017, 157, 641–656. [Google Scholar] [CrossRef]
- Bastidas-Rodriguez, J.D.; Trejos-Grisales, L.A.; Gonzalez-Montoya, D.; Ramos-Paja, C.A.; Petrone, G.; Spagnuolo, G. General modeling procedure for photovoltaic arrays. Electr. Power Syst. Res. 2018, 155, 67–79. [Google Scholar] [CrossRef]
- Rabinovici, R.; Dagan, T. Assessment of Solar Irradiance in Large-Scale Photovoltaic Fields by Means of Video Processing. In Proceedings of the 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 14–17 November 2012; pp. 1–5. [Google Scholar]
- Bassam, A.; May Tzuc, O.; Escalante Soberanis, M.; Ricalde, L.J.; Cruz, B. Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System. Sustainability 2017, 9, 1399. [Google Scholar] [CrossRef]
- Li, Y.; Ding, D.; Liu, C.; Wang, C. A pixel-based approach to estimation of solar energy potential on building roofs. Energy Build. 2016, 129, 563–573. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Ko, S.W.; Ju, Y.C.; Hwang, H.M.; So, J.H.; Jung, Y.S.; Song, H.; Kim, S.; Kang, G.H. Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode. Energy 2017, 128, 233–243. [Google Scholar] [CrossRef]
- ERDM Solar. Datasheet ERDM Solar; ERDM Solar: San Andrés Tuxtla, Mexico, 2017. [Google Scholar]
- Petrone, G.; Ramos-Paja, C. Modeling of photovoltaic fields in mismatched conditions for energy yield evaluations. Electr. Power Syst. Res. 2011, 81, 1003–1013. [Google Scholar] [CrossRef]
- Bastidas, J.D.; Franco, E.; Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G. A model of photovoltaic fields in mismatching conditions featuring an improved calculation speed. Electr. Power Syst. Res. 2013, 96, 81–90. [Google Scholar] [CrossRef]
- Picault, D.; Raison, B.; Bacha, S.; de la Casa, J.; Aguilera, J. Forecasting photovoltaic array power production subject to mismatch losses. Solar Energy 2010, 84, 1301–1309. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z.; Taheri, H.; Syafaruddin, S. Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model. Simul. Model. Pract. Theory 2011, 19, 1613–1626. [Google Scholar] [CrossRef]
Parameter | SP | TCT | BL | Irregular |
---|---|---|---|---|
0.46 A | 0.57 A | 0.54 A | 0.53 A | |
2.27 A | 2.27 A | 4.36 A | 4.36 A | |
n | 1.03 | 1.03 | 1.04 | 1.04 |
2.54 | 2.42 | 2.48 | 2.49 | |
504.7 | 637.4 | 602.6 | 591.1 | |
1 A | 1 A | 1 A | 1 A | |
0.26 | 0.26 | 0.26 | 0.26 |
SP | TCT | BL | Irregular | |
---|---|---|---|---|
[%] | 0.15 | 0.78 | 0.71 | 0.81 |
[%] | 0.15 | 0.78 | 0.75 | 0.71 |
[%] | 0.13 | 0.62 | 0.65 | 0.87 |
Parameter | Value |
---|---|
5.13 A | |
1.18 A | |
n | 1.06 |
0.18 | |
261.09 | |
1 A | |
0.26 |
Proposed Model | Model [16] | |
---|---|---|
[min:s] | 00:25.3 | 09:18 |
[%] | 0.86 | 0.86 |
[%] | 0.86 | 0.86 |
[%] | 0.0012 | 0.0012 |
Proposed Model (Nodal/Mesh) | Model [16] | Mesh Analysis | |
---|---|---|---|
[min:s] | 05:18 | 10:8 | 08:42 |
[%] | 0.86 | 0.87 | 0.86 |
[%] | 0.86 | 0.87 | 0.87 |
[%] | 0.0036 | 0.0036 | 0.0037 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Montoya, D.; Bastidas-Rodriguez, J.D.; Trejos-Grisales, L.A.; Ramos-Paja, C.A.; Petrone, G.; Spagnuolo, G. A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions. Energies 2018, 11, 767. https://doi.org/10.3390/en11040767
Gonzalez Montoya D, Bastidas-Rodriguez JD, Trejos-Grisales LA, Ramos-Paja CA, Petrone G, Spagnuolo G. A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions. Energies. 2018; 11(4):767. https://doi.org/10.3390/en11040767
Chicago/Turabian StyleGonzalez Montoya, Daniel, Juan David Bastidas-Rodriguez, Luz Adriana Trejos-Grisales, Carlos Andres Ramos-Paja, Giovanni Petrone, and Giovanni Spagnuolo. 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions" Energies 11, no. 4: 767. https://doi.org/10.3390/en11040767
APA StyleGonzalez Montoya, D., Bastidas-Rodriguez, J. D., Trejos-Grisales, L. A., Ramos-Paja, C. A., Petrone, G., & Spagnuolo, G. (2018). A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions. Energies, 11(4), 767. https://doi.org/10.3390/en11040767