Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features
Abstract
:1. Introduction
2. Classification and Analysis of Key Features of Heat-Integrated Water Allocation Networks
2.1. Approaches
2.2. Interconnectivity of Heat and Water
2.3. Water Network Specificities
2.4. Heat Exchanger Network Synthesis
- Sequential approaches: The HEN synthesis problem can be broken down into several subproblems which is then solved successively for the minimum total HEN cost. The general approach is a three-step sequential technique. The first step minimizes the utility consumption through either conceptual techniques such as pinch design method [76] or mathematical techniques by constructing mixed integer linear programming (MILP) models [77,78] . Having the utility targets, an MILP model is formulated in the second step to minimize the number of matches between hot and cold streams which is known as the heat load distribution (HLD) problem [77,79,80]. This step can further be divided into subproblems for each pinch interval which effectively minimizes the number of heat exchanger units instead of matches. In the last step, a non-linear programming (NLP) model [81] can be solved for minimum cost of heat exchanger network subject to results of the two previous steps. Floudas et al. [81] showed that every solution of the second step corresponds to a feasible HEN design in the third step. Floudas and Ciric [82] proposed a decomposition solution strategy for solving the NLP model of HEN synthesis to global optimality using generalized Benders decomposition (GBD) given the HLD matches and the utility targets and a fixed heat recovery approach temperature. Nonetheless, the solutions of the second step will only provide a feasible match with minimum number of matches and cannot guarantee a globally optimum HEN in the third step. Many techniques exist to direct the second step toward better matching results. Implementing integer cut constraints [83] to generate many solutions in the second step with minimum number of matches or using penalty (i.e., ranking) costs for each match in the objective function of the second step are among these techniques. Spaghetti design (i.e., vertical heat transfer model) [84] can also be incorporated into an MILP model (proposed by Gundersen and Grossmann [85] and extended by Gundersen et al. [86]) for targeting and ranking matches which may result in lower capital cost.
- Simultaneous approaches: The goal is to design the HEN at once. The two major contributions in this category are the works of Floudas and Ciric [82] and Yee and Grossmann [87] which are based on MINLP modeling. The former is indeed a combination of the MILP model of Papoulias and Grossmann [77] for heat load distribution and the NLP model of Floudas et al. [81] while the latter is based on a stage-wise representation approach [88]. Several assumption are incorporated in the stage-wise approach which results in a linear set of constraints, while the nonlinearity only arises in the objective function due to logarithmic mean temperature difference formulation. However, as is discussed below, this is not the case in HIMAN due to the presence of NIM.
2.5. Wastewater Regeneration and Treatment
- Fixed-load problems: Early work on regeneration targeting in this category is based on limiting composite curve approaches [10,11,92]. However, as stated by Foo [15], these techniques could not handle all different cases that could arise. In particular, there are cases where implementing the regeneration process changed the pinch point [93] and hence cannot correctly define the minimum fresh water target. Later, several studies proposed using graphical and sequential approaches to overcome this issue, known as revised targeting techniques [94,95]. They showed that the inlet concentration of a regeneration unit is not always the same as the pinch concentration (assumption that was made in previous work). In each case, a fixed outlet concentration for regeneration units were considered.
- Fixed-flowrate problems: Hallale [96] presented a guideline for placement of regeneration units in fixed-flowrate problems. Analogous to the placement of heat pumps in thermal processes, they indicated that, to reduce the fresh water intake (analogous to reducing hot utility in conventional pinch analysis), a regeneration unit should be placed across the pinch by regenerating water with higher concentration from above the pinch (having excess water, analogous to excess heat below the pinch in conventional pinch analysis) to the lower concentration region below the pinch (water deficit, analogous to heat deficit above the pinch in conventional pinch analysis). The main conceptual methods include ultimate flow targeting, source composite curve, and automated targeting techniques. Nonetheless, separate analysis of wastewater treatment networks and water networks forbids any potential reduction in fresh water consumption.
3. Superstructure Generation and Solution Strategies
3.1. Decomposition
3.2. Sequential
3.3. Simultaneous with or Without Initialization
3.4. Meta-Heuristics
3.5. Relaxation/Transformation
4. Other Features
4.1. Superstructure Extension
4.2. Physical Improvements
4.3. Water–Energy Nexus
5. Benchmarking Analysis
6. Concluding Remarks and Future Directions
- ▶
- As mentioned previously, despite the importance of addressing synergies among various elements in a typical industrial plant, holistic approaches have rarely been addressed in HIMAN synthesis problems. Apart from a limited number of specific publications [4,40,43,44,45], non-water thermal streams have not been combined in HIMAN synthesis. Future research directions should therefore focus on this aspect by proposing more rigorous and efficient superstructures. In addition, use of live steam should be investigated using improved formulations.
- ▶
- As water is subject to heating and cooling duties, water loops have a role in recovering heat within and between processes. This feature is even more sensible when considering inter-plant operations. Moreover, following the observed gap in holistic approaches, HIMAN synthesis problems should be considered in conjunction with other heat recovery technologies including organic Rankine cycles (ORC)s and heat pumps.
- ▶
- The literature lacks multi-period operations of HIMANs. This is an important feature considering daily and seasonal variations of operating conditions of an industrial plant, including the temperature of freshwater. Thermal storage tanks must be combined within HIMAN problems to provide a flexible heat transfer medium over time.
- ▶
- Uncertainty analysis of HIMANs must be addressed to find resilient networks given the uncertainties in the system including costs and operating conditions.
- ▶
- Following the benchmarking analysis, multi-criteria decision making approaches must be incorporated in HIMAN synthesis problems to find sets of promising optimal or near-optimal solutions considering diverse economic, environmental, and practical indicators. The application of stochastic optimization and hybrid approaches should be favored in this direction.
- ▶
- Upon the survey of the literature, only one article mentioned large-scale industrial applications [4], yet the methodology is limited to the targeting step. Most of the proposed mathematical methodologies are highly complex and their applications to industrial cases may face computational challenges. Hence, research toward efficient solution strategies must be the future trend thus shifting the focus toward reaching practical and good solutions, not necessarily the global optimum.
- ▶
- Following the highlighted gaps in Table 1, batch processes and retrofitting remain largely untreated which necessitates further research.
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
GA | genetic algorithm |
GBD | generalized Benders decomposition |
GDP | Generalized disjunctive programming |
HEN | heat exchanger network |
HIMAN | heat-integrated mass allocation network |
HLD | heat load distribution |
HRAT | heat recovery approach temperature |
LP | linear programming |
MILP | mixed integer linear programming |
MINLP | mixed integer non-linear programming |
MOO | multi-objective optimization |
MPEC | mathematical programming with equilibrium constraints |
NIM | non-isothermal mixing |
NLP | non-linear programming |
NPV | net present value |
SA | simulated annealing |
TAC | total annualized cost |
References
- Jeżowski, J. Review of Water Network Design Methods with Literature Annotations. Ind. Eng. Chem. Res. 2010, 49, 4475–4516. [Google Scholar] [CrossRef]
- Towler, G.P.; Mann, R.; Serriere, A.J.; Gabaude, C.M.D. Refinery Hydrogen Management-Cost Analysis of Chemically Integrated Facilities. Ind. Eng. Chem. Res. 1996, 35, 2378–2388. [Google Scholar] [CrossRef]
- Shelley, M.D.; El-Halwagi, M.M. Component-less design of recovery and allocation systems: A functionality-based clustering approach. Comput. Chem. Eng. 2000, 24, 2081–2091. [Google Scholar] [CrossRef]
- Kermani, M.; Périn-Levasseur, Z.; Benali, M.; Savulescu, L.; Maréchal, F. A novel MILP approach for simultaneous optimization of water and energy: Application to a Canadian softwood Kraft pulping mill. Comput. Chem. Eng. 2017. [Google Scholar] [CrossRef]
- Suhr, M.; Klein, G.; Kourti, I.; Gonzalo, M.R.; Santonja, G.G.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Production of Pulp, Paper and Board; JRC Science and Policy Reports, Industrial Emissions Directive 2010/75/EU Integrated Pollution Prevention and Control; EU Science Hub: Brussels, Belgium, 2015. [Google Scholar]
- Savulescu, L.E.; Smith, R. Simultaneous energy and water minimisation. In Proceedings of the 1998 AIChE Annual Meeting, 1998; pp. 13–22, Unpublished work. [Google Scholar]
- Papalexandri, K.P.; Pistikopoulos, E.N. A multiperiod MINLP model for the synthesis of flexible heat and mass exchange networks. Comput. Chem. Eng. 1994, 18, 1125–1139. [Google Scholar] [CrossRef]
- Srinivas, B.K.; El-Halwagi, M.M. Synthesis of combined heat and reactive mass-exchange networks. Chem. Eng. Sci. 1994, 49, 2059–2074. [Google Scholar] [CrossRef]
- Bagajewicz, M. A review of recent design procedures for water networks in refineries and process plants. Comput. Chem. Eng. 2000, 24, 2093–2113. [Google Scholar] [CrossRef]
- Wang, Y.P.; Smith, R. Wastewater minimisation. Chem. Eng. Sci. 1994, 49, 981–1006. [Google Scholar] [CrossRef]
- Wang, Y.; Smith, R. Wastewater minimization with flowrate constraints. Chem. Eng. Res. Des. 1995, 73, 889–904. [Google Scholar]
- Savelski, M.J.; Bagajewicz, M.J. On the optimality conditions of water utilization systems in process plants with single contaminants. Chem. Eng. Sci. 2000, 55, 5035–5048. [Google Scholar] [CrossRef]
- Savelski, M.; Bagajewicz, M. On the necessary conditions of optimality of water utilization systems in process plants with multiple contaminants. Chem. Eng. Sci. 2003, 58, 5349–5362. [Google Scholar] [CrossRef]
- Bagajewicz, M.; Rodera, H.; Savelski, M. Energy efficient water utilization systems in process plants. Comput. Chem. Eng. 2002, 26, 59–79. [Google Scholar] [CrossRef]
- Foo, D.C.Y. State-of-the-Art Review of Pinch Analysis Techniques for Water Network Synthesis. Ind. Eng. Chem. Res. 2009, 48, 5125–5159. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J. Heat, mass, and work exchange networks. Front. Chem. Sci. Eng. 2012, 6, 484–502. [Google Scholar] [CrossRef]
- Klemeš, J.J. Industrial water recycle/reuse. Curr. Opin. Chem. Eng. 2012, 1, 238–245. [Google Scholar] [CrossRef]
- Ahmetović, E.; Ibrić, N.; Kravanja, Z.; Grossmann, I.E. Water and energy integration: A comprehensive literature review of non-isothermal water network synthesis. Comput. Chem. Eng. 2015, 82, 144–171. [Google Scholar] [CrossRef]
- Karuppiah, R.; Grossmann, I.E. Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 2006, 30, 650–673. [Google Scholar] [CrossRef]
- Wang, Y.; Smith, R. Time Pinch Analysis. Chem. Eng. Res. Des. 1995, 73, 905–914. [Google Scholar]
- Kim, J.K.; Smith, R. Automated Design of Discontinuous Water Systems. Process Saf. Environ. Prot. 2004, 82, 238–248. [Google Scholar] [CrossRef]
- Foo, D.C.Y.; Manan, Z.A.; Tan, Y.L. Synthesis of maximum water recovery network for batch process systems. J. Clean. Prod. 2005, 13, 1381–1394. [Google Scholar] [CrossRef]
- Majozi, T. Wastewater minimisation using central reusable water storage in batch plants. Comput. Chem. Eng. 2005, 29, 1631–1646. [Google Scholar] [CrossRef]
- Cheng, K.F.; Chang, C.T. Integrated Water Network Designs for Batch Processes. Ind. Eng. Chem. Res. 2007, 46, 1241–1253. [Google Scholar] [CrossRef]
- Li, L.J.; Zhou, R.J.; Dong, H.G. State-Time-Space Superstructure-Based MINLP Formulation for Batch Water-Allocation Network Design. Ind. Eng. Chem. Res. 2010, 49, 236–251. [Google Scholar] [CrossRef]
- Zhou, R.J.; Li, L.J.; Xiao, W.; Dong, H.G. Simultaneous optimization of batch process schedules and water-allocation network. Comput. Chem. Eng. 2009, 33, 1153–1168. [Google Scholar] [CrossRef]
- Chaturvedi, N.D.; Bandyopadhyay, S. Optimization of Multiple Freshwater Resources in a Flexible-Schedule Batch Water Network. Ind. Eng. Chem. Res. 2014, 53, 5996–6005. [Google Scholar] [CrossRef]
- Liu, G.; Li, H.; Feng, X.; Deng, C. Novel method for targeting the optimal purification feed flow rate of hydrogen network with purification reuse/recycle. AIChE J. 2013, 59, 1964–1980. [Google Scholar] [CrossRef]
- El-Halwagi, M.M. 13-Conserving Material Resources through Process Integration: Material Conservation Networks A2-Klemeš, Jiří J. In Handbook of Process Integration (PI); Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2013; pp. 422–439. [Google Scholar]
- Pistikopoulos, E.N. Uncertainty in process design and operations. Comput. Chem. Eng. 1995, 19 (Suppl. 1), 553–563. [Google Scholar] [CrossRef]
- Straub, D.A.; Grossmann, I.E. Design optimization of stochastic flexibility. Comput. Chem. Eng. 1993, 17, 339–354. [Google Scholar] [CrossRef]
- Min-Ho Suh, T.Y.L. Robust Optimal Design of Wastewater Reuse Network of Plating Process. J. Chem. Eng. Jpn. 2002, 35, 863–873. [Google Scholar] [CrossRef]
- Koppol, A.P.R.; Bagajewicz, M.J. Financial Risk Management in the Design of Water Utilization Systems in Process Plants. Ind. Eng. Chem. Res. 2003, 42, 5249–5255. [Google Scholar] [CrossRef]
- Tan, R.R.; Cruz, D.E. Synthesis of robust water reuse networks for single-component retrofit problems using symmetric fuzzy linear programming. Comput. Chem. Eng. 2004, 28, 2547–2551. [Google Scholar] [CrossRef]
- Karuppiah, R.; Grossmann, I.E. Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Chem. Eng. 2008, 32, 145–160. [Google Scholar] [CrossRef]
- Chew, I.M.L.; Tan, R.; Ng, D.K.S.; Foo, D.C.Y.; Majozi, T.; Gouws, J. Synthesis of Direct and Indirect Interplant Water Network. Ind. Eng. Chem. Res. 2008, 47, 9485–9496. [Google Scholar] [CrossRef]
- Zhou, R.J.; Li, L.J.; Dong, H.G.; Grossmann, I.E. Synthesis of Interplant Water-Allocation and Heat-Exchange Networks. Part 1: Fixed Flow Rate Processes. Ind. Eng. Chem. Res. 2012, 51, 4299–4312. [Google Scholar] [CrossRef]
- Zhou, R.J.; Li, L.J. Simultaneous Optimization of Property-Based Water-Allocation and Heat-Exchange Networks with State-Space Superstructure. Ind. Eng. Chem. Res. 2015, 54, 9758–9769. [Google Scholar] [CrossRef]
- Ibrić, N.; Ahmetović, E.; Kravanja, Z.; Maréchal, F.; Kermani, M. Synthesis of single and interplant non-isothermal water networks. J. Environ. Manag. 2017, 203, 1095–1117. [Google Scholar] [CrossRef] [PubMed]
- Kermani, M.; Wallerand, A.S.; Kantor, I.D.; Maréchal, F. A Hybrid Methodology for Combined Interplant Heat, Water, and Power Integration. In Computer Aided Chemical Engineering; Espuña, A., Graells, M., Puigjaner, L., Eds.; Elsevier: New York, NY, USA, 2017; Volume 40, pp. 1969–1974. [Google Scholar]
- Liew, P.Y.; Theo, W.L.; Wan Alwi, S.R.; Lim, J.S.; Abdul Manan, Z.; Klemeš, J.J.; Varbanov, P.S. Total Site Heat Integration planning and design for industrial, urban and renewable systems. Renew. Sustain. Energy Rev. 2017, 68 Pt 2, 964–985. [Google Scholar] [CrossRef]
- Du, J.; Meng, X.; Du, H.; Yu, H.; Fan, X.; Yao, P. Optimal Design of Water Utilization Network with Energy Integration in Process Industries. Chin. J. Chem. Eng. 2004, 12, 247–255. [Google Scholar]
- Renard, L.; Périn-Levasseur, Z.; Salgueiro, L.; Savulescu, L.E.; Maréchal, F.; Benali, M. Combined heat and mass integration: A benchmarking case study. In Proceeding of 22nd European Symposium on Computer Aided Process Engineering; Lockhart Bogle, I.D., Fairweather, M., Eds.; Elsevier: New York, NY, USA, 2012. [Google Scholar]
- Kermani, M.; Périn-Levasseur, Z.; Benali, M.; Savulescu, L.; Maréchal, F. An Improved Linear Programming Approach for Simultaneous Optimization of Water and Energy. In Computer Aided Chemical Engineering; Klemeš, J.J., Varbanov, P.S., Liew, P.Y., Eds.; Elsevier: New York, NY, USA, 2014; Volume 33, pp. 1561–1566. [Google Scholar]
- Ibrić, N.; Ahmetović, E.; Kravanja, Z.; Maréchal, F.; Kermani, M. Simultaneous synthesis of non-isothermal water networks integrated with process streams. Energy 2017, 141, 2587–2612. [Google Scholar] [CrossRef]
- Savulescu, L.; Kim, J.K.; Smith, R. Studies on simultaneous energy and water minimisation—Part I: Systems with no water re-use. Chem. Eng. Sci. 2005, 60, 3279–3290. [Google Scholar] [CrossRef]
- Savulescu, L.; Kim, J.K.; Smith, R. Studies on simultaneous energy and water minimisation—Part II: Systems with maximum re-use of water. Chem. Eng. Sci. 2005, 60, 3291–3308. [Google Scholar] [CrossRef]
- Manan, Z.A.; Tea, S.Y.; Alwi, S.R.W. A new technique for simultaneous water and energy minimisation in process plant. Chem. Eng. Res. Des. 2009, 87, 1509–1519. [Google Scholar] [CrossRef]
- Leewongtanawit, B.; Kim, J.K. Improving energy recovery for water minimisation. Energy 2009, 34, 880–893. [Google Scholar] [CrossRef]
- Wan Alwi, S.R.; Ismail, A.; Manan, Z.A.; Handani, Z.B. A new graphical approach for simultaneous mass and energy minimisation. Appl. Therm. Eng. 2011, 31, 1021–1030. [Google Scholar] [CrossRef]
- Ismail, A.; Alwi, S.; Manan, Z. Simultaneous targeting and design for non-mass transfer based water and energy reduction. In Proceedings of the 2011 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Kuala Lumpur, Malaysia, 19–21 April 2011; pp. 1–8. [Google Scholar]
- Martínez-Patiño, J.; Picón-Núñez, M.; Serra, L.M.; Verda, V. Design of water and energy networks using temperature–concentration diagrams. Energy 2011, 36, 3888–3896. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.; Picón-Núñez, M.; Serra, L.M.; Verda, V. Systematic approach for the synthesis of water and energy networks. Appl. Therm. Eng. 2012, 48, 458–464. [Google Scholar] [CrossRef]
- Liao, Z.; Hong, X.; Jiang, B.; Wang, J.; Yang, Y. Novel graphical tool for the design of the heat integrated water allocation networks. AIChE J. 2015, 62, 670–686. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, J.; Chen, Z.; Li, X.; Zhang, J. Simultaneous integration of water and energy on conceptual methodology for both single- and multi-contaminant problems. Chem. Eng. Sci. 2014, 117, 436–444. [Google Scholar] [CrossRef]
- Hou, Y.; Xie, W.; Duan, Z.; Wang, J. A conceptual methodology for simultaneous optimization of water and heat with non-isothermal mixing. Front. Chem. Sci. Eng. 2017, 11, 154–165. [Google Scholar] [CrossRef]
- Xie, W.; Hou, Y.; Wang, Y.; Wang, J. A heuristic approach based on a single-temperature-peak design principle for simultaneous optimization of water and energy in fixed flowrate systems. Chem. Eng. Sci. 2016, 152, 323–342. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Yu, X. Improving Energy Performance of Water Allocation Networks Through Appropriate Stream Merging. Chin. J. Chem. Eng. 2008, 16, 480–484. [Google Scholar] [CrossRef]
- Ataei, A.; Panjeshahi, M.; Karbassian, S. Simultaneous Energy and Water Minimization-Approach for Systems with Optimum Regeneration of Wastewater. Res. J. Environ. Sci. 2009, 3, 604–618. [Google Scholar] [CrossRef]
- Ataei, A.; Yoo, C.K. Simultaneous Energy and Water Optimization in Multiple- Contaminant Systems with Flowrate Changes Consideration. Int. J. Environ. Res. 2010, 4, 11–26. [Google Scholar]
- Sahu, G.C.; Bandyopadhyay, S. Energy optimization in heat integrated water allocation networks. Chem. Eng. Sci. 2012, 69, 352–364. [Google Scholar] [CrossRef]
- Tan, Y.L.; Ng, D.K.S.; El-Halwagi, M.M.; Foo, D.C.Y.; Samyudia, Y. Synthesis of Heat Integrated Resource Conservation Networks with Varying Operating Parameters. Ind. Eng. Chem. Res. 2013, 52, 7196–7210. [Google Scholar] [CrossRef]
- Liu, L.; Du, J.; El-Halwagi, M.M.; Ponce-Ortega, J.M.; Yao, P. A systematic approach for synthesizing combined mass and heat exchange networks. Comput. Chem. Eng. 2013, 53, 1–13. [Google Scholar] [CrossRef]
- De-León Almaraz, S.; Boix, M.; Montastruc, L.; Azzaro-Pantel, C.; Liao, Z.; Domenech, S. Design of a water allocation and energy network for multi-contaminant problems using multi-objective optimization. Process Saf. Environ. Prot. 2016, 108, 348–364. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Feng, X. Rule-based optimization strategy for energy efficient water networks. Appl. Therm. Eng. 2017, 110, 730–736. [Google Scholar] [CrossRef]
- Polley, G.T.; Picón-Núñez, M.; de Jesús López-Maciel, J. Design of water and heat recovery networks for the simultaneous minimisation of water and energy consumption. Appl. Therm. Eng. 2010, 30, 2290–2299. [Google Scholar] [CrossRef]
- Sharma, S.; Rangaiah, G.P. Multi-objective Optimization of Heat Integrated Water Networks in Petroleum Refineries. In Computer Aided Chemical Engineering; Klemeš, J.J., Varbanov, P.S., Liew, P.Y., Eds.; Elsevier, 2014; Volume 33, pp. 1531–1536. [Google Scholar]
- Liang, Y.; Hui, C.W. A shortcut model for energy efficient water network synthesis. Appl. Therm. Eng. 2016, 96, 88–91. [Google Scholar] [CrossRef]
- Boix, M.; Pibouleau, L.; Montastruc, L.; Azzaro-Pantel, C.; Domenech, S. Minimizing water and energy consumptions in water and heat exchange networks. Appl. Therm. Eng. 2012, 36, 442–455. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.P.; Chan, T.C.; Liu, Z.Y. Design of water and heat networks with single contaminant. Asia-Pac. J. Chem. Eng. 2015, 10, 219–227. [Google Scholar] [CrossRef]
- Yang, L.; Grossmann, I.E. Water Targeting Models for Simultaneous Flowsheet Optimization. Ind. Eng. Chem. Res. 2013, 52, 3209–3224. [Google Scholar] [CrossRef]
- Teles, J.P.; Castro, P.M.; Novais, A.Q. MILP-based initialization strategies for the optimal design of water-using networks. Chem. Eng. Sci. 2009, 64, 3736–3752. [Google Scholar] [CrossRef]
- Castro, P.M.; Matos, H.A.; Novais, A.Q. An efficient heuristic procedure for the optimal design of wastewater treatment systems. Resour. Conserv. Recycl. 2007, 50, 158–185. [Google Scholar] [CrossRef]
- Gundersen, T.; Naess, L. The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art. Comput. Chem. Eng. 1988, 12, 503–530. [Google Scholar] [CrossRef]
- Furman, K.C.; Sahinidis, N.V. A Critical Review and Annotated Bibliography for Heat Exchanger Network Synthesis in the 20th Century. Ind. Eng. Chem. Res. 2002, 41, 2335–2370. [Google Scholar] [CrossRef]
- Linnhoff, B.; Hindmarsh, E. The pinch design method for heat exchanger networks. Chem. Eng. Sci. 1983, 38, 745–763. [Google Scholar] [CrossRef]
- Papoulias, S.A.; Grossmann, I.E. A structural optimization approach in process synthesis—II: Heat recovery networks. Comput. Chem. Eng. 1983, 7, 707–721. [Google Scholar] [CrossRef]
- Maréchal, F.; Kalitventzeff, B. Process integration: Selection of the optimal utility system. Comput. Chem. Eng. 1998, 22 (Suppl. 1), S149–S156. [Google Scholar] [CrossRef]
- Marechal, F.; Boursier, I.; Kalitventzeff, B. Synep1 : A methodology for energy integration and optimal heat exchanger network synthesis. Comput. Chem. Eng. 1989, 13, 603–610. [Google Scholar] [CrossRef]
- Cerda, J.; Westerburg, A.W. Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations. Chem. Eng. Sci. 1983, 38, 1723–1740. [Google Scholar] [CrossRef]
- Floudas, C.A.; Ciric, A.R.; Grossmann, I.E. Automatic synthesis of optimum heat exchanger network configurations. AIChE J. 1986, 32, 276–290. [Google Scholar] [CrossRef]
- Floudas, C.A.; Ciric, A.R. Strategies for overcoming uncertainties in heat exchanger network synthesis. Comput. Chem. Eng. 1989, 13, 1133–1152. [Google Scholar] [CrossRef]
- Balas, E.; Jeroslow, R. Canonical Cuts on the Unit Hypercube. SIAM J. Appl. Math. 1972, 23, 61–69. [Google Scholar] [CrossRef]
- Ahmad, S. Heat Exchanger Networks: Cost Trade-Offs in Energy and Capital. Ph.D. Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK, 1985. [Google Scholar]
- Gundersen, T.; Grossmann, I.E. Improved optimization strategies for automated heat exchanger network synthesis through physical insights. Comput. Chem. Eng. 1990, 14, 925–944. [Google Scholar] [CrossRef]
- Gundersen, T.; Duvold, S.; Hashemi-Ahmady, A. An extended vertical MILP model for Heat Exchanger Network Synthesis. Comput. Chem. Eng. 1996, 20, S97–S102. [Google Scholar] [CrossRef]
- Yee, T.F.; Grossmann, I.E. Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. Comput. Chem. Eng. 1990, 14, 1165–1184. [Google Scholar] [CrossRef]
- Yee, T.F.; Grossmann, I.E.; Kravanja, Z. Simultaneous optimization models for heat integration—I. Area and energy targeting and modeling of multi-stream exchangers. Comput. Chem. Eng. 1990, 14, 1151–1164. [Google Scholar] [CrossRef]
- Yue, D.; Guillén-Gosálbez, G.; You, F. Global optimization of large-scale mixed-integer linear fractional programming problems: A reformulation-linearization method and process scheduling applications. AIChE J. 2013, 59, 4255–4272. [Google Scholar] [CrossRef]
- Bagajewicz, M.J.; Pham, R.; Manousiouthakis, V. On the state space approach to mass/heat exchanger network design. Chem. Eng. Sci. 1998, 53, 2595–2621. [Google Scholar] [CrossRef]
- Leewongtanawit, B.; Kim, J.K. Synthesis and optimisation of heat-integrated multiple-contaminant water systems. Chem. Eng. Process. Process Intensif. 2008, 47, 670–694. [Google Scholar] [CrossRef]
- Kuo, W.C.J.; Smith, R. Design of Water-Using Systems Involving Regeneration. Process Saf. Environ. Prot. 1998, 76, 94–114. [Google Scholar] [CrossRef]
- Kuo, W.C.J.; Smith, R. Designing for the Interactions Between Water-Use and Effluent Treatment. Chem. Eng. Res. Des. 1998, 76, 287–301. [Google Scholar] [CrossRef]
- Bai, J.; Feng, X.; Deng, C. Graphically Based Optimization of Single-Contaminant Regeneration Reuse Water Systems. Chem. Eng. Res. Des. 2007, 85, 1178–1187. [Google Scholar] [CrossRef]
- Feng, X.; Bai, J.; Zheng, X. On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chem. Eng. Sci. 2007, 62, 2127–2138. [Google Scholar] [CrossRef]
- Hallale, N. A new graphical targeting method for water minimisation. Adv. Environ. Res. 2002, 6, 377–390. [Google Scholar] [CrossRef]
- Quesada, I.; Grossmann, I.E. Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 1995, 19, 1219–1242. [Google Scholar] [CrossRef]
- McCormick, G.P. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math. Programm. 1976, 10, 147–175. [Google Scholar] [CrossRef]
- Floudas, C.A.; Aggarwal, A.; Ciric, A.R. Global optimum search for nonconvex NLP and MINLP problems. Comput. Chem. Eng. 1989, 13, 1117–1132. [Google Scholar] [CrossRef]
- Floudas, C.A.; Visweswaran, V. A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory. Comput. Chem. Eng. 1990, 14, 1397–1417. [Google Scholar] [CrossRef]
- Ahmetović, E.; Grossmann, I.E. Global superstructure optimization for the design of integrated process water networks. AIChE J. 2011, 57, 434–457. [Google Scholar] [CrossRef]
- Faria, D.C.; Bagajewicz, M.J. Global Optimization of Water Management Problems Using Linear Relaxation and Bound Contraction Methods. Ind. Eng. Chem. Res. 2011, 50, 3738–3753. [Google Scholar] [CrossRef]
- Faria, D.C.; Bagajewicz, M.J. A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems. AIChE J. 2012, 58, 2320–2335. [Google Scholar] [CrossRef]
- Dong, H.G.; Lin, C.Y.; Chang, C.T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks. Chem. Eng. Sci. 2008, 63, 3664–3678. [Google Scholar] [CrossRef]
- Bogataj, M.; Bagajewicz, M.J. Synthesis of non-isothermal heat integrated water networks in chemical processes. Comput. Chem. Eng. 2008, 32, 3130–3142. [Google Scholar] [CrossRef]
- Chen, C.L.; Liao, H.L.; Jia, X.P.; Ciou, Y.J.; Lee, J.Y. Synthesis of heat-integrated water-using networks in process plants. J. Taiwan Inst. Chem. Eng. 2010, 41, 512–521. [Google Scholar] [CrossRef]
- Savulescu, L.E.; Sorin, M.; Smith, R. Direct and indirect heat transfer in water network systems. Appl. Therm. Eng. 2002, 22, 981–988. [Google Scholar] [CrossRef]
- Boondarik Leewongwanawit, J.K.K. Design and optimisation of combined water and energy systems. Comput. Aided Chem. Eng. 2004, 18, 439–444. [Google Scholar] [CrossRef]
- Sorin, M.; Savulescu, L.E. On Minimization of the Number of Heat Exchangers in Water Networks. Heat Transf. Eng. 2004, 25, 30–38. [Google Scholar] [CrossRef]
- Bogataj, M.; Bagajewicz, M.J. Design of non-isothermal process water networks. In Computer Aided Chemical Engineering; Valentin, P., Agachi, P.ş., Eds.; Elsevier: New York, NY, USA, 2007; Volume 24, pp. 377–382. [Google Scholar]
- Liao, Z.W.; WU, J.; JIANG, B.; WANG, J.; YANG, Y. Design Energy Efficient Water Utilization Systems Allowing Operation Split*. Chin. J. Chem. Eng. 2008, 16, 16–20. [Google Scholar] [CrossRef]
- Xiao, W.; Zhou, R.j.; Dong, H.G.; Meng, N.; Lin, C.Y.; Adi, V.S.K. Simultaneous optimal integration of water utilization and heat exchange networks using holistic mathematical programming. Korean J. Chem. Eng. 2009, 26, 1161–1174. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Kim, J.; Yoo, C.; Moon, I. A simultaneous optimization approach for the design of wastewater and heat exchange networks based on cost estimation. J. Clean. Prod. 2009, 17, 162–171. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Shen, R. A new approach to design energy efficient water allocation networks. Appl. Therm. Eng. 2009, 29, 2302–2307. [Google Scholar] [CrossRef]
- Liao, Z.W.; Rong, G.; Wang, J.; Yang, Y. Systematic Optimization of Heat-Integrated Water Allocation Networks. Ind. Eng. Chem. Res. 2011, 50, 6713–6727. [Google Scholar] [CrossRef]
- George, J.; Sahu, G.C.; Bandyopadhyay, S. Heat Integration in Process Water Networks. Ind. Eng. Chem. Res. 2011, 50, 3695–3704. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Sahu, G.C. Energy targeting in heat integrated water networks with isothermal mixing. In Computer Aided Chemical Engineering; Pistikopoulos, E.N., Georgiadis, M.C., Kokossis, A.C., Eds.; Elsevier: New York, NY, USA, 2011; Volume 29, pp. 1989–1993. [Google Scholar]
- Zhou, R.J.; Li, L.J.; Dong, H.G.; Grossmann, I.E. Synthesis of Interplant Water-Allocation and Heat-Exchange Networks. Part 2: Integrations between Fixed Flow Rate and Fixed Contaminant-Load Processes. Ind. Eng. Chem. Res. 2012, 51, 14793–14805. [Google Scholar] [CrossRef]
- Yiqing, L.; Tingbi, M.; Sucai, L.; Xigang, Y. Studies on the effect of non-isothermal mixing on water-using network’s energy performance. Comput. Chem. Eng. 2012, 36, 140–148. [Google Scholar] [CrossRef]
- Tan, Y.L.; Ng, D.K.S.; El-Halwagi, M.M.; Samyudia, Y.; Foo, D.C.Y. Synthesis of Heat-Integrated Resource Conservation Networks. In Computer Aided Chemical Engineering; Karimi, I.A., Srinivasan, R., Eds.; Elsevier: New York, NY, USA, 2012; Volume 31, pp. 985–989. [Google Scholar]
- Ahmetović, E.; Kravanja, Z. Solution strategies for the synthesis of heat-integrated process water networks. Chem. Eng. Trans. 2012, 29, 1015–1020. [Google Scholar] [CrossRef]
- Rojas-Torres, M.G.; Ponce-Ortega, J.M.; Serna-González, M.; Nápoles-Rivera, F.; El-Halwagi, M.M. Synthesis of Water Networks Involving Temperature-Based Property Operators and Thermal Effects. Ind. Eng. Chem. Res. 2013, 52, 442–461. [Google Scholar] [CrossRef]
- Li, D. Design of heat integrated water networks with multiple contaminants considering non-isothermal mixing. Chem. Ind. Eng. Process 2013, 32, 238–242. [Google Scholar]
- Ibrić, N.; Ahmetović, E.; Kravanja, Z. A Two-Step Solution Strategy for the Synthesis of Pinched and Threshold Heat-Integrated Process Water Networks. Chem. Eng. Trans. 2013, 35, 43–48. [Google Scholar] [CrossRef]
- Chew, I.M.L.; Foo, D.C.Y.; Bonhivers, J.C.; Stuart, P.; Alva-Argaez, A.; Savulescu, L.E. A model-based approach for simultaneous water and energy reduction in a pulp and paper mill. Appl. Therm. Eng. 2013, 51, 393–400. [Google Scholar] [CrossRef]
- Ahmetović, E.; Kravanja, Z. Simultaneous synthesis of process water and heat exchanger networks. Energy 2013, 57, 236–250. [Google Scholar] [CrossRef]
- Tan, Y.L.; Ng, D.K.S.; Foo, D.C.Y.; El-Halwagi, M.M.; Samyudia, Y. Heat integrated resource conservation networks without mixing prior to heat exchanger networks. J. Clean. Prod. 2014, 71, 128–138. [Google Scholar] [CrossRef]
- Jiménez-Gutiérrez, A.; Lona-Ramírez, J.; Ponce-Ortega, J.M.; El-Halwagi, M. An MINLP model for the simultaneous integration of energy, mass and properties in water networks. Comput. Chem. Eng. 2014, 71, 52–66. [Google Scholar] [CrossRef]
- Ibrić, N.; Ahmetović, E.; Kravanja, Z. Two-step mathematical programming synthesis of pinched and threshold heat-integrated water networks. J. Clean. Prod. 2014, 77, 116–139. [Google Scholar] [CrossRef]
- Ibrić, N.; Ahmetović, E.; Kravanja, Z. Synthesis of Water, Wastewater Treatment, and Heat-Exchanger Networks. In Computer Aided Chemical Engineering; Klemeš, J.J., Varbanov, P.S., Liew, P.Y., Eds.; Elsevier: New York, NY, USA, 2014; Volume 33, pp. 1843–1848. [Google Scholar]
- Ibrić, N.; Ahmetović, E.; Kravanja, Z. Simultaneous optimization of water and energy within integrated water networks. Appl. Therm. Eng. 2014, 70, 1097–1122. [Google Scholar] [CrossRef]
- Chen, Z.; Hou, Y.; Li, X.; Wang, J. Simultaneous optimization of water and heat exchange networks. Korean J. Chem. Eng. 2014, 31, 558–567. [Google Scholar] [CrossRef]
- Ahmetović, E.; Kravanja, Z. Simultaneous optimization of heat-integrated water networks involving process-to-process streams for heat integration. Appl. Therm. Eng. 2014, 62, 302–317. [Google Scholar] [CrossRef]
- Ahmetović, E.; Ibrić, N.; Kravanja, Z. Optimal design for heat-integrated water-using and wastewater treatment networks. Appl. Energy 2014, 135, 791–808. [Google Scholar] [CrossRef]
- Zhou, L.; Liao, Z.; Wang, J.; Jiang, B.; Yang, Y.; Yu, H. Simultaneous Optimization of Heat-Integrated Water Allocation Networks Using the Mathematical Model with Equilibrium Constraints Strategy. Ind. Eng. Chem. Res. 2015, 54, 3355–3366. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, Y.; Yuan, X. Synthesis of heat-integrated water allocation network considering non-isothermal mixing. CIESC J. 2014, 65, 285–291. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, Y.; Yuan, X. Simultaneous integration of water and energy in heat-integrated water allocation networks. AIChE J. 2015, 61, 2202–2214. [Google Scholar] [CrossRef]
- Ghazouani, S.; Zoughaib, A.; Pelloux-Prayer, S. Simultaneous heat integrated resource allocation network targeting for total annual cost considering non-isothermal mixing. Chem. Eng. Sci. 2015, 134, 385–398. [Google Scholar] [CrossRef]
- Yan, F.; Wu, H.; Li, W.; Zhang, J. Simultaneous optimization of heat-integrated water networks by a nonlinear program. Chem. Eng. Sci. 2016, 140, 76–89. [Google Scholar] [CrossRef]
- Torkfar, F.; Avami, A. A simultaneous methodology for the optimal design of integrated water and energy networks considering pressure drops in process industries. Process Saf. Environ. Prot. 2016. [Google Scholar] [CrossRef]
- Jagannath, A.; Almansoori, A. Sequential synthesis of heat integrated water networks: A new approach and its application to small and medium sized examples. Comput. Chem. Eng. 2016, 90, 44–61. [Google Scholar] [CrossRef]
- Ibrić, N.; Ahmetović, E.; Kravanja, Z. Mathematical programming synthesis of non-isothermal water networks by using a compact/reduced superstructure and an MINLP model. Clean Technol. Environ. Policy 2016, 1–35. [Google Scholar] [CrossRef]
- Hong, X.; Liao, Z.; Jiang, B.; Wang, J.; Yang, Y. Simultaneous optimization of heat-integrated water allocation networks. Appl. Energy 2016, 169, 395–407. [Google Scholar] [CrossRef]
- Ghazouani, S.; Zoughaib, A.; Bourdiec, S.L. An MILP model for simultaneous mass allocation and heat exchange networks design. Chem. Eng. Sci. 2017, 158, 411–428. [Google Scholar] [CrossRef]
- Hong, X.; Liao, Z.; Jiang, B.; Wang, J.; Yang, Y. Targeting of heat integrated water allocation networks by one-step MILP formulation. Appl. Energy 2017, 197, 254–269. [Google Scholar] [CrossRef]
- Hong, X.; Liao, Z.; Sun, J.; Jiang, B.; Wang, J.; Yang, Y. Energy and water management for industrial large-scale water networks: a systematic simultaneous optimization approach. ACS Sustain. Chem. Eng. 2017. [Google Scholar] [CrossRef]
- Liu, L.; Song, H.; Zhang, L.; Du, J. Heat-integrated water allocation network synthesis for industrial parks with sequential and simultaneous design. Comput. Chem. Eng. 2018, 108, 408–424. [Google Scholar] [CrossRef]
- Geoffrion, A.M. Generalized Benders decomposition. J. Optim. Theory Appl. 1972, 10, 237–260. [Google Scholar] [CrossRef]
- Grossmann, I.E.; Viswanathan, J.; Vecchietti, A.; Raman, R.; Kalvelagen, E. Gams/dicopt: A discrete continuous optimization package. Available online: http://www.amsterdamoptimization.com/pdf/dicopt.pdf (accessed on 6 April 2018).
- Sahinidis, N.V. BARON 17.8.9: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual; The Optimization Firm, LLC: Pittsburgh, PA, USA, 2017. [Google Scholar]
- Tawarmalani, M.; Sahinidis, N.V. A polyhedral branch-and-cut approach to global optimization. Math. Programm. 2005, 103, 225–249. [Google Scholar] [CrossRef]
- Lin, Y.; Schrage, L. The Global Solver in the LINDO API. Optim. Methods Softw. 2009, 24, 657–668. [Google Scholar] [CrossRef]
- Duran, M.A.; Grossmann, I.E. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Programm. 1986, 36, 307–339. [Google Scholar] [CrossRef]
- Xiao, W.; Dong, H.; Li, X.; Yao, P.; Luo, X.; Wilfried, R. Synthesis of Large-scale Multistream Heat Exchanger Networks Based on Stream Pseudo Temperature. Chin. J. Chem. Eng. 2006, 14, 574–583. [Google Scholar] [CrossRef]
- Baumrucker, B.T.; Renfro, J.G.; Biegler, L.T. MPEC problem formulations and solution strategies with chemical engineering applications. Comput. Chem. Eng. 2008, 32, 2903–2913. [Google Scholar] [CrossRef]
- Pham, V.; Laird, C.; El-Halwagi, M. Convex Hull Discretization Approach to the Global Optimization of Pooling Problems. Ind. Eng. Chem. Res. 2009, 48, 1973–1979. [Google Scholar] [CrossRef]
- Papalexandri, K.; Pistikopoulos, E.; Floudas, A. Mass exchange networks for waste minimization: A simultaneous approach. Chem. Eng. Res. Des. 1994, 72, 279–294. [Google Scholar]
- Luo, Y.; Liu, Z.; Luo, S.; Yuan, X. Thermodynamic analysis of non-isothermal mixing’s influence on the energy target of water-using networks. Comput. Chem. Eng. 2014, 61, 1–8. [Google Scholar] [CrossRef]
- Martinez-Patiño, J.; Serra, L.; Verda, V.; Picón-Núñez, M.; Rubio-Maya, C. Thermodynamic Analysis of Simultaneous Heat and Mass Transfer Systems. J. Energy Resour. Technol. 2016, 138, 062006. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and Energy. Annu. Rev. Energy Environ. 1994, 19, 267–299. [Google Scholar] [CrossRef]
- Garcia, D.J.; You, F. The water-energy-food nexus and process systems engineering: A new focus. Comput. Chem. Eng. 2016, 91, 49–67. [Google Scholar] [CrossRef]
- Martinez-Hernandez, E.; Samsatli, S. Biorefineries and the food, energy, water nexus—towards a whole systems approach to design and planning. Curr. Opin. Chem. Eng. 2017, 18, 16–22. [Google Scholar] [CrossRef]
- Lee, M.; Keller, A.A.; Chiang, P.C.; Den, W.; Wang, H.; Hou, C.H.; Wu, J.; Wang, X.; Yan, J. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Appl. Energy 2017, 205, 589–601. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-energy nexus: A review of methods and tools for macro-assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Inselberg, A. The plane with parallel coordinates. Vis. Comput. 1985, 1, 69–91. [Google Scholar] [CrossRef]
- Mao, T.; Luo, Y.; Yuan, X. Design method of heat integrated water networks considering non-isothermal mixing. CIESC J. 2010, 61, 369–377. [Google Scholar]
Highlighted Gaps | Remarks/Literature |
---|---|
Fixed concentration problems | As opposed to fixed mass load problems in which outlet concentration is limited (e.g., solubility) and hence mass load becomes variable. (not extensively addressed in the literature) |
Multi-contaminant problems | Extensively addressed by mathematical methodologies with use of nonlinear programming techniques [19] |
Rigorous modeling | Rigorous water and treatment unit models for retrofit problems in particular (not extensively addressed in the literature) |
Batch-wise processes | Seminal work by Wang and Smith [20], and several prominent works covering water allocation network synthesis problem for batch processes [21,22,23,24,25,26,27] (not extensively addressed in the literature of HIMANs) |
Non-water processes | In particular hydrogen networks [28]. Topics on “resource conservation network” and “property-based resource conservation networks” are dedicated to address this particularity [29]. |
Retrofitting | Developing methodologies for plant retrofitting considering technical and geographical constraints to find feasible and practical solutions (not extensively addressed in the literature). |
Uncertainty analysis | Uncertainty and operability of water networks due to variations of flow and contamination to find resilient and flexible networks [30,31,32,33,34,35] |
Multi-period operations | Considering variations of operating condition, e.g., temperature of freshwater, over multiple time horizons (to some extent, this has been addressed by literature on batch-wise operations). |
Heat integration | Extensively studied under HIMAN methodologies and is the main focus of the current article. |
Interplant operations | Extensively addressed by Chew et al. [36], Zhou et al. [37], Zhou and Li [38], Ibrić et al. [39], Kermani et al. [40] in HIMAN problems. |
Improving solution strategies | Improving deterministic approaches, application of stochastic or hybrid (combined heuristic and mathematics) approaches. Jeżowski [1] highlighted the use of sequential-decomposition techniques or combination of several meta-heuristic (i.e., stochastic such as genetic algorithm (GA)) approaches as potential directions. |
Holistic approaches [41] | Considering synergies among different sections by extending the boundaries to incorporate all aspects in an industrial plant. Several authors aimed at integrating non-water thermal streams [40,42,43,44,45], cooling utilities [4], and hot utilities (steam cycle) [40] in their methodologies and found that application of holistic approaches can bring economical and environmental benefits to all parties involved. The topic remains under-addressed in the literature. |
Legends | Methodology | Approach | Energy and Mass Features | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S M FL FF I/II | Single Multiple Fixed Load Fixed Flow Stage 1 or 2 of the Methodology | Conceptual | Mathematical | Combined | Separate | Sequential | Simultaneous | Non-Water Thermal Streams | Mass Problem Definition | Contaminants | NIM | Storage (water tanks) | Flow/Heat Loss/Gain | Treatment/Regeneration | HEN | |||
Srinivas and El-Halwagi [8] | • | • | FL | S | ||||||||||||||
Papalexandri and Pistikopoulos [7] | • | • | FL | S | • | • | ||||||||||||
Savulescu and Smith [6] | • | • | FL | S | • | • | ||||||||||||
Bagajewicz et al. [14] | • | • | FL | S | • | • | ||||||||||||
Savulescu et al. [107] | • | • | FF | S | • | • | ||||||||||||
Boondarik Leewongwanawit [108] | • | • | FL | S | • | • | ||||||||||||
Du et al. [42] | • | • | FL | M | • | |||||||||||||
Sorin and Savulescu [109] | • | • | FL | S | • | • | ||||||||||||
Savulescu et al. [46] | • | • | FL | S | • | • | ||||||||||||
Savulescu et al. [47] | • | • | FL | S | • | • | • | |||||||||||
Bogataj and Bagajewicz [110] | • | • | FL | S | • | • | ||||||||||||
Liao et al. [111] | • | • | FL | S | • | • | ||||||||||||
Leewongtanawit and Kim [91] | • | • | FF | M | • | • | • | |||||||||||
Feng et al. [58] | • | • | FL | M | • | • | ||||||||||||
Dong et al. [104] | • | • | FL | M | • | • | • | |||||||||||
Bogataj and Bagajewicz [105] | • | • | FL | M | • | • | • | |||||||||||
Xiao et al. [112] | • | • | FL | M | • | • | ||||||||||||
Manan et al. [48] | • | • | FL/FF | S | • | • | ||||||||||||
Leewongtanawit and Kim [49] | • | • | S | • | • | |||||||||||||
Kim et al. [113] | • | • | FL | M | • | |||||||||||||
Feng et al. [114] | • | • | FL | S | • | |||||||||||||
Ataei et al. [59] | • | • | FL | S | • | • | • | • | ||||||||||
Polley et al. [66] | • | • | FL | S | • | |||||||||||||
Chen et al. [106] | • | • | M | • | • | • | • | |||||||||||
Ataei and Yoo [60] | • | • | FL | M | • | • | • | • | ||||||||||
Wan Alwi et al. [50] | • | • | FL | S | • | • | ||||||||||||
Martínez-Patiño et al. [52] | • | • | FL | S | • | • | • | |||||||||||
Ismail et al. [51] | • | • | FF | S | • | • | ||||||||||||
Liao et al. [115] | • | • | FL | S | • | • | ||||||||||||
George et al. [116] | • | • | • | FF | M | • | • | |||||||||||
Bandyopadhyay and Sahu [117] | • | • | FL | S | • | |||||||||||||
Zhou et al. [37] | • | • | FF | M | • | • | • | |||||||||||
Zhou et al. [118] | • | • | FL/FF | M | • | • | • | |||||||||||
Yiqing et al. [119] | • | • | FL | S | • | • | • | |||||||||||
Tan et al. [120] | • | • | FF | S | • | • | ||||||||||||
Sahu and Bandyopadhyay [61] | • | • | FF | M | • | • | • | |||||||||||
Renard et al. [43] | • | • | • | FF | S | • | ||||||||||||
Martínez-Patiño et al. [53] | • | • | FL | S | • | • | ||||||||||||
Boix et al. [69] | • | • | FL | S | • | • | • | |||||||||||
Ahmetović and Kravanja [121] | • | I | II | FL | M | • | • | |||||||||||
Yang and Grossmann [71] | • | • | FL | M | • | • | ||||||||||||
Tan et al. [62] | • | • | FL/FF | M | • | • | ||||||||||||
Rojas-Torres et al. [122] | • | • | FL | M | ||||||||||||||
Li [123] | • | • | N/A | M | • | • | ||||||||||||
Liu et al. [63] | • | I | II | FL | S | • | • | |||||||||||
Ibrić et al. [124] | • | • | FL | M | • | • | ||||||||||||
Chew et al. [125] | • | • | FL | S | • | |||||||||||||
Ahmetović and Kravanja [126] | • | • | FL | M | • | • | ||||||||||||
Tan et al. [127] | • | • | FF | M | • | • | ||||||||||||
Sharma and Rangaiah [67] | • | • | FF | M | • | • | • | |||||||||||
Kermani et al. [44] | • | • | • | FF | M | • | • | • | ||||||||||
Jiménez-Gutiérrez et al. [128] | • | • | FL | M | • | • | ||||||||||||
Ibrić et al. [129] | • | • | FL | M | • | • | ||||||||||||
Ibrić et al.[130] | • | • | FL | M | • | • | • | |||||||||||
Ibrić et al. [131] | • | • | FL | M | • | • | • | |||||||||||
Hou et al. [55] | • | • | FL | M | • | |||||||||||||
Chen et al. [132] | • | • | FL | M | • | • | • | |||||||||||
Ahmetović and Kravanja [133] | • | • | FL | M | • | • | ||||||||||||
Ahmetović et al. [134] | • | • | FL | M | • | • | • | |||||||||||
Zhou and Li [38] | • | • | FL | M | • | • | • | |||||||||||
Zhou et al. [135] | • | • | FL | S | • | • | ||||||||||||
Zhao et al. [70] | • | • | • | FL | S | • | • | |||||||||||
[136,137] | • | • | FL | S | • | • | ||||||||||||
Liao et al. [54] | • | • | • | FL | S | • | • | |||||||||||
Ghazouani et al. [138] | • | • | FF | S | • | |||||||||||||
Yan et al. [139] | • | • | FL | M | • | • | ||||||||||||
Xie et al. [57] | • | • | FF | M | • | • | ||||||||||||
Torkfar and Avami [140] | • | • | FL | S | • | • | ||||||||||||
Liang and Hui [68] | • | • | FL | S | • | |||||||||||||
Jagannath and Almansoori [141] | • | • | FL | M | • | • | • | |||||||||||
Ibrić et al. [142] | • | • | FL | M | • | • | • | |||||||||||
Hong et al. [143] | • | • | FL | S | • | • | ||||||||||||
De-León Almaraz et al. [64] | • | • | FL | M | • | • | • | • | ||||||||||
Wang et al. [65] | • | • | FL | S | • | • | ||||||||||||
Kermani et al. [4] | • | • | • | FF | M | • | • | • | ||||||||||
Ibrić et al. [45] | • | • | • | FL | M | • | • | • | ||||||||||
Ghazouani et al. [144] | • | • | FF | M | • | • | ||||||||||||
Ibrić et al. [39] | • | • | FL | M | • | • | • | |||||||||||
Hong et al. [145] | • | • | FL | S | • | • | ||||||||||||
Hong et al. [146] | • | • | FL | M | • | • | • | |||||||||||
Hou et al. [56] | • | • | FL | S | • | • | ||||||||||||
Liu et al. [147] | • | • | FL | M | • | • | • |
Legends | Objective Function(s) | Mathematical Formulations | Solution Strategies | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mass and Energy Targeting | Operating Cost | TAC | Number of HE Matches | LP | MILP | NLP | MINLP | DNLP | Overall Solution Strategy | Linearization | Initialization | Sequential | Decomposition | Meta-heuristic | Simultaneous/Global Optimization | ||
Srinivas and El-Halwagi [8] | I | II | II | I | MINLP (linearization, flow rate and temperatures) → MILP | I | I | • | ||||||||||
Papalexandri and Pistikopoulos [7] | • | • | • | • | GBD (master MILP (LB) ↔ slave NLP (UB)) | • | • | |||||||||||
Bagajewicz et al. [14] | I | II | I | II | Two LPs (min water target → min energy target) → MILP → stream merging procedure | • | • | |||||||||||
Boondarik Leewongwanawit [108] | • | • | MINLP (initialization with MILP, fixing outlet concentration) | • | • | |||||||||||||
Du et al. [42] | I | II | I,II | MINLP (water network, simulated annealing (SA)-GA) ↔ MINLP (HEN, GA-SA) | • | • | ||||||||||||
Bogataj and Bagajewicz [110] | • | • | MINLP (solving subsequent NLP models) | • | ||||||||||||||
Liao et al. [111] | I | II | I,II | MINLP [NLP (SQP) ↔ MILP] → MINLP | • | • | ||||||||||||
Leewongtanawit and Kim [91] | • | • | • | • | MILP (relaxation) → MINLP (MILP ↔ NLP), similar to GBD but stopping criterion: | • | • | • | ||||||||||
Feng et al. [58] | I | II | I,II | Two MILPs (min water target → min energy target) → MILP | • | |||||||||||||
Dong et al. [104] | • | • | MINLP (random initial guess) → MINLP (perturbation of continuous variables) → MINLP (perturbation of binary variables) → identify heat load loops and path | • | • | • | • | |||||||||||
Bogataj and Bagajewicz [105] | I | II | I | II | NLP (targeting, labeling thermal streams) → MINLP | • | • | |||||||||||
Xiao et al. [112] | I | II | I | II | [NLP (min water) → MINLP (HEN)] → initialization (perturbation) MINLP (HIMAN) | • | • | |||||||||||
Kim et al. [113] | • | • | MINLP | • | ||||||||||||||
Feng et al. [114] | • | • | Targeting –> minimum number of temperature valleys | • | ||||||||||||||
Ataei et al. [59] | • | • | • | NLP (targeting) → graphical approach → NLP (HEN cost) | • | |||||||||||||
Chen et al. [106] | I | II | II | II | I,II | MINLP (min water) → [MINLP (minTAC) ‖ MILP (min operating cost)] | • | • | ||||||||||
Ataei and Yoo [60] | • | • | • | NLP (targeting) → graphical approach → NLP (HEN cost) | • | |||||||||||||
Liao et al. [115] | I | II | I | I | II | MILP (min operating cost + number of matches) → MINLP | • | • | ||||||||||
George et al. [116] | I,II | III | I,II | III | III | LP → LP → DNLP ↷ NLP | • | |||||||||||
Zhou et al. [37] | • | • | MINLP | • | ||||||||||||||
Zhou et al. [118] | • | • | MINLP | • | ||||||||||||||
Tan et al. [120] | • | • | MINLP | • | ||||||||||||||
Sahu and Bandyopadhyay [61] | • | • | LP (min freshwater) → LP (min thermal utility) | • | • | |||||||||||||
Renard et al. [43] | • | • | MINLP → pinch design method | • | ||||||||||||||
Boix et al. [69] | I | II | I | II | MILP [-constraint MOO] (min freshwater, thermal utility, number of water connections, and number of thermal matches) → MINLP | • | • | • | ||||||||||
Ahmetović and Kravanja [121] | I | II | • | • | Solving water network (NLP, MINLP) initialization → MINLP (HIMAN) | I | II | |||||||||||
Yang and Grossmann [71] | • | • | • | Targeting | • | • | ||||||||||||
Tan et al. [62] | • | • | • | • | MINLP discretization to MILP (use of floating pinch concept to identify role of thermal streams, i.e., hot or cold) | • | • | |||||||||||
Rojas-Torres et al. [122] | • | • | MINLP | • | ||||||||||||||
Li [123] | I | II | I | II | Particle swarm optimization (NLP → MINLP) | • | • | |||||||||||
Liu et al. [63] | I | II | II | GA-SA: I) mass pinch + pseudo-T-H diagram → II) MINLP | • | • | ||||||||||||
Ibrić et al. [124] | I | II | I | II | NLP (UB for utilities) → MINLP | I | • | II | ||||||||||
Chew et al. [125] | I | II | I | II | NLP (operating cost) → MINLP (min TAC) | • | ||||||||||||
Ahmetović and Kravanja [126] | • | • | MINLP | • | • | |||||||||||||
Tan et al. [127] | • | • | MINLP | • | ||||||||||||||
Sharma and Rangaiah [67] | • | • | MINLP [-constraint MOO] (min freshwater, regenerated water) → pinch design method | • | ||||||||||||||
Kermani et al. [44] | • | • | MILP → pinch design method | • | ||||||||||||||
Jiménez-Gutiérrez et al. [128] | • | • | MINLP | • | ||||||||||||||
Ibrić et al. [129] | I | II | I | II | NLP (UB for utilities) → MINLP | • | • | |||||||||||
Ibrić et al. [130] | I | II | I | II | Same as [129] + wastewater treatment | • | • | |||||||||||
Ibrić et al. [131] | I | II | I | II | Same as [129] + wastewater treatment + multi-choice splitting | • | • | |||||||||||
Chen et al. [132] | • | • | MINLP | • | ||||||||||||||
Ahmetović and Kravanja [133] | • | • | MINLP (considering heat integration for recycled and reused water streams) | • | ||||||||||||||
Ahmetović et al. [134] | • | • | Same as Ahmetović and Kravanja [133] + wastewater treatment | • | ||||||||||||||
Zhou and Li [38] | • | • | Local optimum (MINLP ↔ relaxed-MINLP perturbation) → clustering technique | • | • | • | ||||||||||||
Zhou et al. [135] | • | • | MINLP ↷ mathematical programming with equilibrium constraints (MPEC) ↷ NLP | • | ||||||||||||||
Liu et al. [136,137] | • | • | Generalized disjunctive programming (GDP) ↷ MINLP | • | ||||||||||||||
Ghazouani et al. [138] | • | • | MILP | • | ||||||||||||||
Yan et al. [139] | • | • | NLP (relaxing integers with fractional continuous variables) | • | ||||||||||||||
Torkfar and Avami [140] | • | • | MINLP (including pressure drops in water network) | N/A | ||||||||||||||
Liang and Hui [68] | • | Reducing repeated heating and cooling [14,114] | • | |||||||||||||||
Jagannath and Almansoori [141] | I | II,III | • | Model A (min freshwater) → Model B [Relaxed-MINLP] (minTAC) → NS [Model A → Model C] | • | • | • | |||||||||||
Ibrić et al. [142] | I | II | I | II | NLP (HRAT→ LB) → NLP (HRAT→ UB) → NS MINLP (for different values of HRAT) | • | • | • | ||||||||||
Hong et al. [143] | • | • | MINLP | • | • | |||||||||||||
De-León Almaraz et al. [64] | I | II | I,II | -constraint MOO (min freshwater, number of water connections) → pinch analysis (MER) → HENMINLP | • | |||||||||||||
Wang et al. [65] | • | • | MINLP (targeting) → HEN (pinch design method) | • | • | |||||||||||||
Kermani et al. [4] | I | II | I,II | MILP (targeting + design of water network) → MILP (HLD) → pinch design method | • | |||||||||||||
Ibrić et al. [45] | I | II | I | II | NLP (HRAT → LB) → NS [NLP (HRAT → UB) → Relaxed-MINLP (find matches) → MINLP] | • | • | • | ||||||||||
Ghazouani et al. [144] | • | • | MILP → HEN | • | ||||||||||||||
Ibrić et al. [39] | I | II | I | II | Same as Ibrić et al. [142] | • | • | • | ||||||||||
Hong et al. [145] | • | • | MILP | • | ||||||||||||||
Hong et al. [146] | I | II,III | I | II,III | NLP (min freshwater) → MINLP (min relaxed TAC) → MINLP (min TAC) | • | • | • | ||||||||||
Liu et al. [147] | • | • | NLP (relaxing integers with fractional continuous variables) | • |
Units | Mass load () (g/s) | (ppm) | (ppm) | (C) | Limiting Flowrate (kg/s) |
---|---|---|---|---|---|
2 | 0 | 100 | 40 | 20 | |
5 | 50 | 100 | 100 | 100 | |
30 | 50 | 800 | 75 | 40 | |
4 | 400 | 800 | 50 | 10 |
ID | Network Indicators | Economic Indicators | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M/C | N | N | A (m) | N (N) | N | Q (kW) | C (USD/yr) | C (USD/yr) | Comments | ||||
1 | Savulescu and Smith [6] | C | 9 | 5 | NA | 10 (6) | 15 | NA | NA | NA | |||
2 | Bagajewicz et al. [14] | M | 7 | 4 | 3860.2 | 7 (5) | 11 | 22,008 | 317,798 | 2,714,858 | |||
3 | Savulescu et al. [47] | C | 9 | 5 | 4530.9 | 9 (4) | 13 | 23,585 | 369,042 | 3,040,612 | |||
4 | Bogataj and Bagajewicz [110] | M | 8 | 5 | 3722.1 | 7 (5) | 15 | 22,006 | 308,889 | 2,705,949 | Water network identical to Bagajewicz et al. [14]. | ||
5 | Dong et al. [104] | M | 9 | 5 | 4049.6 | 10 (7) | 13 | 22,680 | 341,044 | 2,738,104 | |||
6 | Bogataj and Bagajewicz [105] | M | 7 | 4 | 3771.1 | 7 (6) | 10 | 21,943 | 324,338 | 2,721,398 | |||
7 | Xiao et al. [112] | M | 7 | 5 | 4689.7 | 3 (1) | 6 | 26,040 | 364,587 | 2,761,647 | |||
8 | Leewongtanawit and Kim [49] | C | 7 | 4 | 3775.4 | 8 (5) | 11 | 22,260 | 310,283 | 2,707,343 | |||
9 | Polley et al. [66] | option 1 | C | 7 | 5 | 4689.6 | 3 (0) | 6 | 26,040 | 364,573 | 2,761,633 | ||
10 | option 2 | 9 | 7 | 4087.8 | 4 (0) | 6 | 23,100 | 382,059 | 2,779,119 | ||||
11 | option 3 | 9 | 6 | 4258.4 | 4 (0) | 6 | 23,940 | 344,905 | 2,741,965 | ||||
12 | Mao et al. [167] | C | 11 | 6 | 4238.1 | 9 (4) | 9 | 24,071 | 358,328 | 2,755,388 | |||
13 | Wan Alwi et al. [50] | C | 9 | 10 | 3111.0 | 6 (0) | 3 | 26,040 | 413,022 | 2,810,082 | Infeasible HEN design (Figure 9 of ref. [50]) | ||
14 | Martínez-Patiño et al. [52] | C | 8 | 5 | 3984.9 | 9 (7) | 13 | 23,527 | 327,484 | 2,954,324 | |||
15 | Liao et al. [115] | case a | M | 7 | 4 | 3725.8 | 7 (4) | 10 | 22,008 | 308,356 | 2,705,416 | Wastewater streams are merged | |
16 | case b | 10 | 5 | 5517.5 | 13 (10) | 15 | 25,101 | 374,010 | 2,771,070 | Wastewater streams are treated individually | |||
17 | Yiqing et al. [119] | C | 7 | 4 | 3964.4 | 8 (5) | 11 | 22,260 | 320,716 | 2,717,776 | The best solution among two. | ||
18 | Martínez-Patiño et al. [53] | C | 8 | 4 | 4,721.6 | 5 (3) | 9 | 26,040 | 341,915 | 2,738,975 | |||
19 | Ibrić et al. [124] | M | 5 | 3 | 3960.1 | 6 (6) | 10 | 22,344 | 255,873 | 2,652,933 | Best solution with HRAT = 9 C | ||
20 | Ahmetović and Kravanja [126] | M | 5 | 3 | 3960.1 | 6 (6) | 10 | 22,344 | 255,873 | 2,652,933 | Same as Ibrić et al. [124] | ||
21 | Liu et al. [136] | M | 7 | 4 | 3739.9 | 7 (7) | 11 | 22,008 | 312,440 | 2,709,500 | |||
22 | Hou et al. [55] | C | 7 | 5 | 4689.7 | 3 (0) | 6 | 26,040 | 364,587 | 2,761,647 | Polley et al. [66], option 1 | ||
23 | Chen et al. [132] | M | 9 | 12 | NA | NA | NA | 26,062 | NA | NA | |||
24 | Zhou et al. [135] | MPEC | M | 5 | 3 | 3960.8 | 6 (6) | 10 | 22,344 | 255,891 | 2,652,951 | Same as Ibrić et al. [124] | |
25 | MINLP | 5 | 3 | 3993.1 | 8 (8) | 12 | 22,362 | 256,779 | 2,653,839 | ||||
26 | Zhao et al. [70] | C | 7 | 4 | 3925.7 | 7 (5) | 10 | 22,260 | 316,801 | 2,713,861 | |||
27 | Liu et al. [137] | M | 7 | 4 | 3925.7 | 7 (5) | 10 | 22,260 | 316,801 | 2,713,861 | |||
28 | Liao et al. [54] | C | 6 | 3 | 4666.8 | 8 (6) | 12 | 22,008 | 277,286 | 2,674,346 | Case 5-Figure 17-b of ref. [54] | ||
29 | Yan et al. [139] | M | 5 | 3 | 3960.1 | 6 (6) | 10 | 22,344 | 255,873 | 2,652,933 | Same as Ibrić et al. [124] | ||
30 | Xie et al. [57] | C | 7 | 5 | 4689.7 | 4 (0) | 7 | 26,040 | 364,587 | 2,761,647 | |||
31 | Torkfar and Avami [140] | M | 7 | 4 | 3794.6 | 5 (4) | 8 | 22,008 | 302,830 | 2,699,890 | |||
32 | Hong et al. [143] | case a | M | 6 | 3 | 4215.3 | 7 (7) | 10 | 21,000 | 272,580 | 2,669,640 | Wastewater streams are merged | |
33 | case b | 10 | 5 | 3589.1 | 6 (5) | 8 | 21,807 | 309,197 | 2,706,257 | Wastewater streams are treated individually | |||
34 | Hou et al. [56] | C | 7 | 4 | 3965.6 | 5 (3) | 12 | 22,260 | 314,939 | 2,711,999 | |||
35 | Kermani et al. [4] | M | 5 | 4 | 6300.0 | 10 (4) | 14 | 23,012 | 363,449 | 2,760,509 | Best solution with HRAT = 4 C | ||
HEN synthesis using NLP formulation [81] |
- (1)
- All methodologies reached the fresh water target of 90 kg/s. All but two of them reached the thermal utility targets of 3780 kW of hot utility. Savulescu et al. [47] and Martínez-Patiño et al. [52] reported 485 and 406 kW of cold utility and 4265 and 4186 kW of hot utility, respectively. Where information was not enough to calculate the indicators, “NA” is indicated.
- (2)
- “M” indicates mathematical approach, while “C” denotes conceptual approach.
- (3)
- Network indicators are number of thermal streams including thermal utilities (N), number of heat exchangers (N), total area of heat exchangers (A), total number of mixing points (N), number of non-isothermal mixing points (N), number of mass streams in the water network excluding the thermal ones (N), and total heat load of all the heat exchangers (Q).
- (4)
- Economic indicators are HEN cost (CHEN) and total annualized cost (CTAC) which includes operating costs and HEN cost.
Gap | Description/Remarks |
---|---|
Unaddressed literature gaps | |
Fixed concentration problems | Problems with variable mass load |
Rigorous modeling | Water and waste treatment models |
Multi-period operation | Considering the dynamic nature of systems |
Retrofitting | Methods covering partial system retrofit and redesign instead of design |
Newly identified gaps | |
Better treatment of thermal streams | Considering non-water thermal streams and potential for live steam as part of the problem definition |
Utility integration | Considering HIMAN with utility selection and integration concepts |
Sensitivity analysis | Generation of multiple or resilient solutions in lieu of global optima |
Multi-criteria optimization | Methods which address multiple criteria for decision-making which extend beyond minimization of cost or fresh water consumption, considering an expanded system. |
Large-scale problems | Developing approaches to adapt formulations to larger scale problems or reformulation to encourage solution generation for problems on the industrial scale |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kermani, M.; Kantor, I.D.; Maréchal, F. Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features. Energies 2018, 11, 1158. https://doi.org/10.3390/en11051158
Kermani M, Kantor ID, Maréchal F. Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features. Energies. 2018; 11(5):1158. https://doi.org/10.3390/en11051158
Chicago/Turabian StyleKermani, Maziar, Ivan D. Kantor, and François Maréchal. 2018. "Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features" Energies 11, no. 5: 1158. https://doi.org/10.3390/en11051158
APA StyleKermani, M., Kantor, I. D., & Maréchal, F. (2018). Synthesis of Heat-Integrated Water Allocation Networks: A Meta-Analysis of Solution Strategies and Network Features. Energies, 11(5), 1158. https://doi.org/10.3390/en11051158