Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation
Abstract
:1. Introduction
2. Samples and Experimental Process
2.1. Sample Preparation
2.2. Breakdown Experiment
2.3. Physical Characterization Using Differential Scanning Calorimetry (DSC)
2.4. Impedance Measurement
3. Results and Discussion
3.1. Breakdown Strength
3.2. Differential Scanning Calorimetry (DSC) Results
3.3. Dielectric Properties Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dabbak, S.; Illias, H.; Bee Chin, A.; Tunio, M.A. Surface discharge characteristics on HDPE, LDPE and PP. In Applied Mechanics and Materials; Trans Tech Publ: Malacca, Malaysia, 2015; pp. 383–387. [Google Scholar]
- Wan, C.; Sun, G.; Gao, F.; Liu, T.; Esseghir, M.; Zhao, L.; Yuan, W. Effect of phase compatibility on the foaming behavior of LDPE/HDPE and LDPE/PP blends with subcritical CO2 as the blowing agent. J. Supercrit. Fluids 2017, 120 Pt 2, 421–431. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Xing, Z.; Zeng, H.; Wu, G. Preparation of radiation crosslinked foams from low-density polyethylene/ethylene-vinyl acetate (LDPE/EVA) copolymer blend with a supercritical carbon dioxide approach. J. Appl. Polym. Sci. 2013, 127, 912–918. [Google Scholar] [CrossRef]
- Dikobe, D.; Luyt, A. Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polym. Lett. 2010, 4, 729–741. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, H.; Fu, Q.; Zhang, G.; Shen, K.; Thomann, R. Shear-induced morphological change in PP/LLDPE blend. Macromol. Rapid Commun. 2002, 23, 749–752. [Google Scholar] [CrossRef]
- Huerta-Martínez, B.; Ramírez-Vargas, E.; Medellín-Rodríguez, F.; García, R.C. Compatibility mechanisms between EVA and complex impact heterophasic PP–EPx copolymers as a function of ep content. Eur. Polym. J. 2005, 41, 519–525. [Google Scholar] [CrossRef]
- Gonzalez, J.; Albano, C.; Ichazo, M.; Dı́az, B. Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with two different CaCo3. Eur. Polym. J. 2002, 38, 2465–2475. [Google Scholar] [CrossRef]
- Souza, A.; Demarquette, N. Influence of coalescence and interfacial tension on the morphology of pp/hdpe compatibilized blends. Polymer 2002, 43, 3959–3967. [Google Scholar] [CrossRef]
- Chiu, F.-C.; Yen, H.-Z.; Lee, C.-E. Characterization of pp/hdpe blend-based nanocomposites using different maleated polyolefins as compatibilizers. Polym. Test. 2010, 29, 397–406. [Google Scholar] [CrossRef]
- Andersson, M.G.; Hynynen, J.; Andersson, M.R.; Englund, V.; Hagstrand, P.-O.; Gkourmpis, T.; Müller, C. Highly insulating polyethylene blends for high-voltage direct-current power cables. ACS Macro Lett. 2017, 6, 78–82. [Google Scholar] [CrossRef]
- Pallon, L.K.; Nilsson, F.; Yu, S.; Liu, D.; Diaz, A.; Holler, M.; Chen, X.R.; Gubanski, S.; Hedenqvist, M.S.; Olsson, R.T. Three-dimensional nanometer features of direct current electrical trees in low-density polyethylene. Nano Lett. 2017, 17, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Piah, M.A.M.; Darus, A.; Hassan, A. Electrical tracking performance of lldpe-natural rubber blends by employing combination of leakage current level and rate of carbon track propagation. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 1259–1265. [Google Scholar] [CrossRef]
- Cruz, S.; Zanin, M. Assessment of dielectric behavior of recycled/virgin high density polyethylene blends. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 855–860. [Google Scholar] [CrossRef]
- Moyassari, A.; Unge, M.; Hedenqvist, M.S.; Gedde, U.W.; Nilsson, F. First-principle simulations of electronic structure in semicrystalline polyethylene. J. Chem. Phys. 2017, 146, 204901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achilias, D.; Roupakias, C.; Megalokonomos, P.; Lappas, A.; Antonakou, Ε. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J. Hazard. Mater. 2007, 149, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Chiu, F.-C.; Yen, H.-Z.; Chen, C.-C. Phase morphology and physical properties of PP/HDPE/organoclay (nano) composites with and without a maleated EPDM as a compatibilizer. Polym. Test. 2010, 29, 706–716. [Google Scholar] [CrossRef]
- Dhoble, A.; Kulshreshtha, B.; Ramaswami, S.; Zumbrunnen, D. Mechanical properties of PP-LDPE blends with novel morphologies produced with a continuous chaotic advection blender. Polymer 2005, 46, 2244–2256. [Google Scholar] [CrossRef]
- Bertin, S.; Robin, J.-J. Study and characterization of virgin and recycled LDPE/PP blends. Eur. Polym. J. 2002, 38, 2255–2264. [Google Scholar] [CrossRef]
- IEEE Guide for the Statistical Analysis of Electrical Insulation Breakdown Data; IEEE Std 930-2004 (Revision of IEEE Std 930-1987); IEEE: Piscataway, NJ, USA, 2005.
- Makmud, M.; Illias, H.; Chee, C.; Sarjadi, M. Influence of conductive and semi-conductive nanoparticles on the dielectric response of natural ester-based nanofluid insulation. Energies 2018, 11, 333. [Google Scholar] [CrossRef]
- Dongling, M.; Treese, A.H.; Richard, W.S.; Anna, C.; Eva, M.; Carina, Ö.; Linda, S.S. Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 2005, 16, 724. [Google Scholar]
- Bashir, N.; Ahmad, H.; Suddin, M.S. Ageing studies on transmission line glass insulators using dielectric dissipation factor test. In Proceedings of the 2010 Conference Proceedings IPEC, Singapore, 27–29 October 2010; pp. 1062–1066. [Google Scholar]
- Paraskevas, C.D.; Vassiliou, P.; Dervos, C.T. Temperature dependent dielectric spectroscopy in frequency domain of high-voltage transformer oils compared to physicochemical results. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 539–546. [Google Scholar] [CrossRef]
- Dabbak, S.; Illias, H.; Ang, B. Effect of surface discharges on different polymer dielectric materials under high field stress. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3758–3765. [Google Scholar] [CrossRef]
- Ieda, M. Dielectric breakdown process of polymers. IEEE Trans. Electr. Insul. 1980, EI-15, 206–224. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Olsson, R.T.; Hedenqvist, M.S. The role of interfaces in polyethylene/metal-oxide nanocomposites for ultrahigh-voltage insulating materials. Adv. Mater. 2018, 30, 1703624. [Google Scholar] [CrossRef] [PubMed]
- Fischer, P.H.; Nissen, K.W. The short-time electric breakdown behavior of polyethylene. IEEE Trans. Electr. Insul. 1976, 37–40. [Google Scholar] [CrossRef]
- Hosier, I.; Vaughan, A.; Swingler, S. Structure–property relationships in polyethylene blends: The effect of morphology on electrical breakdown strength. J. Mater. Sci. 1997, 32, 4523–4531. [Google Scholar] [CrossRef]
- ASTM D149 Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies; Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, USA, 1992.
- Munaro, M.; Akcelrud, L. Correlations between composition and crystallinity of LDPE/HDPE blends. J. Polym. Res. 2008, 15, 83–88. [Google Scholar] [CrossRef]
- Pourrahimi, A.M.; Hoang, T.A.; Liu, D.; Pallon, L.K.; Gubanski, S.; Olsson, R.T.; Gedde, U.W.; Hedenqvist, M.S. Highly efficient interfaces in nanocomposites based on polyethylene and zno nano/hierarchical particles: A novel approach toward ultralow electrical conductivity insulations. Adv. Mater. 2016, 28, 8651–8657. [Google Scholar] [CrossRef] [PubMed]
- Pourrahimi, A.M.; Liu, D.; Andersson, R.L.; Ström, V.; Gedde, U.W.; Olsson, R.T. Aqueous synthesis of (2) oxygen-terminated defect-free hierarchical zno particles and their heat treatment for enhanced reactivity. Langmuir 2016, 32, 11002–11013. [Google Scholar] [CrossRef] [PubMed]
- Benguigui, L.; Yacubowicz, J.; Narkis, M. On the percolative behavior of carbon black cross-linked polyethylene systems. J. Polym. Sci. Part B Polym. Phys. 1987, 25, 127–135. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, H.; Chen, X.; Wu, Y.; Xiao, S. Study on the thermal and dielectric properties of srtio3/epoxy nanocomposites. Energies 2017, 10, 692. [Google Scholar] [CrossRef]
- Iyer, G.; Gorur, R.; Richert, R.; Krivda, A.; Schmidt, L. Dielectric properties of epoxy based nanocomposites for high voltage insulation. IEEE Trans. Dielectr. Electr. Insul. 2011, 18. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Abd-El-Messieh, S.L.; El-Sabbagh, S.; Younan, A.F. Electrical and mechanical properties of polyethylene–rubber blends. J. Appl. Polym. Sci. 1998, 69, 775–783. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz–1 GHz. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 2–11. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, H.; Zhang, Y.; Wei, H.; Liao, R. Grey relational analysis for insulation condition assessment of power transformers based upon conventional dielectric response measurement. Energies 2017, 10, 1526. [Google Scholar] [CrossRef]
Sample | Number of Tests | Scale Parameter, α | Shape Parameter, β |
---|---|---|---|
PP | 9 | 57 | 8 |
LDPE | 9 | 85 | 9 |
LP1 | 9 | 67 | 5 |
LP2 | 9 | 69 | 4 |
LP3 | 9 | 62 | 3 |
Sample | Number of Tests | Scale Parameter, α | Shape Parameter, β |
---|---|---|---|
PP | 9 | 57 | 8 |
HDPE | 9 | 73.6 | 7.7 |
HP1 | 9 | 80.5 | 4.6 |
HP2 | 9 | 66.5 | 3.5 |
HP3 | 9 | 72 | 4.6 |
Sample | Tm1 (°C) | Tm2 (°C) | TC1 (°C) | TC2 (°C) | Melting Enthalpy (J/g) | Degree of Crystallinity (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
HDPE | LDPE | PP | HDPE | LDPE | PP | |||||
HDPE | 129 | - | 117.1 | - | 190 | - | - | 65 | - | - |
LDPE | 114 | - | 101.7 | - | - | 101 | - | - | 34 | - |
PP | 171 | - | 119.4 | - | - | - | 99 | - | - | 47 |
LP1 | 113 | 169 | 101.9 | 121.9 | - | 95 | 93 | - | 32 | 45 |
LP2 | 113.2 | 169.7 | 101.6 | 120.7 | - | 97 | 96 | - | 33 | 46 |
LP3 | 114.8 | 167.2 | 102.4 | 116.2 | - | 95 | 85.6 | - | 32 | 41 |
HP1 | 127.2 | 168.3 | 117.9 | - | 169.2 | - | 86.2 | 57 | - | 41 |
HP2 | 127.9 | 167.6 | 117.6 | - | 163.64 | - | 84 | 55 | - | 40 |
HP3 | 127 | 168 | 117.7 | - | 152.78 | - | 79 | 52 | - | 38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed Dabbak, S.Z.; Illias, H.A.; Ang, B.C.; Abdul Latiff, N.A.; Makmud, M.Z.H. Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation. Energies 2018, 11, 1448. https://doi.org/10.3390/en11061448
Ahmed Dabbak SZ, Illias HA, Ang BC, Abdul Latiff NA, Makmud MZH. Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation. Energies. 2018; 11(6):1448. https://doi.org/10.3390/en11061448
Chicago/Turabian StyleAhmed Dabbak, Sameh Ziad, Hazlee Azil Illias, Bee Chin Ang, Nurul Ain Abdul Latiff, and Mohamad Zul Hilmey Makmud. 2018. "Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation" Energies 11, no. 6: 1448. https://doi.org/10.3390/en11061448
APA StyleAhmed Dabbak, S. Z., Illias, H. A., Ang, B. C., Abdul Latiff, N. A., & Makmud, M. Z. H. (2018). Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation. Energies, 11(6), 1448. https://doi.org/10.3390/en11061448