Biomass Production and Nutrient Removal by Chlorella vulgaris from Anaerobic Digestion Effluents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chlorella vulgaris Biomass Production
2.2. Efficiency of Nitrogen Ammonium Removal
2.3. Efficiency of the Orthophosphates’ Utilization
2.4. Utilization of ADE for Microalgae Cultivation
3. Materials and Methods
3.1. Experimental Setup
3.2. Materials
3.3. Experimental Stand
3.4. Analytical Procedures
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Börjesson, P.; Berglund, M. Environmental systems analysis of biogas systems—Part I: Fuel-cycle emissions. Biomass Bioenergy 2006, 30, 469–485. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Searchinger, T.; Heimlich, R.; Houghton, R.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Johansson, D.; Azar, C. A Scenario based analysis of land competition between food and bioenergy production in the US. Clim. Chang. 2007, 82, 267–291. [Google Scholar] [CrossRef]
- Mandal, S.; Mallick, N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 2009, 84, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Lardon, L.; Hélias, A.; Sialve, B.; Steyer, J.; Bernard, O. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 2009, 43, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yuan, W.; Pei, Z.; Wu, Q.; Mao, E. Microalgae mass production methods. Trans. ASABE 2009, 52, 1275–1287. [Google Scholar] [CrossRef]
- Smith, V.; Sturm, B.; deNoyelles, F.; Billings, S. The ecology of algal biodiesel production. Trends Ecol. Evol. 2010, 25, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Wang, Y. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Horsman, M.; Wu, N.; Lan, C.; Dubois-Calero, N. Biofuels from microalgae. Biotechnol. Prog. 2008, 24, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Van Harmelen, T.; Oonk, H. Microalgae biofixation processes: Applications and potential contributions to greenhouse gas mitigation options. In International Network on Biofixation of CO2 and Greenhouse Gas Abatement with Microalgae; Operated Under the International Agency Greenhouse Gas R&D TNO Built Environment and Geosciences: Apeldoorm, The Netherlands, May 2006. [Google Scholar]
- Mùnoz, R.; Guieysse, B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.-F.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.; Zhu, J. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 2011, 102, 5138–5144. [Google Scholar] [CrossRef] [PubMed]
- Grobbelaar, J.U. Physiological and technological considerations for optimising mass algal cultures. J. Appl. Phycol. 2000, 12, 201–206. [Google Scholar] [CrossRef]
- Mùnoz, R.; Kollner, C.; Guieysse, B.; Mattiasson, B. Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnol. Bioeng. 2004, 87, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Park, S.Y.; Racharaks, R.; Li, Y. Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Appl. Energy 2013, 108, 486–492. [Google Scholar] [CrossRef]
- Park, J.B.; Craggs, R.J.; Shilton, A.N. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 2011, 102, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Boussiba, S.; Vonshak, A.; Cohen, Z.; Avissar, Y.; Richmond, A. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 1987, 12, 37–47. [Google Scholar] [CrossRef]
- Emdadi, D.; Berland, B. Variation in lipid class composition during batch growth of Nannochloropsis salina and Pavlova lutheri. Mar. Chem. 1989, 26, 215–225. [Google Scholar] [CrossRef]
- Uggetti, E.; Sialve, B.; Latrille, E.; Steyer, J.P. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 2014, 152, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Garcia, O.; De-Bashan, L.E.; Hernandez, J.-P.; Bashan, Y. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J. Phycol. 2010, 46, 800–812. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Gorecka, H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere 2005, 59, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Mùnoz, R.; Kollner, C.; Guieysse, B.; Mattiasson, B. Salicylate biodegradation by various algal–bacterial consortia under photosynthetic oxygenation. Biotechnol. Lett. 2003, 25, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chan, G.Y.S.; Jiang, B.L.; Lan, C.Y. Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment. Waste Manag. 2007, 27, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Tarlan, E.; Dilek, F.B.; Yetis, U. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour. Technol. 2002, 84, 1–5. [Google Scholar] [CrossRef]
- Yewalkar, S.N.; Dhumal, K.N.; Sainis, J.K. Chromium (VI)-reducing Chlorella spp. isolated from disposal sites of paper-pulp and electroplating industry. J. Appl. Phycol. 2007, 19, 459–465. [Google Scholar] [CrossRef]
- Acuner, E.; Dilek, F.B. Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem. 2004, 39, 623–631. [Google Scholar] [CrossRef]
- Lima, S.A.C.; Raposo, M.F.J.; Castro, P.M.L.; Morais, R.M. Biodegradation of p-chlorophenol by a microalgae consortium. Water Res. 2004, 38, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essam, T.; Magdy, A.A.; El Tayeb, O.; Mattiasson, B.; Guieysse, B. Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water Res. 2007, 41, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Valderramaa, L.T.; Del Campoa, C.M.; Rodrigueza, C.M.; de-Bashan, L.E.; Bashan, Y. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscule. Water Res. 2002, 36, 4185–4192. [Google Scholar] [CrossRef]
- Ogbonna, J.C.; Yoshizawa, H.; Tanaka, H. Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J. Appl. Phycol. 2000, 12, 277–284. [Google Scholar] [CrossRef]
- Mehta, S.K.; Gaur, J.P. Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris. Eur. J. Protistol. 2001, 37, 261–271. [Google Scholar] [CrossRef]
- Tien, C.J. Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochem. 2002, 38, 605–613. [Google Scholar] [CrossRef]
- Su, Y.; Mennerich, A.; Urban, B. Coupled nutrient removal and biomass production with mixed algal culture: Impact of biotic and abiotic factors. Bioresour. Technol. 2012, 118, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Lee, N.; Park, S.; Yu, J.; Luong, T.T.; Oh, Y.K.; Lee, T. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour. Technol. 2013, 131, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jay, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Techonol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Sawayama, S.; Inoue, S.; Dote, Y.; Yokoyama, S.-Y. CO2 fixation and oil production through microalgae. Energy Convers. Manag. 1995, 36, 729–731. [Google Scholar] [CrossRef]
- Yun, Y.-S.; Lee, S.B.; Park, J.M.; Lee, C.-I.; Yang, J.-W. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol. 1997, 69, 451–455. [Google Scholar] [CrossRef]
- Sun, X.; Wang, C.; Li, Z.; Wang, W.; Tong, Y.; Wei, J. Microalgal cultivation in wastewater from the fermentation effluent in Riboflavin (B2) manufacturing for biodiesel production. Bioresour. Technol. 2013, 143, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.E.; Sánchez, S.; Jiménez, J.M.; El Yousfi, F.; Muñoz, L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 2000, 73, 263–272. [Google Scholar] [CrossRef]
- Gomez Villa, H.; Voltolina, D.; Nieves, M.; Pina, P. Biomass production and nutrient budget in outdoor cultures of Scenedesmus obliquus (chlorophyceae) in artificial wastewater, under the winter and summer conditions of Mazatlán, Sinaloa, Mexico. Vie et Milieu 2005, 55, 121–126. [Google Scholar]
- Hodaifa, G.; Martinez, M.E.; Sanchez, S. Use of industrial wastewater from oliveoil extraction for biomass production of Scenedesmus obliquus. Bioresour. Technol. 2008, 99, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Mùnoz, R.; Köllner, C.; Guieysse, B. Biofilm photobioreactors for the treatment of industrial wastewaters. J. Hazard. Mater. 2009, 161, 29–34. [Google Scholar] [CrossRef] [PubMed]
Indicator | Unit | Series I | Series II | Series III | Series IV |
---|---|---|---|---|---|
COD | mg O2/dm3 | 7800 ± 520 | 7150 ± 670 | 6420 ± 390 | 5200 ± 530 |
BOD | mg O2/dm3 | 3400 ± 390 | 3100 ± 450 | 2840 ± 370 | 2770 ± 470 |
Ntot | mg N/dm3 | 1400 ± 230 | 1420 ± 170 | 1290 ± 140 | 1130 ± 270 |
N-NH4 | mg N-NH4/dm3 | 1150 ± 210 | 1010 ± 140 | 970 ± 130 | 910 ± 160 |
Ptot | mg P/dm3 | 74 ± 16 | 68 ± 17 | 59 ± 21 | 61 ± 13 |
P-PO4 | mg P-PO4/dm3 | 49 ± 10 | 52 ± 11 | 48 ± 13 | 43 ± 10 |
pH | - | 6.8 ± 0.3 | 7.1 ± 0.2 | 7.0 ± 0.2 | 7.2 ± 0.3 |
Variant | Concentration of N-NH4 (mg N-NH4/dm3) | Series I | Series II | Series III | Series IV | ||||
---|---|---|---|---|---|---|---|---|---|
ADE (cm3) | Water (cm3) | ADE (cm3) | Water (cm3) | ADE (cm3) | Water (cm3) | ADE (cm3) | Water (cm3) | ||
1 | 40 | 87 | 873 | 100 | 860 | 103 | 857 | 130 | 830 |
2 | 80 | 174 | 786 | 200 | 760 | 206 | 754 | 260 | 700 |
3 | 120 | 261 | 699 | 300 | 660 | 309 | 651 | 390 | 570 |
4 | 160 | 348 | 612 | 400 | 560 | 412 | 548 | 520 | 440 |
Concentration of N-NH4 (mg N-NH4/dm3) | Indicator | Unit | Series I | Series II | Series III | Series IV |
---|---|---|---|---|---|---|
40 | COD | mg O2/dm3 | 272.4 ± 11.1 | 287.0 ± 12.5 | 265.5 ± 9.9 | 229.7 ± 19.8 |
BOD | mg O2/dm3 | 119.3 ± 8.9 | 125.0 ± 7.5 | 117.9 ± 6.7 | 122.8 ± 7.7 | |
Ntot | mg N/dm3 | 49.7 ± 7.8 | 57.8 ± 5.6 | 54.1 ± 4.4 | 50.7 ± 5.2 | |
N-NH4 | mg N-NH4/dm3 | 41.0 ± 2.3 | 41.4 ± 3.1 | 40.9 ± 1.9 | 41.0 ± 3.8 | |
Ptot | mg P/dm3 | 3.5 ± 1.5 | 3.7 ± 1.6 | 3.3 ± 1.4 | 3.6 ± 1.3 | |
P-PO4 | mg P-PO4/dm3 | 2.7 ± 0.9 | 3.0 ± 1.1 | 2,9 ± 1.2 | 2.8 ± 1.1 | |
pH | - | 7.2 ± 0.2 | 7.2 ± 0.2 | 7.1 ± 0.2 | 7.0 ± 0.1 | |
80 | COD | mg O2/dm3 | 544.8 ± 23.1 | 573.9 ± 21.1 | 530.9 ± 19.2 | 459.5 ± 29.2 |
BOD | mg O2/dm3 | 238.6 ± 10.9 | 249.9 ± 13.1 | 235.9 ± 9.9 | 245.7 ± 10.0 | |
Ntot | mg N/dm3 | 99.4 ± 8.9 | 115.5 ± 6.6 | 108.2 ± 7.8 | 101.4 ± 6.6 | |
N-NH4 | mg N-NH4/dm3 | 82.0 ± 1.9 | 82.7 ± 0.9 | 81.8 ± 0.5 | 82.0 ± 0.6 | |
Ptot | mg P/dm3 | 7.1 ± 1.1 | 7.4 ± 0.8 | 6.6 ± 0.9 | 7.3 ± 1.2 | |
P-PO4 | mg P-PO4/dm3 | 5.3 ± 0.6 | 6.1 ± 0.9 | 5.7 ± 0.7 | 5.7 ± 0.8 | |
pH | - | 7.2 ± 0.2 | 7.3 ± 0.2 | 7.2 ± 0.2 | 7.2 ± 0.3 | |
120 | COD | mg O2/dm3 | 817.2 ± 33.9 | 860.9 ± 34.6 | 796.4 ± 28.9 | 689.3 ± 24.5 |
BOD | mg O2/dm3 | 357.9 ± 12.3 | 374.9 ± 13.9 | 353.9 ± 15.5 | 368.5 ± 14.7 | |
Ntot | mg N/dm3 | 149.1 ± 18.9 | 173.3 ± 9.7 | 162.3 ± 21.1 | 152.0 ± 17.9 | |
N-NH4 | mg N-NH4/dm3 | 123.0 ± 2.1 | 124.1 ± 2.8 | 122.7 ± 3.0 | 123.0 ± 2.2 | |
Ptot | mg P/dm3 | 10.6 ± 1.7 | 11.0 ± 2.0 | 9.9 ± 0.9 | 10.9 ± 1.2 | |
P-PO4 | mg P-PO4/dm3 | 8.0 ± 0.7 | 9.1 ± 1.0 | 8.6 ± 0.5 | 8.5 ± 0.8 | |
pH | - | 7.0 ± 0.1 | 7.0 ± 0.2 | 7.3 ± 0.3 | 7.1 ± 0.3 | |
160 | COD | mg O2/dm3 | 1089.6 ± 156.7 | 1147.8 ± 99.1 | 961.8 ± 109.1 | 919.0 ± 181.1 |
BOD | mg O2/dm3 | 477.1 ± 39.8 | 499.8 ± 28.5 | 471.9 ± 41.1 | 491.3 ± 35.6 | |
Ntot | mg N/dm3 | 198.7 ± 18.9 | 231.0 ± 26.7 | 216.4 ± 15.8 | 202.7 ± 19.9 | |
N-NH4 | mg N-NH4/dm3 | 163.9 ± 2.1 | 165.4 ± 3.0 | 163.7 ± 2.8 | 164.0 ± 1.9 | |
Ptot | mg P/dm3 | 14.2 ± 1.2 | 14.7 ± 1.5 | 13.3 ± 1.5 | 14.6 ± 1.1 | |
P-PO4 | mg P-PO4/dm3 | 10.7 ± 2.5 | 12.2 ± 2.3 | 11.5 ± 2.1 | 11.4 ± 2.0 | |
pH | - | 7.3 ± 0.1 | 7.2 ± 0.1 | 7.0 ± 0.1 | 7.2 ± 0.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębowski, M.; Rusanowska, P.; Zieliński, M.; Dudek, M.; Romanowska-Duda, Z. Biomass Production and Nutrient Removal by Chlorella vulgaris from Anaerobic Digestion Effluents. Energies 2018, 11, 1654. https://doi.org/10.3390/en11071654
Dębowski M, Rusanowska P, Zieliński M, Dudek M, Romanowska-Duda Z. Biomass Production and Nutrient Removal by Chlorella vulgaris from Anaerobic Digestion Effluents. Energies. 2018; 11(7):1654. https://doi.org/10.3390/en11071654
Chicago/Turabian StyleDębowski, Marcin, Paulina Rusanowska, Marcin Zieliński, Magda Dudek, and Zdzisława Romanowska-Duda. 2018. "Biomass Production and Nutrient Removal by Chlorella vulgaris from Anaerobic Digestion Effluents" Energies 11, no. 7: 1654. https://doi.org/10.3390/en11071654
APA StyleDębowski, M., Rusanowska, P., Zieliński, M., Dudek, M., & Romanowska-Duda, Z. (2018). Biomass Production and Nutrient Removal by Chlorella vulgaris from Anaerobic Digestion Effluents. Energies, 11(7), 1654. https://doi.org/10.3390/en11071654