A Review on Mechanisms for Piezoelectric-Based Energy Harvesters
Abstract
:1. Introduction
2. Fluid–Structure Interaction-Based PEH
2.1. Vortex-Induced Vibrations-Based PEH
2.2. Flutter-Based PEH
2.3. Galloping-Based PEH
2.4. Other Mechanisms for FSI-Based PEH
3. Human-Based PEH
4. Mechanical Vibrations-Based PEH
4.1. Structural Resonance
4.1.1. Cantilever Beam Harvester Mechanism
4.1.2. Plate-Type Harvester Mechanism
4.2. Local Resonance
5. Concluding Remarks
Author Contributions
Conflicts of Interest
Abbreviations
pitch angle | |
change in metabolic power | |
strain vector | |
efficiency of device | |
efficiency of muscles related to energy conversion for a given motion | |
stress vector | |
angular displacement | |
b | half chord length |
pitch structural damping coefficient | |
plunge structural damping coefficient | |
capacitance of the piezoelectric layer |
piezoelectric coefficients for direct piezoelectricity | |
piezoelectric coefficients for converse piezoelectricity | |
dielectric displacement vector | |
degree of freedom | |
dielectric permittivity at constant stress | |
E | electrical energy generated |
applied electric field vector | |
fluid–structure interaction | |
h | plunge deflection |
mass moment of inertia about the elastic axis | |
structural stiffness for the pitch motion | |
structural stiffness for the plunge motion | |
electromechanical coupling | |
L | aerodynamic lift |
limit cycle oscillations | |
M | moment about the elastic axis |
total mass of the wing with its support structure | |
wing mass alone | |
micro electromechanical systems | |
piezoelectric energy harvester | |
piezoelectric | |
R | load resistance |
Reynolds numbers | |
elastic compliance matrix at constant electric field | |
U | flow velocity |
free stream velocity | |
V | voltage across this load resistance |
vortex induced vibrations | |
dimensionless distance between the center of mass and the elastic axis |
References
- Gaudenzi, P. Smart Structures: Physical Behaviour, Mathematical Modelling and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Srinivasan, A.V.; McFarland, D.M. Smart Structures: Analysis and Design; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Martinez, T.; Pillonnet, G.; Costa, F. A 15-mV Inductor-Less Start-up Converter Using a Piezoelectric Transformer for Energy Harvesting Applications. IEEE Trans. Power Electron. 2018, 33, 2241–2253. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, S.; Lee, H.B.; Kim, D.I.; Duy, L.T.; Hanif, A.; Lee, N.E. An Omnidirectionally Stretchable Piezoelectric Nanogenerator Based on Hybrid Nanofibers and Carbon Electrodes for Multimodal Straining and Human Kinematics Energy Harvesting. Adv. Energy Mater. 2018, 8, 1701520. [Google Scholar] [CrossRef]
- Xu, S.; Shi, Y.; Kim, S.G. Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 2006, 17, 4497. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, Y.; He, H.; Dong, C.; Zhang, L.; Zeng, H.; Xing, L.; Xue, X. Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric–enzymatic reaction coupling process. Nanotechnology 2018, 29, 075501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, W.; Wang, Z.; Huang, H.; Hu, X.; He, Y.; Li, M.; Li, L.; Gao, Y.; Hu, Y.; Gu, H. High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr,Ti)O3 nanorod arrays. RSC Adv. 2018, 8, 7422–7427. [Google Scholar] [CrossRef]
- Anton, S.R.; Sodano, H.A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 2007, 16, R1. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Elahi, H.; Butt, Z.; Eugnei, M.; Gaudenzi, P.; Israr, A. Effects of variable resistance on smart structures of cubic reconnaissance satellites in various thermal and frequency shocking conditions. J. Mech. Sci. Technol. 2017, 31, 4151–4157. [Google Scholar] [CrossRef]
- Song, H.C.; Kumar, P.; Maurya, D.; Kang, M.G.; Reynolds, W.T.; Jeong, D.Y.; Kang, C.Y.; Priya, S. Ultra-Low Resonant Piezoelectric MEMS Energy Harvester with High Power Density. J. Microelectromech. Syst. 2017, 26, 1226–1234. [Google Scholar] [CrossRef]
- Kudela, P.; Radzienski, M.; Ostachowicz, W.; Yang, Z. Structural Health Monitoring system based on a concept of Lamb wave focusing by the piezoelectric array. Mech. Syst. Signal Process. 2018, 108, 21–32. [Google Scholar] [CrossRef]
- Zappino, E.; Carrera, E. Refined one-dimensional models for the multi-field analysis of layered smart structures. In Analysis and Modelling of Advanced Structures and Smart Systems; Springer: Berlin, Germnay, 2018; pp. 343–366. [Google Scholar]
- Liu, L.; Pang, Y.; Yuan, W.; Zhu, Z.; Yang, Y. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier. J. Semiconduct. 2018, 39, 045002. [Google Scholar] [CrossRef]
- Lozano, F.J.; Lozano, R. Assessing the potential sustainability benefits of agricultural residues: biomass conversion to syngas for energy generation or to chemicals production. J. Clean. Prod. 2018, 172, 4162–4169. [Google Scholar] [CrossRef]
- Johnston, D.T.; Furness, R.W.; Robbins, A.M.; Tyler, G.; Taggart, M.A.; Masden, E.A. Black guillemot ecology in relation to tidal stream energy generation: An evaluation of current knowledge and information gaps. Mar. Environ. Res. 2018, 134, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Randolph, J.B. Carbon Dioxide-Based Geothermal Energy Generation Systems and Methods Related Thereto. US Patent 9,869,167, 16 January 2018. [Google Scholar]
- Dos Santos, I.F.S.; Vieira, N.D.B.; de Nóbrega, L.G.B.; Barros, R.M.; Tiago Filho, G.L. Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement. Resour. Conserv. Recycl. 2018, 131, 54–63. [Google Scholar] [CrossRef]
- Dixit, A.; Kamboj, S. Design, Simulation and Optimization of Piezoelectric Nano-Structures for Energy Harvesting. 2015. [Google Scholar]
- Zhang, Q.; Zhou, Z.; Dylla, M.; Agne, M.T.; Pei, Y.; Wang, L.; Tang, Y.; Liao, J.; Li, J.; Bai, S.; et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy 2017, 41, 501–510. [Google Scholar] [CrossRef]
- Hosenuzzaman, M.; Rahim, N.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Allan, G.; Eromenko, I.; Gilmartin, M.; Kockar, I.; McGregor, P. The economics of distributed energy generation: A literature review. Renew. Sustain. Energy Rev. 2015, 42, 543–556. [Google Scholar] [CrossRef]
- Yuce, B.; Rezgui, Y.; Mourshed, M. ANN-GA smart appliance scheduling for optimised energy management in the domestic sector. Energy Build. 2016, 111, 311–325. [Google Scholar] [CrossRef]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: a review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.A.; Ozaki, E.T.; Burdo, R.; Keating, V.W.; Mangan, M.J.; Konertz, A.K.; Jacobs, P.E.; Von Novak, W.; Quick, R.F., Jr.; Davis, R.H.; et al. Wireless Power and Data Transfer for Electronic Devices. US Patent 8,947,042, 3 February 2015. [Google Scholar]
- Ueda, S.; Okada, M.; Nakaue, Y. Transient thermal response of a functionally graded piezoelectric laminate with a crack normal to the bimaterial interface. J. Therm. Stress. 2018, 41, 98–118. [Google Scholar] [CrossRef]
- Anderson, M.; Zagrai, A.N.; Daniel, J.D.; Westpfahl, D.J.; Henneke, D. Investigating Effect of Space Radiation Environment on Piezoelectric Sensors: Cobalt-60 Irradiation Experiment. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2018, 1, 011007. [Google Scholar] [CrossRef]
- Elahi, H.; Eugeni, M.; Gaudenzi, P. Electromechanical Degradation of Piezoelectric Patches. In Analysis and Modelling of Advanced Structures and Smart Systems; Springer: Berlin, Germnay, 2018; pp. 35–44. [Google Scholar]
- Butt, Z.; Pasha, R.A.; Qayyum, F.; Anjum, Z.; Ahmad, N.; Elahi, H. Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: Analytical, numerical and experimental verifications. J. Mech. Sci. Technol. 2016, 30, 3553–3558. [Google Scholar] [CrossRef]
- Butt, Z.; Rahman, S.U.; Pasha, R.A.; Mehmood, S.; Abbas, S.; Elahi, H. Characterizing Barium Titanate Piezoelectric Material Using the Finite Element Method. Trans. Electr. Electron. Mater. 2017, 18, 163–168. [Google Scholar]
- Xia, Y.; Michelin, S.; Doaré, O. Fluid-solid-electric lock-in of energy-harvesting piezoelectric flags. Phys. Rev. Appl. 2015, 3, 014009. [Google Scholar] [CrossRef]
- Elahi, H.; Pasha, R.; Khan, M. Experimental determination of mechanical quality factor of lead zirconate titanate (PZT-5A4E) by equivalent circuit method under various thermal and resistance conditions. Univ. Eng. Technol. Taxila Tech. J. 2014, 19, 1. [Google Scholar]
- Kim, M.; Dugundji, J.; Wardle, B.L. Efficiency of piezoelectric mechanical vibration energy harvesting. Smart Mater. Struct. 2015, 24, 055006. [Google Scholar] [CrossRef]
- Yang, Z.; Erturk, A.; Zu, J. On the efficiency of piezoelectric energy harvesters. Extrem. Mech. Lett. 2017, 15, 26–37. [Google Scholar] [CrossRef]
- Kudryavtsev, M.; Rudnyi, E.B.; Korvink, J.G.; Hohlfeld, D.; Bechtold, T. Computationally efficient and stable order reduction methods for a large-scale model of MEMS piezoelectric energy harvester. Microelectron. Reliab. 2015, 55, 747–757. [Google Scholar] [CrossRef]
- Webster, J.G.; Eren, H. Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Edwards, B.; Hu, P.A.; Aw, K.C. Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester. Smart Mater. Struct. 2016, 25, 055019. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Mahmud, S.; Van Heyst, B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag. 2015, 106, 728–747. [Google Scholar] [CrossRef]
- Li, P.; Gao, S.; Cai, H. Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst. Technol. 2015, 21, 401–414. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Joe, P.; Tuzman, O.L.; Park, K.I.; Lee, K.J.; Shi, Y.; Huang, Y.; Rogers, J.A. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem. Mech. Lett. 2016, 9, 269–281. [Google Scholar] [CrossRef]
- Huang, Y. Packaging and Connecting Electrostatic Transducer Arrays. US Patent 8,815,653, 26 August 2014. [Google Scholar]
- Dorzhiev, V.; Karami, A.; Basset, P.; Marty, F.; Dragunov, V.; Galayko, D. Electret-free micromachined silicon electrostatic vibration energy harvester with the Bennet’s doubler as conditioning circuit. IEEE Electron Device Lett. 2015, 36, 183–185. [Google Scholar] [CrossRef]
- Elahi, H.; Israr, A.; Swati, R.; Khan, H.; Tamoor, A. Stability of piezoelectric material for suspension applications. In Proceedings of the IEEE 2017 Fifth International Conference onAerospace Science and Engineering (ICASE), Islamabad, Pakistan, 14–16 November 2017; pp. 1–5. [Google Scholar]
- Saoutieff, E.; Allain, M.; Nowicki-Bringuier, Y.R.; Viana, A.; Pauliac-Vaujour, E. Integration of piezoelectric nanowires matrix onto a microelectronics chip. Procedia Eng. 2016, 168, 1638–1641. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Zhang, G. Piezoelectric Properties and Applications of PZT Nanofibers. Ph.D. Thesis, Stevens Institute of Technology, Hoboken, NJ, USA, 2015. [Google Scholar]
- Kim, M.; Ito, R.; Kim, S.; Khanal, G.P.; Fujii, I.; Suzuki, T.S.; Uchikoshi, T.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 ceramics using electrophoretic deposition. J. Mater. Sci. 2018, 53, 2396–2404. [Google Scholar] [CrossRef]
- Woo, M.S.; Ahn, J.H.; Eom, J.H.; Hwang, W.S.; Kim, J.H.; Yang, C.H.; Song, G.J.; Do Hong, S.; Jhun, J.P.; Sung, T.H. Study on increasing output current of piezoelectric energy harvester by fabrication of multilayer thick film. Sens. Actuators A Phys. 2018, 269, 524–534. [Google Scholar] [CrossRef]
- Yuan, T.C.; Yang, J.; Chen, L.Q. Nonlinear dynamics of a circular piezoelectric plate for vibratory energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 651–656. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Meng, Q.; Zhou, Z.; Jia, D.; McIntosh, R.; Bhalla, A.S.; Guo, R. Large electro-optic response of bulk ferroelectric crystals enhanced by piezoelectric resonance in the high frequency range. Mater. Res. Bull. 2018, 97, 523–529. [Google Scholar] [CrossRef]
- Wang, G.; Liao, W.H.; Yang, B.; Wang, X.; Xu, W.; Li, X. Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mech. Syst. Signal Process. 2018, 105, 427–446. [Google Scholar] [CrossRef]
- Katzir, S. The discovery of the piezoelectric effect. Arch. Hist. Exact Sci. 2003, 57, 61–91. [Google Scholar] [CrossRef]
- Choi, B.K.; Lee, W.H. Study on the Energy Harvesting System Using Piezoelectric Direct Effect of Piezo Film. J. Korean Soc. Precis. Eng. 2008, 25, 78–85. [Google Scholar]
- Zhu, R.; Yang, R. Introduction to the Piezotronic Effect and Sensing Applications. In Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing; Springer: Berlin, Germnay, 2018; pp. 1–4. [Google Scholar]
- Jaffe, B. Piezoelectric Ceramics; Elsevier: NewYork, NY, USA, 2012; Volume 3. [Google Scholar]
- Hehn, T.; Manoli, Y. Piezoelectricity and Energy Harvester Modelling. In CMOS Circuits for Piezoelectric Energy Harvesters; Springer: Berlin, Germnay, 2015; pp. 21–40. [Google Scholar]
- Waqar, S.; Asad, S.; Ahmad, S.; Abbas, C.A.; Elahi, H. Effect of drilling parameters on hole quality of Ti-6Al-4V titanium alloy in dry drilling. In Materials Science Forum; Trans Tech Publications: Zurich, Switzerland, 2017; Volume 880, pp. 33–36. [Google Scholar]
- Rehman, W.U.; Nawaz, H.; Wang, S.; Wang, X.; Luo, Y.; Yun, X.; Iqbal, M.N.; Zaheer, M.A.; Azhar, I.; Elahi, H. Trajectory based motion synchronization in a dissimilar redundant actuation system for a large civil aircraft. In Proceedings of the IEEE 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 5010–5015. [Google Scholar]
- Rehman, W.U.; Yuanxin, L.; Guiyun, J.; Yongqin, W.; Yun, X.; Iqbal, M.N.; Zaheer, M.A.; Azhar, I.; Elahi, H.; Xiaogao, Y. Control of an oil film thickness in a hydrostatic journal bearing under different dynamic conditions. In Proceedings of the IEEE 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 5072–5076. [Google Scholar]
- Elahi, H.; Israr, A.; Khan, M.Z.; Ahmad, S. Robust vehicle suspension system by converting active & passive control of a vehicle to semi-active control system analytically. J. Autom. Control Eng. 2016, 4, 300–304. [Google Scholar]
- Repp, S.; Harputlu, E.; Gurgen, S.; Castellano, M.; Kremer, N.; Pompe, N.; Wörner, J.; Hoffmann, A.; Thomann, R.; Emen, F.M.; et al. Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 2018, 10, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Genc, R.; Alas, M.O.; Harputlu, E.; Repp, S.; Kremer, N.; Castellano, M.; Colak, S.G.; Ocakoglu, K.; Erdem, E. High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci. Rep. 2017, 7, 11222. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I. Review of state of art of smart structures and integrated systems. AIAA J. 2002, 40, 2145–2187. [Google Scholar] [CrossRef]
- Elahi, H.; Eugeni, M.; Gaudenzi, P.; Qayyum, F.; Swati, R.F.; Khan, H.M. Response of piezoelectric materials on thermomechanical shocking and electrical shocking for aerospace applications. Microsyst. Technol. 2018. [Google Scholar] [CrossRef]
- Guillon, O.; Thiebaud, F.; Delobelle, P.; Perreux, D. Tensile behavior of PZT in short and open-circuit conditions. Mater. Lett. 2004, 58, 986–990. [Google Scholar] [CrossRef]
- Xu, X.; Potié, A.; Songmuang, R.; Lee, J.W.; Bercu, B.; Baron, T.; Salem, B.; Montès, L. An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology 2011, 22, 105704. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, F.; Yang, Q.; Liu, Z.; Li, Y.; Liu, Y.; Zhang, Q. Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method. Appl. Phys. Lett. 2016, 108, 182904. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.P.; Lee, J.B.; Lee, M.H.; Park, J.S. Experimental and theoretical investigation on the relationship between AlN properties and AlN-based FBAR characteristics. In Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Tampa, FL, USA, 4–8 May 2003; pp. 779–784. [Google Scholar]
- Paradiso, J.A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 2005, 4, 18–27. [Google Scholar] [CrossRef]
- Bouzelata, Y.; Kurt, E.; Uzun, Y.; Chenni, R. Mitigation of high harmonicity and design of a battery charger for a new piezoelectric wind energy harvester. Sens. Actuators A Phys. 2018, 273, 72–83. [Google Scholar] [CrossRef]
- Li, Z.; Shan, J. LQG-based synchronization control of Fabry-Perot spectrometer using multiple piezoelectric actuators (PEAs). In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 31 July–4 August 2016; pp. 448–453. [Google Scholar]
- Salim, M.; Salim, D.; Chandran, D.; Aljibori, H.S.; Kherbeet, A.S. Review of nano piezoelectric devices in biomedicine applications. J. Intell. Mater. Syst. Struct. 2018, 29, 2105–2121. [Google Scholar] [CrossRef]
- Ai, D.; Zhu, H.; Luo, H.; Wang, C. Mechanical impedance based embedded piezoelectric transducer for reinforced concrete structural impact damage detection: A comparative study. Constr. Build. Mater. 2018, 165, 472–483. [Google Scholar] [CrossRef]
- Pandey, R.; Khatua, D.K.; Tyagi, S.; Abebe, M.; Narayan, B.; Sathe, V.; Ranjan, R. Length-scale dependent average structures, piezoelectricity enhancement and depolarization mechanisms in a non-MPB high-performance piezoelectric alloy system PbTiO3-Bi (Zr1/2Ni1/2)O3. arXiv, 2018; arXiv:1801.03310. [Google Scholar]
- Erturk, A.; Delporte, G. Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms. Smart Mater. Struct. 2011, 20, 125013. [Google Scholar] [CrossRef]
- Muralt, P.; Marzencki, M.; Belgacem, B.; Calame, F.; Basrour, S. Vibration energy harvesting with PZT micro device. Procedia Chem. 2009, 1, 1191–1194. [Google Scholar] [CrossRef]
- Sarker, M.R.; Ali, S.H.; Othman, M.; Islam, M.S. Designing a low voltage energy harvesting circuits for rectified storage voltage using vibrating piezoelectric. In Proceedings of the 2011 IEEE Student Conference on Research and Development (SCOReD), Cyberjaya, Malaysia, 19–20 December 2011; pp. 343–346. [Google Scholar]
- Elahi, H.; Eugeni, M.; Gaudenzi, P.; Gul, M.; Swati, R.F. Piezoelectric thermo electromechanical energy harvester for reconnaissance satellite structure. Microsyst. Technol. 2018, 1–8. [Google Scholar] [CrossRef]
- Muruganantham, B.; Gnanadass, R.; Padhy, N. Challenges with renewable energy sources and storage in practical distribution systems. Renew. Sustain. Energy Rev. 2017, 73, 125–134. [Google Scholar] [CrossRef]
- Mann, B.; Sims, N. Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 2009, 319, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, S.; Kacem, N.; Bouhaddi, N. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater. Struct. 2014, 23, 075024. [Google Scholar] [CrossRef]
- Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M.L. Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation. Smart Mater. Struct. 2016, 25, 025018. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Lee, C.; Xiang, W.; Xie, J.; He, J.H.; Kotlanka, R.K.; Low, S.P.; Feng, H. Electromagnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng. 2009, 19, 035001. [Google Scholar] [CrossRef] [Green Version]
- Sari, I.; Balkan, T.; Kulah, H. An electromagnetic micro power generator for wideband environmental vibrations. Sens. Actuators A Phys. 2008, 145, 405–413. [Google Scholar] [CrossRef]
- Abed, I.; Kacem, N.; Bouazizi, M.; Bouhaddi, N. Nonlinear 2-dofs vibration energy harvester based on magnetic levitation. In Shock & Vibration, Aircraft/Aerospace, and Energy Harvesting; Springer: Berlin, Germnay, 2015; Volume 9, pp. 39–45. [Google Scholar]
- Melilli, G.; Lairez, D.; Gorse, D.; Garcia-Caurel, E.; Peinado, A.; Cavani, O.; Boizot, B.; Clochard, M.C. Conservation of the piezoelectric response of PVDF films under irradiation. Radiat. Phys. Chem. 2018, 142, 54–59. [Google Scholar] [CrossRef]
- Liang, F.; Zhao, D.; Jiang, D.; Liu, Z.; Zhu, J.; Chen, P.; Yang, J.; Liu, W.; Liu, S.; Xing, Y.; et al. Improvement of slope efficiency of GaN-Based blue laser diodes by using asymmetric MQW and InxGa1-xN lower waveguide. J. Alloys Compd. 2018, 731, 243–247. [Google Scholar] [CrossRef]
- Al Ahmad, M.; Allataifeh, A. Piezoelectric-Based Energy Harvesting for Smart City Application. In Information Innovation Technology in Smart Cities; Springer: Berlin, Germnay, 2018; pp. 343–356. [Google Scholar]
- Lee, H.; Sharpes, N.; Abdelmoula, H.; Abdelkefi, A.; Priya, S. Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester. Appl. Energy 2018, 216, 494–503. [Google Scholar] [CrossRef]
- Naseer, R.; Abdelkefi, A.; Dai, H.; Wang, L. Characteristics and comparative analysis of monostable and bistable piezomagnetoelastic energy harvesters under vortex-induced vibrations. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January 2018; p. 1959. [Google Scholar]
- Dai, H.; Yang, Y.; Abdelkefi, A.; Wang, L. Nonlinear analysis and characteristics of inductive galloping energy harvesters. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 580–591. [Google Scholar] [CrossRef]
- Fang, F.; Xia, G.; Wang, J. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 2018, 34, 561–577. [Google Scholar] [CrossRef]
- Xiang, H.J.; Zhang, Z.; Shi, Z.; Li, H. Reduced-order Modeling of Piezoelectric Energy Harvesters with Nonlinear Circuits under Complex Conditions. Smart Mater. Struct. 2018, 27, 045004. [Google Scholar] [CrossRef]
- Xie, Z.; Kitio Kwuimy, C.; Wang, Z.; Huang, W. A piezoelectric energy harvester for broadband rotational excitation using buckled beam. AIP Adv. 2018, 8, 015125. [Google Scholar] [CrossRef] [Green Version]
- Li, H.T.; Qin, W.Y.; Zu, J.; Yang, Z. Modeling and experimental validation of a buckled compressive-mode piezoelectric energy harvester. Nonlinear Dyn. 2018, 92, 1761–1780. [Google Scholar] [CrossRef]
- Du, S.; Jia, Y.; Seshia, A.A. Piezoelectric vibration energy harvesting: A connection configuration scheme to increase operational range and output power. J. Intell. Mater. Syst. Struct. 2017, 28, 1905–1915. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C.; Wang, N.; San, H.; Yu, Y.; Halvorsen, E.; Chen, X. A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques. Appl. Energy 2017, 190, 368–375. [Google Scholar] [CrossRef]
- Phan, T.D.; Springer, P.; Liebich, R. Numerical Investigation of an Elastomer-Piezo-Adaptive Blade for Active Flow Control of a Nonsteady Flow Field Using Fluid–Structure Interaction Simulations. J. Turbomach. 2017, 139, 091004. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Jamesahar, E.; Ismael, M.A.; Chamkha, A.J. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int. J. Therm. Stress. 2017, 111, 256–273. [Google Scholar] [CrossRef]
- Farajpour, A.; Rastgoo, A.; Mohammadi, M. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment. Phys. B Condens. Matter 2017, 509, 100–114. [Google Scholar] [CrossRef]
- Abdolvand, R.; Fatemi, H.; Moradian, S. Quality factor and coupling in piezoelectric mems resonators. In Piezoelectric MEMS Resonators; Springer: Berlin, Germnay, 2017; pp. 133–152. [Google Scholar]
- Rasani, M.R.; Aldlemy, M.S.; Harun, Z. Fluid-structure interaction analysis of rear spoiler vibration for energy harvesting potential. J. Mech. Eng. Sci. 2017, 11, 2415–2427. [Google Scholar] [CrossRef]
- Hoshyarmanesh, H.; Abbasi, A. Structural health monitoring of rotary aerospace structures based on electromechanical impedance of integrated piezoelectric transducers. J. Intell. Mater. Syst. Struct. 2017, 29, 1799–1817. [Google Scholar] [CrossRef]
- Panda, P. Piezoceramic Materials and Devices for Aerospace Applications. In Aerospace Materials and Material Technologies; Springer: Berlin, Germnay, 2017; pp. 501–518. [Google Scholar]
- Tang, D.; Dowell, E. Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate. J. Fluids Struct. 2018, 76, 14–36. [Google Scholar] [CrossRef]
- De Sousa, V.C.; Silva, T.M.P.; Junior, C.D.M. Aeroelastic flutter enhancement by exploiting the combined use of shape memory alloys and nonlinear piezoelectric circuits. J. Sound Vib. 2017, 407, 46–62. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Y. An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Appl. Energy 2018, 212, 233–243. [Google Scholar] [CrossRef]
- Zakaria, M.Y.; Al-Haik, M.Y.; Hajj, M.R. Experimental analysis of energy harvesting from self-induced flutter of a composite beam. Appl. Phys. Lett. 2015, 107, 023901. [Google Scholar] [CrossRef]
- John, C.W.; Churchill, M.; Gast, D.R.; McCreight, J.N.; London, B.J. Fluid Flow Structure and Method of Use for Continuous Motion Washing Machine. US Patent 9,750,388, 5 September 2017. [Google Scholar]
- Blake, W.K. Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Pourkiaee, S.M.; Khadem, S.E.; Shahgholi, M.; Bab, S. Nonlinear modal interactions and bifurcations of a piezoelectric nanoresonator with three-to-one internal resonances incorporating surface effects and van der Waals dissipation forces. Nonlinear Dyn. 2017, 88, 1785–1816. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W. Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations. Appl. Math. Mech. 2017, 38, 689–706. [Google Scholar] [CrossRef]
- Ashoori, A.; Vanini, S.S. Vibration of circular functionally graded piezoelectric plates in pre-/postbuckled configurations of bifurcation/limit load buckling. Acta Mech. 2017, 228, 2945–2964. [Google Scholar] [CrossRef]
- Verstraelen, E.; Kerschen, G.; Dimitriadis, G. Flutter and limit cycle oscillation suppression using linear and nonlinear tuned vibration absorbers. In Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Volume 9; Springer: Berlin, Germnay, 2017; pp. 301–313. [Google Scholar]
- Chatterjee, P.; Mazzoleni, N.; Bryant, M. Experimental investigation of flow induced limit cycle oscillations in a tensioned ribbon. In Active and Passive Smart Structures and Integrated Systems 2017; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10164, p. 1016402. [Google Scholar]
- Zhang, L.; Chen, F. Stability and bifurcation for limit cycle oscillations of an airfoil with external store. Nonlinear Dyn. 2017, 88, 165–187. [Google Scholar] [CrossRef]
- Bukland, J.R.; Hatfield, S.A.; Weichert, S.A.; Pooley, D.M. Acoustic-Resonance Fluid Pump. US Patent Application No. 15/104,080, 5 January 2017. [Google Scholar]
- Wang, G.; Tan, C.; Li, F. A contact resonance viscometer based on the electromechanical impedance of a piezoelectric cantilever. Sens. Actuators A Phys. 2017, 267, 401–408. [Google Scholar] [CrossRef]
- Eid, F.; Liff, S.M.; Oster, S.N.; Sounart, T.L.; Dogiamis, G.C.; Elsherbini, A.A.; Swan, J.M. Piezoelectric Package-Integrated Synthetic Jet Devices. U.S. Patent 9,902,152, 27 February 2018. [Google Scholar]
- An, X.; Song, B.; Tian, W.; Ma, C. Numerical simulation of Vortex Induced Piezoelectric Energy Converter (VIPEC) based on coupled fluid, structure and piezoelectric interaction. In Proceedings of the IEEE OCEANS 2017, Aberdeen, Scotland, 19–22 June 2017; pp. 1–5. [Google Scholar]
- Franzini, G.R.; Bunzel, L.O. A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom. J. Fluids Struct. 2018, 77, 196–212. [Google Scholar] [CrossRef]
- Tsushima, N.; Su, W. Flutter suppression for highly flexible wings using passive and active piezoelectric effects. Aerosp. Sci. Technol. 2017, 65, 78–89. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, W.; Tan, T.; Huang, W. Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 90–116. [Google Scholar] [CrossRef]
- Abdelkefi, A. Aeroelastic energy harvesting: A review. Int. J. Eng. Sci. 2016, 100, 112–135. [Google Scholar] [CrossRef]
- Lampani, L.; Grillo, R.; Gaudenzi, P. Finite element models of piezoelectric actuation for active flow control. Acta Astronaut. 2012, 71, 129–138. [Google Scholar] [CrossRef]
- Mehmood, A.; Abdelkefi, A.; Hajj, M.; Nayfeh, A.; Akhtar, I.; Nuhait, A. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 2013, 332, 4656–4667. [Google Scholar] [CrossRef]
- Dai, H.; Abdelkefi, A.; Wang, L. Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 2014, 77, 967–981. [Google Scholar] [CrossRef]
- Dai, H.; Abdelkefi, A.; Wang, L. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 2014, 25, 1861–1874. [Google Scholar] [CrossRef]
- Ashok, P.; Chandra, C.J.; Neeraj, P.; Santhosh, B. Parametric Study and Optimization of a Piezoelectric Energy Harvester from Flow Induced Vibration. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 310, p. 012110. [Google Scholar]
- Arionfard, H.; Nishi, Y. Experimental investigation of a drag assisted vortex-induced vibration energy converter. J. Fluids Struct. 2017, 68, 48–57. [Google Scholar] [CrossRef]
- Nishi, Y.; Fukuda, K.; Shinohara, W. Experimental energy harvesting from fluid flow by using two vibrating masses. J. Sound Vib. 2017, 394, 321–332. [Google Scholar] [CrossRef]
- Soti, A.K.; Thompson, M.C.; Sheridan, J.; Bhardwaj, R. Harnessing electrical power from vortex-induced vibration of a circular cylinder. J. Fluids Struct. 2017, 70, 360–373. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Abdelkefi, A.; Dai, H.; Naseer, R.; Wang, L. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. J. Sound Vib. 2017, 408, 210–219. [Google Scholar] [CrossRef]
- Bunzel, L.O.; Franzini, G.R. Numerical studies on piezoelectric energy harvesting from vortex-induced vibrations considering cross-wise and in-line oscillations. In Proceedings of the 9th European Nonlinear Dynamics Conference—ENOC2017, Budapest, Hungary, 25–30 June 2017. [Google Scholar]
- Guimarães, T.A.; Rade, D.A.; Cesnik, C.E. Active Flutter Suppression on Composite Tow Steered Panels based on Piezoelectric Actuation. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January 2018; p. 0188. [Google Scholar]
- Han, J.H.; Tani, J.; Qiu, J. Active flutter suppression of a lifting surface using piezoelectric actuation and modern control theory. J. Sound Vib. 2006, 291, 706–722. [Google Scholar] [CrossRef]
- Bibo, A.; Abdelkefi, A.; Daqaq, M.F. Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations. J. Vib. Acoust. 2015, 137, 031017. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Nayfeh, A.H.; Hajj, M. Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 2012, 67, 925–939. [Google Scholar] [CrossRef]
- Riso, C.; Mastroddi, F.; Cesnik, C.E. Coupled Flight Dynamics and Aeroelasticity of Very Flexible Aircraft Based on Commercial Finite Element Solvers. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January 2018; p. 1685. [Google Scholar]
- Wang, X.; Wan, Z.; Liu, Z.; Yang, C. Integrated optimization on aerodynamics-structure coupling and flight stability of a large airplane in preliminary design. Chin. J. Aeronaut. 2018, 31, 1258–1272. [Google Scholar] [CrossRef]
- Dessi, D.; Mastroddi, F. Limit-cycle stability reversal via singular perturbation and wing-flap flutter. J. Fluids Struct. 2004, 19, 765–783. [Google Scholar] [CrossRef]
- Mastroddi, F.; Morino, L. Limit-cycle taming by nonlinear control with applications to flutter. Aeronaut. J. 1996, 100, 389–396. [Google Scholar]
- Crema, L.B.; Mastroddi, F.; Coppotelli, G. Aeroelastic sensitivity analyses for flutter speed and gust response. J. Aircr. 2000, 37, 172–180. [Google Scholar] [CrossRef]
- Shoele, K.; Mittal, R. Energy harvesting by flow-induced flutter in a simple model of an inverted piezoelectric flag. J. Fluid Mech. 2016, 790, 582–606. [Google Scholar] [CrossRef]
- Dowell, E.H.; Tang, D. Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 2002, 40, 1697–1707. [Google Scholar] [CrossRef]
- Gilliatt, H.C.; Strganac, T.W.; Kurdila, A.J. An investigation of internal resonance in aeroelastic systems. Nonlinear Dyn. 2003, 31, 1–22. [Google Scholar] [CrossRef]
- Liu, L.; Wong, Y.; Lee, B. Application of the centre manifold theory in non-linear aeroelasticity. J. Sound Vib. 2000, 234, 641–659. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Hajj, M.R.; Nayfeh, A.H. Sensitivity analysis of piezoaeroelastic energy harvesters. J. Intell. Mater. Syst. Struct. 2012, 23, 1523–1531. [Google Scholar] [CrossRef]
- Eugeni, M.; Elahi, H.; Lampani, L.; Gaudenzi, P. Modeling and Design of a Nonlinear Aeroelastic Energy Harvester. In Proceedings of the 68th International Astronautical Congress (IAC), Adelaide, Australia, 25–29 September 2017. [Google Scholar]
- Bahaadini, R.; Hosseini, M.; Jamali, B. Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid. Phys. B Condens. Matter 2018, 529, 57–65. [Google Scholar] [CrossRef]
- Song, Z.G.; Li, F.M.; Carrera, E.; Hagedorn, P. A new method of smart and optimal flutter control for composite laminated panels in supersonic airflow under thermal effects. J. Sound Vib. 2018, 414, 218–232. [Google Scholar] [CrossRef]
- Dai, H.; Abdelkefi, A.; Javed, U.; Wang, L. Modeling and performance of electromagnetic energy harvesting from galloping oscillations. Smart Mater. Struct. 2015, 24, 045012. [Google Scholar] [CrossRef]
- Vicente-Ludlam, D.; Barrero-Gil, A.; Velazquez, A. Enhanced mechanical energy extraction from transverse galloping using a dual mass system. J. Sound Vib. 2015, 339, 290–303. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Zhao, L.; Yang, Y.; Lefeuvre, E. Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE Trans. Mech. 2015, 20, 834–844. [Google Scholar] [CrossRef]
- Petrini, F.; Gkoumas, K. Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts. Energy Build. 2018, 158, 371–383. [Google Scholar] [CrossRef]
- Bashir, M.; Rajendran, P.; Khan, S. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 290, p. 012054. [Google Scholar]
- Maruai, N.M.; Ali, M.S.M.; Ismail, M.H.; Zaki, S.A. Flow-induced vibration of a square cylinder and downstream flat plate associated with micro-scale energy harvester. J. Wind Eng. Ind. Aerodyn. 2018, 175, 264–282. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Hajj, M.; Nayfeh, A. Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 2012, 22, 015014. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Yan, Z.; Hajj, M.R. Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 2013, 22, 025016. [Google Scholar] [CrossRef]
- Barrero-Gil, A.; Alonso, G.; Sanz-Andres, A. Energy harvesting from transverse galloping. J. Sound Vib. 2010, 329, 2873–2883. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.J.; Lee, S.W. The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 2011, 20, 055022. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Scanlon, J.; McDowell, E.; Hajj, M.R. Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 2013, 103, 033903. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Zhao, Y.; Zhou, T. CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller. Appl. Energy 2018, 212, 304–321. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Hajj, M.R.; Nayfeh, A.H. Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 2012, 70, 1355–1363. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, L.; Yang, Y. Synchronized charge extraction in galloping piezoelectric energy harvesting. J. Intell. Mater. Syst. Struct. 2016, 27, 453–468. [Google Scholar] [CrossRef]
- Tan, T.; Yan, Z. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode. Smart Mater. Struct. 2017, 26, 035062. [Google Scholar] [CrossRef]
- Ewere, F.; Wang, G.; Frendi, A. Experimental Investigation of a Bioinspired Bluff-Body Effect on Galloping Piezoelectric Energy-Harvester Performance. AIAA J. 2017, 56, 1284–1287. [Google Scholar] [CrossRef]
- Tan, T.; Yan, Z.; Lei, H. Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits. Smart Mater. Struct. 2017, 26, 075007. [Google Scholar] [CrossRef]
- Naseer, R.; Dai, H.; Abdelkefi, A.; Wang, L. Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics. Appl. Energy 2017, 203, 142–153. [Google Scholar] [CrossRef]
- Akaydin, H.D.; Elvin, N.; Andreopoulos, Y. Energy harvesting from highly unsteady fluid flows using piezoelectric materials. J. Intell. Mater. Syst. Struct. 2010, 21, 1263–1278. [Google Scholar] [CrossRef]
- Akaydin, H.; Elvin, N.; Andreopoulos, Y. The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 2012, 21, 025007. [Google Scholar] [CrossRef]
- Bryant, M.; Garcia, E. Modeling and testing of a novel aeroelastic flutter energy harvester. J. Vib. Acoust. 2011, 133, 011010. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Vasconcellos, R.; Nayfeh, A.H.; Hajj, M.R. An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn. 2013, 71, 159–173. [Google Scholar] [CrossRef]
- Sirohi, J.; Mahadik, R. Harvesting wind energy using a galloping piezoelectric beam. J. Vib. Acoust. 2012, 134, 011009. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Tang, L. Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 2013, 102, 064105. [Google Scholar] [CrossRef]
- Daqaq, M.F. Characterizing the response of galloping energy harvesters using actual wind statistics. J. Sound Vib. 2015, 357, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Giacomello, A.; Porfiri, M. Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. J. Appl. Phys. 2011, 109, 084903. [Google Scholar] [CrossRef]
- Aramendia, I.; Fernandez-Gamiz, U.; Zulueta Guerrero, E.; Lopez-Guede, J.M.; Sancho, J. Power Control Optimization of an Underwater Piezoelectric Energy Harvester. Appl. Sci. 2018, 8, 389. [Google Scholar] [CrossRef]
- Dunnmon, J.; Stanton, S.; Mann, B.; Dowell, E. Power extraction from aeroelastic limit cycle oscillations. J. Fluids Struct. 2011, 27, 1182–1198. [Google Scholar] [CrossRef]
- Li, S.; Lipson, H. Vertical-stalk flapping-leaf generator for wind energy harvesting. In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; American Society of Mechanical Engineers: New York, NY, USA, 2009; pp. 611–619. [Google Scholar]
- Li, S.; Yuan, J.; Lipson, H. Ambient wind energy harvesting using cross-flow fluttering. J. Appl. Phys. 2011, 109, 026104. [Google Scholar] [CrossRef]
- Kwon, S.D. A T-shaped piezoelectric cantilever for fluid energy harvesting. Appl. Phys. Lett. 2010, 97, 164102. [Google Scholar] [CrossRef]
- Shukla, S.; Govardhan, R.; Arakeri, J. Flow over a cylinder with a hinged-splitter plate. J. Fluids Struct. 2009, 25, 713–720. [Google Scholar] [CrossRef]
- Williamson, C.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef]
- Hobeck, J.; Inman, D. Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration. Smart Mater. Struct. 2012, 21, 105024. [Google Scholar] [CrossRef]
- Hobeck, J.; Inman, D. A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration. Smart Mater. Struct. 2014, 23, 115003. [Google Scholar] [CrossRef]
- Anton, S.R.; Inman, D.J. Vibration energy harvesting for unmanned aerial vehicles. In Active and Passive Smart Structures and Integrated Systems 2008; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; Volume 6928, p. 692824. [Google Scholar]
- Oh, S.; Han, H.; Han, S.; Lee, J.; Chun, W. Development of a tree-shaped wind power system using piezoelectric materials. Int. J. Energy Res. 2010, 34, 431–437. [Google Scholar] [CrossRef]
- Priya, S. Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 2005, 87, 184101. [Google Scholar] [CrossRef]
- Ju, S.; Ji, C.H. Impact-based piezoelectric vibration energy harvester. Appl. Energy 2018, 214, 139–151. [Google Scholar] [CrossRef]
- Izadgoshasb, I.; Lim, Y.Y.; Lake, N.; Tang, L.; Padilla, R.V.; Kashiwao, T. Optimizing orientation of piezoelectric cantilever beam for harvesting energy from human walking. Energy Convers. Manag. 2018, 161, 66–73. [Google Scholar] [CrossRef]
- Kim, M.O.; Pyo, S.; Oh, Y.; Kang, Y.; Cho, K.H.; Choi, J.; Kim, J. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor. Smart Mater. Struct. 2018, 27, 035001. [Google Scholar] [CrossRef] [Green Version]
- Helal, M.H. Evaluation of osse-ous response after placement of experimental implants in femur of diabetic rabbits using piezoelectric osteotomy. Int. J. Dent. Oral Heal. 2018, 4, 1–7. [Google Scholar]
- Tsubota, Y.; Suzuki, A.; Terada, T.; Wu, W.; Yamanaka, K.; Sasaki, K.; Kobayashi, M.; Kawabata, K.I. Animal study of high-speed iterative refraction calibration method for ultrasound computed tomography. In Medical Imaging 2018: Ultrasonic Imaging and Tomography; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10580. [Google Scholar]
- Yu, X.; Wang, H.; Ning, X.; Sun, R.; Albadawi, H.; Salomao, M.; Silva, A.C.; Yu, Y.; Tian, L.; Koh, A.; et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat. Biomed. Eng. 2018, 2, 165–172. [Google Scholar] [CrossRef]
- Lau, J.Y.; Liang, W.; Liaw, H.C.; Tan, K.K. Sliding Mode Disturbance Observer-based Motion Control for a Piezoelectric Actuator-based Surgical Device. Asian J. Control 2018, 20. [Google Scholar] [CrossRef]
- Yeoh, I.L.; Reinhall, P.G.; Seibel, E.J.; Kundrat, M.J. Adaptive Control of a Fiber Scanner With Piezoelectric Sensing. US Patent 9,872,606, 23 January 2018. [Google Scholar]
- Adams, M.; Adams, R.; Yaqub, R. Integrated Mobile Phone Case and Charger. US Patent 9,698,623, 4 July 2017. [Google Scholar]
- Anwar, M.; Hakim, L.; Nadzri, N. Prototype of a low power energy harvesting using piezoelectric transducer for common stationary workout. In Proceedings of the 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, Malaysia, 28–30 November 2017; pp. 1–4. [Google Scholar]
- Wang, X. Implantable Flexible Nanogenerators for Biomechanical Energy Harvesting; Meeting Abstracts; The Electrochemical Society: Pennington, NJ, USA, 2018; p. 1492. [Google Scholar]
- Todaro, M.T.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Desmaële, D.; Epifani, G.; De Vittorio, M. Biocompatible, flexible and compliant energy harvesters based on piezoelectric thin films. IEEE Trans. Nanotechnol. 2018, 17, 220–230. [Google Scholar] [CrossRef]
- Safaei, M.; Ponder, R.I.; Anton, S.R. Detection of compartmental forces and location of contact areas with piezoelectric transducers in total knee arthroplasty. In Active and Passive Smart Structures and Integrated Systems XII; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10595, p. 105951Q. [Google Scholar]
- Lemmers, G.; Heijmans, M.; Scafoglieri, A.; Buyl, R.; Staal, J.; Schmitt, M.; Cattrysse, E. Three-dimensional kinematics of the cervical spine using an electromagnetic tracking device. Differences between healthy subjects and subjects with non-specific neck pain and the effect of age. Clin. Biomech. 2018, 54, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, J.; Zhao, S.; Fan, W.; Zhang, X.; Zhang, C.; Xing, Y.; Li, C. Stretchable and Tailorable Triboelectric Nanogenerator Constructed by Nanofibrous Membrane for Energy Harvesting and Self-Powered Biomechanical Monitoring. Adv. Mater. Technol. 2018, 3, 1700370. [Google Scholar] [CrossRef]
- Granstrom, J.; Feenstra, J.; Sodano, H.A.; Farinholt, K. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 2007, 16, 1810. [Google Scholar] [CrossRef]
- Feenstra, J.; Granstrom, J.; Sodano, H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mech. Syst. Signal Process. 2008, 22, 721–734. [Google Scholar] [CrossRef]
- Shenck, N.S.; Paradiso, J.A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 2001, 21, 30–42. [Google Scholar] [CrossRef]
- Howells, C.A. Piezoelectric energy harvesting. Energy Convers. Manag. 2009, 50, 1847–1850. [Google Scholar] [CrossRef]
- Fan, K.; Liu, Z.; Liu, H.; Wang, L.; Zhu, Y.; Yu, B. Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Appl. Phys. Lett. 2017, 110, 143902. [Google Scholar] [CrossRef]
- Rocha, J.G.; Goncalves, L.M.; Rocha, P.; Silva, M.P.; Lanceros-Mendez, S. Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans. Ind. Electron. 2010, 57, 813–819. [Google Scholar] [CrossRef]
- Zhao, J.; You, Z. A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 2014, 14, 12497–12510. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.S.; Lee, M.J.; Kang, M.G.; Moon, H.G.; Yoon, S.J.; Baek, S.H.; Kang, C.Y. Powerful curved piezoelectric generator for wearable applications. Nano Energy 2015, 13, 174–181. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhu, M. Characterisation of a knee-joint energy harvester powering a wireless communication sensing node. Smart Mater. Struct. 2016, 25, 055013. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Y.; Yang, Z.; Zhu, M. Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking. Smart Mater. Struct. 2016, 25, 085029. [Google Scholar] [CrossRef] [Green Version]
- Kymissis, J.; Kendall, C.; Paradiso, J.; Gershenfeld, N. Parasitic power harvesting in shoes. In Proceedings of the Digest of Papers Second International Symposium on Wearable Computers, Pittsburgh, PA, USA, 19–20 October 1998; pp. 132–139. [Google Scholar] [Green Version]
- Delnavaz, A.; Voix, J. Flexible piezoelectric energy harvesting from jaw movements. Smart Mater. Struct. 2014, 23, 105020. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lee, M.G.; Jeon, Y. Wearable Biomechanical Energy Harvesting Technologies. Energies 2017, 10, 1483. [Google Scholar] [CrossRef]
- Nia, E.M.; Zawawi, N.A.W.A.; Singh, B.S.M. A review of walking energy harvesting using piezoelectric materials. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 291, p. 012026. [Google Scholar]
- Niu, P.; Chapman, P.; Riemer, R.; Zhang, X. Evaluation of motions and actuation methods for biomechanical energy harvesting. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference PESC 04, Aachen, Germany, 20–25 June 2004; Volume 3, pp. 2100–2106. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 82–106. [Google Scholar]
- Riemer, R.; Shapiro, A. Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 2011, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Renaud, M.; Fiorini, P.; van Schaijk, R.; Van Hoof, C. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater. Struct. 2009, 18, 035001. [Google Scholar] [CrossRef]
- Bai, Y.; Tofel, P.; Hadas, Z.; Smilek, J.; Losak, P.; Skarvada, P.; Macku, R. Investigation of a cantilever structured piezoelectric energy harvester used for wearable devices with random vibration input. Mech. Syst. Signal Process. 2018, 106, 303–318. [Google Scholar] [CrossRef]
- Singh, P.K.; Pandey, P.; Singh, A.P.; Mehra, V.S.; Ojha, A.; Scholar, U. Fabrication of Piezoelectric-Thermal Gloves. Int. J. Eng. Sci. 2016, 6, 5185–5187. [Google Scholar]
- Halim, M.A.; Park, J.Y. Piezoelectric energy harvester using impact-driven flexible side-walls for human-limb motion. Microsyst. Technol. 2017, 24, 2099–2107. [Google Scholar] [CrossRef]
- Li, J.; Wang, X. Research Update: Materials design of implantable nanogenerators for biomechanical energy harvesting. APL Mater. 2017, 5, 073801. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Karami, M.A. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers. Smart Mater. Struct. 2017, 26, 065001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, R.; Mir, F.; Banerjee, S. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater. Struct. 2017, 26, 085031. [Google Scholar] [CrossRef]
- Klein, W.P.; Díaz, S.A.; Buckhout-White, S.; Melinger, J.S.; Cunningham, P.D.; Goldman, E.R.; Ancona, M.G.; Kuang, W.; Medintz, I.L. Resonance Energy Transfer: Utilizing HomoFRET to Extend DNA-Scaffolded Photonic Networks and Increase Light-Harvesting Capability. Adv. Opt. Mater. 2018, 6, 1700679. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Guo, Y.; Xu, B.; Yang, T. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms. Smart Mater. Struct. 2018, 27, 035004. [Google Scholar] [CrossRef] [Green Version]
- Cooley, C.G.; Chai, T. Energy Harvesting From the Vibrations of Rotating Systems. J. Vib. Acoust. 2018, 140, 021010. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, W.; Malakooti, M.H.; Cao, J.; Inman, D.J. Design and modeling of a flexible longitudinal zigzag structure for enhanced vibration energy harvesting. J. Intell. Mater. Syst. Struct. 2017, 28, 367–380. [Google Scholar] [CrossRef]
- Lee, M.S.; Yun, J.S.; Park, W.I.; Hong, Y.W.; Cho, J.H.; Paik, J.H.; Park, Y.H.; Son, C.M.; Jeong, Y.H. Fabrication and energy harvesting characteristics of unimorph piezoelectric cantilever generators with interdigitated electrode lead zirconate titanate laminates. Jpn. J. Appl. Phys. 2017, 56, 127101. [Google Scholar] [CrossRef]
- Mukhanov, A.; Abdigaliyev, A.; Jangeldinov, B.; Zhussip, M.; Zhapparov, R.; Ruderman, A.; Adair, D. Development of a Design Tool for Optimization of Voltage Generation from a Bimorph Piezoelectric Cantilever Beam. Mater. Today Proc. 2017, 4, 4477–4490. [Google Scholar] [CrossRef]
- Wu, W.H.; Kuo, K.C.; Lin, Y.H.; Tsai, Y.C. Non-contact magnetic cantilever-type piezoelectric energy harvester for rotational mechanism. Microelectron. Eng. 2018, 191, 16–19. [Google Scholar] [CrossRef]
- Challa, V.R.; Prasad, M.; Shi, Y.; Fisher, F.T. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 2008, 17, 015035. [Google Scholar] [CrossRef]
- Harne, R.; Wang, K. A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 2013, 22, 023001. [Google Scholar] [CrossRef]
- Duggirala, R.; Polcawich, R.; Zakar, E.; Dubey, M.; Li, H.; Lal, A. MEMS radioisotope-powered piezoelectric μ-power generator (RPG). In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems MEMS 2006, Istanbul, Turkey, 22–26 January 2006; pp. 94–97. [Google Scholar]
- Gao, X.; Shih, W.H.; Shih, W.Y. Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths. Appl. Phys. Lett. 2010, 97, 233503. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.H.; Liao, W.H. Feasibility study of a self-powered piezoelectric sensor. In Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; Volume 5389, pp. 377–389. [Google Scholar]
- Roundy, S.; Wright, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1144. [Google Scholar] [CrossRef]
- Roundy, S.; Wright, P.K. A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 2004, 13, 1131. [Google Scholar] [CrossRef]
- Baker, J.; Roundy, S.; Wright, P. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. In Proceedings of the 3rd International Energy Conversion Engineering Conference, San Francisco, CA, USA, 15–18 August 2005; p. 5617. [Google Scholar]
- Leland, E.S.; Wright, P.K. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struct. 2006, 15, 1413. [Google Scholar] [CrossRef]
- Zheng, Q.; Xu, Y. Asymmetric air-spaced cantilevers for vibration energy harvesting. Smart Mater. Struct. 2008, 17, 055009. [Google Scholar] [CrossRef]
- Lu, F.; Lee, H.; Lim, S. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater. Struct. 2003, 13, 57. [Google Scholar] [CrossRef]
- Choi, W.; Jeon, Y.; Jeong, J.H.; Sood, R.; Kim, S.G. Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J. Electr. 2006, 17, 543–548. [Google Scholar] [CrossRef]
- Tien, C.M.T.; Goo, N.S. Use of a piezocomposite generating element in energy harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 1427–1436. [Google Scholar] [CrossRef]
- Kim, S.; Clark, W.W.; Wang, Q.M. Piezoelectric energy harvesting with a clamped circular plate: Analysis. J. Intell. Mater. Syst. Struct. 2005, 16, 847–854. [Google Scholar] [CrossRef]
- Pan, D.; Ma, B.; Dai, F. Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate. Smart Mater. Struct. 2017, 26, 035045. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Li, Q.J.; Wang, X.; Gao, Z.; Zhang, L. Fabrication and performance of a power generation device based on stacked piezoelectric energy-harvesting units for pavements. Energy Convers. Manag. 2018, 163, 196–207. [Google Scholar] [CrossRef]
- Swallow, L.; Luo, J.; Siores, E.; Patel, I.; Dodds, D. A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 2008, 17, 025017. [Google Scholar] [CrossRef]
- Chen, X.; Xu, S.; Yao, N.; Shi, Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010, 10, 2133–2137. [Google Scholar] [CrossRef] [PubMed]
- Gonella, S.; To, A.C.; Liu, W.K. Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 2009, 57, 621–633. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.; Yang, Z.; Chan, C.T.; Sheng, P. Locally resonant sonic materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Carrara, M.; Cacan, M.; Toussaint, J.; Leamy, M.; Ruzzene, M.; Erturk, A. Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting. Smart Mater. Struct. 2013, 22, 065004. [Google Scholar] [CrossRef]
Coefficient | Units | PZT-5H [9] | PZT-5A [10] | PZT-8 [63] | BaTiO [64] | PIC-255 [65] | PVDF [9] | ZnO [66] | KNN [67] | AlN [68] |
---|---|---|---|---|---|---|---|---|---|---|
Piezoelectric charge constants () | m/V | −274 | −171 | −97 | −33 | −180 | 18–24 | - | - | - |
m/V | 593 | 374 | 225 | 82 | 400 | −33 | - | 689 | - | |
m/V | 741 | 584 | 330 | 150 | 550 | - | - | - | - | |
Density | kg/m | 7500 | 7750 | 7600 | 5600 | 7800 | 946 | 566 | - | 3260 |
Curie temperature | C | 193 | 350 | 300 | 123 | 350 | 195 | - | 432 | - |
Elastic modulus (E) | N/m | 6.2 | 6.5 | 6.3 | 1.16 | - | 0.418 | - | - | - |
Permittivity () | - | 3400 | 1700 | 1000 | 800 | 1750 | - | - | - | - |
Mechanical quality factor () | - | 30 | 80 | 98 | 130 | 80 | 17.2 | - | 85 | - |
Poisson’s ratio (u) | - | 0.31 | 0.31 | 0.31 | 0.35 | 0.34 | 0.34 | 0.358 | - | 0.24 |
Mechanism | Design | PZT Type | Layer(s) | Power (mW) | Reference |
---|---|---|---|---|---|
VIV | Circular | PZT | 1 | 23 | [169] |
VIV | Circular | PVDF | 1 | 0.004 | [170] |
VIV | Circular | PZT-5A | 2 | 0.1 | [171] |
Flutter | NACA0014 | PZT | 1 | 0.003 | [122] |
Flutter | Typical section | PZT-5A4E | 1 | 0.0005 | [149] |
Flutter | Symmetric | PSI-5A4E | 1 | 0.2 | [172] |
Flutter | NACA 0012 | QP 10N | 2 | 2.2 | [173] |
Galloping | Triangle | PZT | 2 | 3.8 | [123] |
Galloping | Equilateral | PSI-5H4E | 4 | 50 | [174] |
Galloping | Square | P-876.A12 | 2 | 8.4 | [175] |
Galloping | Square | MFC-M8514-P2 | 1 | 0.22 | [176] |
Description | References |
---|---|
Optimized underwater piezoelectric energy harvester that | |
can generate 0.9 mW of power for Re = 12,000. | [178] |
Underwater aeroealstic energy harvester from a heavy flag | |
that can generate power on the order of 10 W at 0.6–1.1 ms fluid flow. | [177] |
Piezoelectric wind energy harvester circuit proposed to destroy | |
the harmonics and increase the battery charge performance. | [70] |
A cantilever beam with PZT laminate subjected to axial flow in a manner similar to a flapping | |
leaf or flag. The system accessed of the energy to which it was exposed. | |
Output power RMS value was obtained to be maximum of 2.5 mW at ≈27 ms of flow. | [179] |
Aeroelastic vibrations-based PVDF flapping flag | |
which can oscillate at wide fluttering frequency. | [180] |
Predicted vortex shedding from bluff body is the dominant exciter of oscillations. | [183,184] |
The bluff body effect is ignored in the leading edge and | |
more importance is given to self-induced vibrations at the trailing edge. | |
This generator results in 615 W power harvesting at <8 ms of flow | [181] |
T-shaped piezoelectric harvester for aeroelastic flutter. | |
It can generate at 4 mW at 4 ms of flow | [182] |
Piezoelectric energy harvester based on turbulence-induced vibrations. It can generate | |
1 mW for a wind speed of 11 ms for PZT and 1 W for a wind speed of 7 ms. | [185,186] |
Three piezoelectric patches are attached to harvest energy from the wing of an aircraft. | |
It can generate 10.1–24 W of power at a wind speed of 11–25 kmh. | [187] |
Tree-shaped harvester to generate a power of 2.24 mW from the wind speed of an electric fan. | [188] |
A piezoelectric windmill to generate power of 7.5 mW from a wind speed of 10 mph. | [189] |
Mechanism | PZT Type | Power (mW) | References |
---|---|---|---|
Center of Gravity | PVDF | 9.1 | [205] |
Center of Gravity | PZT | 0.15 | [206] |
Foot Strike | PZT | 8.4, 90.3, 0.35 | [207,208,209] |
Foot Strike | PVDF | 0.013, 1,0.5 | [210,211,212] |
Knee | PZT | 3.5, 5.8 | [213,214] |
Heel | PVDF | 120 | [215] |
Jaw Movement | PVDF | 0.0174 | [216] |
Mechanism | Frequency (Hz) | Electrical Load (k) | Power (mW) | References |
---|---|---|---|---|
Cantilever-type magnetic non-contact PEH | 32.56 | 0–200 | 1.23 | [235] |
PZT cantilever beam energy harvester for wireless sensors in a satellite at variable temperature | 10–10,000 | 0–100 | 0.87 | [10] |
BaTiO cantilever beam energy harvester for aerospace applications | 10–10,000 | 0–100 | 0.064 | [64] |
PZT-5A4E beam energy harvester for cyclic loading | 10–100 | 0–100 | 0.32 | [28] |
PZT beam with tungsten mass at fixed end | 26.2 | 26 | 0.002 | [236] |
M-shaped PZT harvester | 4–8 | 300 | 1 | [237] |
Microfabricated PZT radioisotope generator | 38 | 90 | 0.0013 | [238] |
PZT unimorph cantilever | 90 | - | 0.0057 | [239] |
Two PZT layers with opposite polarization | 100 | 9.9 | 0.0163 | [240] |
Bimorph PZT harvester with mass on free end | 120 | ≈ 300 | 0.375 | [241,242] |
Sandwiched PZT cantilever beam | 125 | - | 0.03 | [243] |
PZT bimorph with mass at center | 200–250 | 173 | 0.3–0.4 | [244] |
Asymmetric air-spaced PZT energy harvester | 200–250 | 173 | 0.3–0.4 | [245] |
Improved power array-based PZT energy harvester | ≈230 | - | 0.00398 | [245] |
PZT laminated energy harvester | ≈3000 | 68 | 0.66 | [246] |
PZT energy harvester that can resonate at vibration of specific frequency | 13,970 | 5200 | 0.001 | [247] |
Mechanism | Frequency (Hz) | Electrical Load (k | Power (mW) | Reference |
---|---|---|---|---|
Bi-stable composite PZT plate for broadband energy harvesting | 38 | - | 36.2 | [250] |
PZT energy harvester for pavements | 10, 15 | 20, 10 | 0.88, 11.67 | [251] |
Simply supported plate type PZT layered harvester | ≈3000–20,000 | 0.1–20 | ≈0.0008–0.125 | [248] |
Multi-layered harvester with PZT, carbon/epoxy and glass/epoxy layers | 212–310 | 23 | 0.22–0.28 | [248] |
Micropower harvester for gloves | ≈60 | ≈1000 | 0.011 | [252] |
PZT nanofibers for nanogenerator in soft polymers | ≈35 | 6000 | 0.00003 | [253] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elahi, H.; Eugeni, M.; Gaudenzi, P. A Review on Mechanisms for Piezoelectric-Based Energy Harvesters. Energies 2018, 11, 1850. https://doi.org/10.3390/en11071850
Elahi H, Eugeni M, Gaudenzi P. A Review on Mechanisms for Piezoelectric-Based Energy Harvesters. Energies. 2018; 11(7):1850. https://doi.org/10.3390/en11071850
Chicago/Turabian StyleElahi, Hassan, Marco Eugeni, and Paolo Gaudenzi. 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters" Energies 11, no. 7: 1850. https://doi.org/10.3390/en11071850
APA StyleElahi, H., Eugeni, M., & Gaudenzi, P. (2018). A Review on Mechanisms for Piezoelectric-Based Energy Harvesters. Energies, 11(7), 1850. https://doi.org/10.3390/en11071850