Effect of Sodium Chloride and Thiourea on Pollutant Formation during Combustion of Plastics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Gases and Volatile Compounds Emission
3.2. PAHs, ClBzs, ClPhs, and BrPhs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Marine debris occurrence and treatment: A review. Renew. Sustain. Energy Rev. 2016, 64, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Löhr, A.; Savelli, H.; Beunen, R.; Kalz, M.; Ragas, A.; Van Belleghem, F. Solutions for global marine litter pollution. Curr. Opin. Environ. Sustain. 2017, 28, 90–99. [Google Scholar] [CrossRef]
- Gregory, M.R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C. Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Gouin, T.; Thompson, R.; Wallace, N.; Arthur, C. Plastics in the marine environment. Environ. Toxicol. Chem. 2014, 33, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.; Sobral, P. Plastic marine debris on the Portuguese coastline: A matter of size? Mar. Pollut. Bull. 2011, 62, 2649–2653. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Heo, N.; Hong, S.; Han, G.; Hong, S.; Lee, J.; Song, Y.; Jang, M.; Shim, W. Distribution of small plastic debris in cross-section and high strandline on Heungnam beach, South Korea. Ocean Sci. J. 2013, 48, 225–233. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisner, M.; Taniguchi, S.; Moreira, F.; Bícego, M.C.; Turra, A. Polycyclic aromatic hydrocarbons (PAHs) in plastic pellets: Variability in the concentration and composition at different sediment depths in a sandy beach. Mar. Pollut. Bull. 2013, 70, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.U.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullett, B.K.; Sarofim, A.F.; Smith, K.A.; Procaccini, C. The role of chlorine in dioxin formation. Process Saf. Environ. Prot. 2000, 78, 47–52. [Google Scholar] [CrossRef]
- Wang, L.-C.; Lee, W.-J.; Lee, W.-S.; Chang-Chien, G.-P.; Tsai, P.-J. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Sci. Total Environ. 2003, 302, 185–198. [Google Scholar] [CrossRef]
- Wyrzykowska-Ceradini, B.; Gullett, B.K.; Tabor, D.; Touati, A. PBDDs/Fs and PCDDs/Fs in the Raw and Clean Flue Gas during Steady State and Transient Operation of a Municipal Waste Combustor. Environ. Sci. Technol. 2011, 45, 5853–5860. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, A.; Katami, T.; Okuda, T.; Ohno, N.; Shibamoto, T. Formation of dioxins during the combustion of newspapers in the presence of sodium chloride and poly(vinyl chloride). Environ. Sci. Technol. 2001, 35, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Hoffmann, G.; Schirmer, M.; Chen, G.; Rotter, V.S. Chlorine characterization and thermal behavior in MSW and RDF. J. Hazard. Mater. 2010, 178, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Chern, H.-T.; Bozzelli, J.W. Comment on “Formation of Dioxins during the Combustion of Newspapers in the Presence of Sodium Chloride and Poly(vinyl chloride)”. Environ. Sci. Technol. 2002, 36, 2107. [Google Scholar] [CrossRef] [PubMed]
- Altarawneh, M.; Dlugogorski, B.Z.; Kennedy, E.M.; Mackie, J.C. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog. Energy Combust. Sci. 2009, 35, 245–274. [Google Scholar] [CrossRef]
- Zheng, M.H.; Liu, P.Y.; Piao, M.J.; Liu, W.B.; Xu, X.B. Formation of PCDD/Fs from heating polyethylene with metal chlorides in the presence of air. Sci. Total Environ. 2004, 328, 115–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duo, W.; Leclerc, D. Thermodynamic analysis and kinetic modelling of dioxin formation and emissions from power boilers firing salt-laden hog fuel. Chemosphere 2007, 67, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-Y.; Li, X.-D.; Chen, T.; Lin, X.-Q.; Buekens, A.; Lu, S.-Y.; Yan, J.-H.; Cen, K.-F. PCDD/Fs’ suppression by sulfur–amine/ammonium compounds. Chemosphere 2015, 123, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, T.; Nakamura, M.; Takaoka, M.; Shiota, K.; Kitajima, Y. Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations. J. Hazard. Mater. 2016, 311, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhan, M.X.; Lin, X.Q.; Fu, J.Y.; Lu, S.Y.; Li, X.D.; Buekens, A.; Yan, J.H. PCDD/Fs inhibition by sludge decomposition gases: Effects of sludge dosage, treatment temperature and oxygen content. Aerosol Air Qual. Res. 2015, 15, 702–711. [Google Scholar] [CrossRef]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Pollutant content in marine debris and characterization by thermal decomposition. Mar. Pollut. Bull. 2017, 117, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conesa, J.A.; Egea, S.; Moltó, J.; Ortuño, N.; Font, R. Decomposition of two types of electric wires considering the effect of the metal in the production of pollutants. Chemosphere 2013, 91, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atal, A.; Levendis, Y.A.; Carlson, J.; Dunayevskiy, Y.; Vouros, P. On the survivability and pyrosynthesis of PAH during combustion of pulverized coal and tire crumb. Combust. Flame 1997, 110, 462–478. [Google Scholar] [CrossRef]
- Iñiguez, M.E.; Conesa, J.A.; Soler, A. Effect of marine ambient in the production of pollutants from the pyrolysis and combustion of a mixture of plastic materials. Mar. Pollut. Bull. 2018, 130, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Soler, A.; Conesa, J.A.; Iñiguez, M.E.; Ortuño, N. Pollutant formation in the pyrolysis and combustion of materials combining biomass and e-waste. Sci. Total Environ. 2018, 622–623, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Matuschek, G.; Kettrup, A. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym. Degrad. Stab. 2002, 78, 323–331. [Google Scholar] [CrossRef]
- Jansson, S.; Fick, J.; Tysklind, M.; Marklund, S. Post-combustion formation of PCDD, PCDF, PCBz, and PCPh in a laboratory-scale reactor: Influence of dibenzo-p-dioxin injection. Chemosphere 2009, 76, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Kaivosoja, T.; Virén, A.; Tissari, J.; Ruuskanen, J.; Tarhanen, J.; Sippula, O.; Jokiniemi, J. Effects of a catalytic converter on PCDD/F, chlorophenol and PAH emissions in residential wood combustion. Chemosphere 2012, 88, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Conesa, J.A.; Rey, L.; Egea, S.; Rey, M.D. Pollutant formation and emissions from cement kiln stack using a solid recovered fuel from municipal solid waste. Environ. Sci. Technol. 2011, 45, 5878–5884. [Google Scholar] [CrossRef] [PubMed]
Sample | Composition |
---|---|
MIX | PP, PE, PET and Nylon (25 wt % each) |
MIX_TUA | 97% MIX |
3% thiourea (TUA) | |
MIX_NaCl | 50% MIX |
50% NaCl | |
MIX_NaCl_Fe2O3 | 50% MIX |
45% NaCl | |
5% Fe2O3 | |
MIX_NaCl_CuO | 50% MIX |
45% NaCl | |
5% CuO |
Sample | MIX | MIX_TUA | MIX_NaCl | MIX_NaCl_Fe2O3 | MIX_NaCl_CuO |
---|---|---|---|---|---|
Compound | mg/kg Sample | ||||
Analysis by GC-TCD | |||||
Hydrogen | nd | nd | 1900 | 1830 | 1730 |
Carbon dioxide | 1,690,000 | 1,400,000 | 137,000 | 243,000 | 268,000 |
Carbon monoxide | 417,000 | 352,000 | 237,000 | 180,000 | 189,000 |
RCO = CO/(CO + CO2) | 0.198 | 0.200 | 0.633 | 0.426 | 0.413 |
Analysis by GC-FID | |||||
Methane | 26,200 | nd | 57,100 | 49,000 | 45,600 |
Ethane | 1470 | 21,400 | 4900 | 5250 | 5020 |
Ethylene | 53,400 | 60,900 | 129,000 | 124,000 | 117,000 |
Propane | nd | 5520 | 395 | 550 | 564 |
Propylene | nd | nd | 146 | 195 | 193 |
Isobutane | 29,500 | nd | 11,500 | 11,700 | 11,500 |
Acetylene | nd | nd | nd | 10,700 | nd |
n-butane | 1220 | nd | 1300 | 1680 | 1540 |
1-butene | 1.280 | nd | 5.250 | 8.060 | 4.470 |
Trans-2-butene | nd | nd | nd | nd | 1150 |
Isobutene | 395 | 2120 | 1210 | 1400 | 501 |
Cis-2-butene | nd | 2470 | 144 | 1500 | 1820 |
Isopentane | nd | nd | nd | nd | nd |
n-pentane | nd | nd | nd | nd | 65 |
Propyne | 2000 | nd | 11,100 | 13,400 | 15,900 |
1,3-butadiene | 1760 | nd | nd | nd | nd |
1-pentene | nd | nd | nd | nd | nd |
2-butine | 1420 | nd | 770 | 970 | 909 |
1-butine | nd | nd | 752 | 111 | 85 |
n-hexane | nd | nd | 1800 | 2190 | 1420 |
1-hexene | nd | nd | nd | nd | nd |
Cis-2-hexene | nd | nd | nd | nd | nd |
n-heptane | nd | nd | nd | nd | nd |
Bencene | nd | nd | nd | nd | nd |
1-heptene | nd | nd | nd | nd | nd |
Isooctane | nd | nd | nd | nd | nd |
Toluene | 1410 | 3140 | 915 | 1440 | 1170 |
Xylenes (p-,m-,o-) | nd | nd | nd | nd | nd |
Total | 119,000 | 95,600 | 221,000 | 224,000 | 204,000 |
Isomer | ClPh | MIX | MIX_TUA | MIX_NaCl | MIX_NaCl_Fe2O3 | MIX_NaCl_CuO |
---|---|---|---|---|---|---|
MONO- | 2- | 0.123 | 0.128 | 0.386 | 0.391 | 0.445 |
3- + 4- | 106 | 64 | 141 | 245 | 223 | |
DI- | 2,4- | 0.882 | 0.038 | 0.194 | 0.255 | 0.287 |
2,5- | 0.549 | 0.005 | 0.011 | 0.070 | 0.037 | |
2,3- | 0.458 | 0.005 | 0.017 | 0.021 | 0.030 | |
2,6- | 0.045 | 0.005 | 0.018 | 0.027 | 0.020 | |
3,5- | 0.247 | 0.202 | 0.209 | 0.235 | 0.295 | |
3,4- | 0.152 | 0.143 | 0.468 | 0.608 | 0.581 | |
TRI- | 2,3,5- | 0.081 | 0.030 | 0.052 | 0.116 | 0.093 |
2,4,6- | 0.033 | 0.007 | 0.017 | 0.031 | 0.027 | |
2,4,5- | 0.012 | 0.004 | 0.007 | 0.012 | 0.009 | |
2,3,4- | 0.010 | 0.002 | 0.003 | 0.007 | 0.008 | |
2,3,6- | 0.013 | 0.004 | 0.005 | 0.005 | 0.003 | |
3,4,5- | 0.743 | 0.097 | 0.851 | 1.032 | 1.437 | |
TETRA- | 2,3,5,6- | 0.040 | 0.012 | 0.015 | 0.011 | 0.023 |
2,3,4,5- | 0.053 | 0.016 | 0.018 | 0.025 | 0.134 | |
2,3,4,6- | 0.021 | 0.002 | 0.003 | 0.001 | 0.008 | |
PENTA- | penta- | 0.075 | 0.037 | 0.036 | 0.047 | 0.149 |
Total | 110 | 65 | 143 | 248 | 226 |
BrPh | MIX | MIX_TUA | MIX_NaCl | MIX_NaCl_Fe2O3 | MIX_NaCl_CuO | |
---|---|---|---|---|---|---|
MONO- | 2- | 0.021 | 0.010 | 0.036 | 0.054 | 0.016 |
3- + 4- | 0.025 | 0.008 | 0.073 | 0.141 | 0.050 | |
DI- | 2,4- | 0.016 | 0.016 | 0.026 | 0.022 | 0.032 |
2,3- + 2,5- | 0.004 | 0.003 | 0.003 | 0.002 | 0.004 | |
2,6- | 0.013 | 0.015 | 0.015 | 0.015 | 0.017 | |
3,5- | 0.033 | 0.009 | 0.012 | 0.011 | 0.011 | |
3,4- | 0.311 | 0.441 | 0.277 | 0.349 | 0.266 | |
TRI- | 2,3,5- | 0.010 | 0.007 | 0.006 | 0.005 | 0.003 |
2,4,6- | 0.020 | 0.010 | 0.009 | 0.010 | 0.007 | |
2,3,4- | 0.047 | 0.033 | 0.011 | 0.032 | 0.017 | |
2,4,5- | 0.001 | 0.001 | 0.002 | 0.003 | 0.001 | |
2,3,6- | 0.006 | 0.004 | 0.003 | 0.003 | 0.001 | |
3,4,5- | 0.039 | 0.013 | 0.021 | 0.030 | 0.030 | |
TETRA- | 2,3,5,6- | 0.027 | 0.017 | 0.011 | 0.011 | 0.008 |
2,3,4,5- + 2,3,4,6- | 0.029 | 0.012 | 0.008 | 0.009 | 0.007 | |
PENTA- | penta- | nd | nd | nd | nd | nd |
Total | 0.602 | 0.599 | 0.514 | 0.696 | 0.470 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Effect of Sodium Chloride and Thiourea on Pollutant Formation during Combustion of Plastics. Energies 2018, 11, 2014. https://doi.org/10.3390/en11082014
Iñiguez ME, Conesa JA, Fullana A. Effect of Sodium Chloride and Thiourea on Pollutant Formation during Combustion of Plastics. Energies. 2018; 11(8):2014. https://doi.org/10.3390/en11082014
Chicago/Turabian StyleIñiguez, María E., Juan A. Conesa, and Andrés Fullana. 2018. "Effect of Sodium Chloride and Thiourea on Pollutant Formation during Combustion of Plastics" Energies 11, no. 8: 2014. https://doi.org/10.3390/en11082014
APA StyleIñiguez, M. E., Conesa, J. A., & Fullana, A. (2018). Effect of Sodium Chloride and Thiourea on Pollutant Formation during Combustion of Plastics. Energies, 11(8), 2014. https://doi.org/10.3390/en11082014