Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems
Abstract
:1. Introduction
2. Related Works
2.1. Canonical PSO
2.2. CLPSO
2.3. The Social Learning Leader
2.4. Mutation
3. Methods
3.1. Multi-Leader Strategy
Algorithm 1. The pseudo code of ML-CLPSO. *Note: the line with *1, *2, *3 are alternative steps for the AM strategy, which will be introduced in Section 3.2. They are skipped in ML-CLPSO. | |
1 | Initialization |
2 | Whilect < Max_FES % Main loop (Line 2‒31) |
3 | Linearly adjusting ω, c1, c2 according to Table 1 % Adjust control parameters |
4 | For i = 1:Ps % Evolve every particle (Line 4‒30) |
5 | Update velocity of the ith particle according to Equation (6) |
6 | Update position of the ith particle according to Equation (2) |
7 | Evaluate the fitness value of the ith particle |
8 | ct = ct + 1 |
12 | If fit(X(i)) < Pbestval(i) % Update Pbest by greedy selection (Line 13,14) |
13 | Pbestval(i) = fit(X(i)) |
14 | Pbest(i) = X(i) |
15 | Stag1(i) = 0 % Reset Stag1(i) |
16 | *1 Stag2(i) = 0 % Reset Stag2(i) |
17 | Else |
18 | Stag1(i) = Stag1(i) + 1 % Update Stage1(i) |
19 | *2 Stag2(i) = Stag2(i) + 1; % Update Stage2(i) |
20 | If Stag1(i) > Stag1m % Update Leader and CL exemplar (Line 21‒26) |
21 | Stag1(i) = 0 % Reset Stag1(i) |
22 | [Sort_val, Sort_id] = sort(Pbestval) % Update candidate leader set (Line 22‒23) |
23 | CLS = Sort_id(1:NL) |
25 | Leader(i) = CLS(ceil(r1*NL)) % Update Leader |
26 | Update the comprehensive learning exemplar % Update CL exemplar |
27 | *3 Execute adaptive mutation module according to Algorithm 2 % Adaptive mutation |
28 | End |
29 | End |
30 | End |
31 | End |
3.2. Adaptive Mutation Strategy
Algorithm 2. The adaptive mutation module | |
1 | If Stag2(i) > Stag2m |
2 | Stag2(i) = 0 |
3 | Pam=1 − ct/Max_FES |
4 | If r2 < Pam |
5 | Generate a new Pbest for the ith particle according to Equations (7)–(9) |
6 | Pbestval(i) = fit(Pbest(i)); |
7 | ct = ct+1 |
8 | End |
9 | End |
3.3. Characteristics of ML and AM Strategies
4. Experimental Works
4.1. Test Problems
4.2. Parameters Settings
4.3. Comparison Tests
4.3.1. Comparison Test of Different Strategies
4.3.2. Comparison Test with PSO Variants
4.3.3. Comparison Test with EAs and Meta-Heuristics
4.4. Parameter Sensitive Analysis
5. Application to Economic Load Dispatch Problem
5.1. Problem Definition
5.2. Comparison of PSO Algorithms on ELDProblem
5.3. Comparison with ELD Tailored Algorithms
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanweer, M.R.; Suresh, S.; Sundararajan, N. Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems. Inf. Sci. 2016, 326, 1–24. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
- Chiroma, H.; Herawan, T.; Fister, I.; Fister, I.; Abdulkareem, S.; Shuib, L.; Hamza, M.F.; Saadi, Y.; Abubakar, A. Bio-inspired computation: Recent development on the modifications of the cuckoo search algorithm. Appl. Soft Comput. 2017, 61, 149–173. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm Intelligence Algorithms for Feature Selection: A Review. Appl. Sci. 2018, 8, 1521. [Google Scholar] [CrossRef]
- Yu, H.; Tan, Y.; Zeng, J.; Sun, C.; Jin, Y. Surrogate-assisted Hierarchical Particle Swarm Optimization. Inf. Sci. 2018, 454, 59–72. [Google Scholar] [CrossRef]
- Cao, L.; Xu, L.; Goodman, E.D. A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems. Inf. Sci. 2018, 453, 463–485. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.N.; Gu, T.L.; Zhang, H.X.; Deng, J.D.; Li, Y.; Zhang, J. Segment-Based Predominant Learning Swarm Optimizer for Large-Scale Optimization. IEEE Trans. Cybern. 2017, 47, 2896–2910. [Google Scholar] [CrossRef]
- Ge, H.W.; Sun, L.; Tan, G.Z.; Chen, Z.; Chen, C.L.P. Cooperative Hierarchical PSO With Two Stage Variable Interaction Reconstruction for Large Scale Optimization. IEEE Trans. Cybern. 2017, 47, 2809–2823. [Google Scholar] [CrossRef]
- Mistry, K.; Zhang, L.; Neoh, S.C.; Lim, C.P.; Fielding, B. A Micro-GA Embedded PSO Feature Selection Approach to Intelligent Facial Emotion Recognition. IEEE Trans. Cybern. 2017, 47, 1496–1509. [Google Scholar] [CrossRef]
- Chen, P.Y.; Chao, K.H.; Liao, B.J.; Sciubba, E. Joint Operation between a PSO-Based Global MPP Tracker and a PV Module Array Configuration Strategy under Shaded or Malfunctioning Conditions. Energies 2018, 11, 2005. [Google Scholar] [CrossRef]
- Liu, X.; An, H.; Wang, L.; Jia, X. An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms. Appl. Energy 2017, 185, 1778–1787. [Google Scholar] [CrossRef]
- Elsayed, W.; Hegazy, Y.; El-Bages, M.; Bendary, F. Improved Random Drift Particle Swarm Optimization with Self-Adaptive Mechanism for Solving the Power Economic Dispatch Problem. IEEE Trans. Ind. Inform. 2017, 13, 1017–1026. [Google Scholar] [CrossRef]
- Xu, D.; Yu, L.; Lv, Z.; Zhang, J.; Fan, D.; Dai, W. Energy Consumption Optimization for the Formation of Multiple Robotic Fishes Using Particle Swarm Optimization. Energies 2018, 11, 2023. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Prob. Eng. 2015, 2015, 1–38. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC 99), Washington, DC, USA, 6–9 July 1999; Volume 321, pp. 320–324. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Fuzzy adaptive particle swarm optimization. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; pp. 101–106. [Google Scholar]
- Zhan, Z.-H.; Zhang, J.; Li, Y.; Chung, H.S.-H. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 1362–1381. [Google Scholar] [CrossRef]
- Mendes, R.; Kennedy, J.; Neves, J. The fully informed particle swarm: Simpler, maybe better. IEEE Trans. Evol. Comput. 2004, 8, 204–210. [Google Scholar] [CrossRef]
- Liang, J.J.; Suganthan, P.N. Dynamic multi-swarm particle swarm optimizer. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, 8–10 June2005; pp. 124–129. [Google Scholar]
- Sun, S.Y.; Li, J.W. A two-swarm cooperative particle swarms optimization. Swarm Evol. Comput. 2014, 15, 1–18. [Google Scholar] [CrossRef]
- Lim, W.H.; Isa, N.A.M. Particle swarm optimization with increasing topology connectivity. Eng. Appl. Artif. Intell. 2014, 27, 80–102. [Google Scholar] [CrossRef]
- Qu, B.Y.; Suganthan, P.N.; Das, S. A Distance-Based Locally Informed Particle Swarm Model for Multimodal Optimization. IEEE Trans. Evol. Comput. 2013, 17, 387–402. [Google Scholar] [CrossRef]
- Peram, T.; Veeramachaneni, K.; Mohan, C.K. Fitness-distance-ratio based particle swarm optimization. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 26 April 2003; pp. 174–181. [Google Scholar]
- Parsopoulos, K.E.; Vrahatis, M.N. Unified Particle Swarm Optimization for solving constrained engineering optimization problems. In Proceedings of the International Conference on Natural Computation, Changsha, China, 27–29 2005; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3612, pp. 582–591. [Google Scholar]
- Zhan, Z.H.; Zhang, J.; Li, Y.; Shi, Y.H. Orthogonal Learning Particle Swarm Optimization. IEEE Trans. Evol. Comput. 2011, 15, 832–847. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yan, S.; Nguyen, T.T. A self-learning particle swarm optimizer for global optimization problems. IEEE Trans. Syst. Man Cybern. B Cybern. 2012, 42, 627–646. [Google Scholar]
- Juang, C.F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2004, 34, 997–1006. [Google Scholar] [CrossRef]
- Shieh, H.L.; Kuo, C.C.; Chiang, C.M. Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl. Math. Comput. 2011, 218, 4365–4383. [Google Scholar] [CrossRef]
- Liu, H.; Cai, Z.X.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [Google Scholar] [CrossRef]
- Ouyang, H.B.; Gao, L.Q.; Kong, X.Y.; Li, S.; Zou, D.X. Hybrid harmony search particle swarm optimization with global dimension selection. Inf. Sci. 2016, 346–347, 318–337. [Google Scholar] [CrossRef]
- Wei, H.L.; Isa, N.A.M. Teaching and peer-learning particle swarm optimization. Appl. Soft Comput. 2014, 18, 39–58. [Google Scholar]
- Jiang, S.; Ji, Z.; Shen, Y. A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Int. J. Electr. Power 2014, 55, 628–644. [Google Scholar] [CrossRef]
- Khunkitti, S.; Siritaratiwat, A.; Premrudeepreechacharn, S.; Chatthaworn, R.; Watson, N. A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems. Energies 2018, 11, 2270. [Google Scholar] [CrossRef]
- Tanweer, M.R.; Suresh, S.; Sundararajan, N. Self regulating particle swarm optimization algorithm. Inf. Sci. 2015, 294, 182–202. [Google Scholar] [CrossRef]
- Tanweer, M.R.; Auditya, R.; Suresh, S.; Sundararajan, N.; Srikanth, N. Directionally Driven Self-Regulating Particle Swarm Optimization algorithm. Swarm Evol. Comput. 2016, 28, 98–116. [Google Scholar] [CrossRef]
- Qin, Q.D.; Cheng, S.; Zhang, Q.Y.; Li, L.; Shi, Y.H. Particle Swarm Optimization With Interswarm Interactive Learning Strategy. IEEE Trans. Cybern. 2016, 46, 2238–2251. [Google Scholar] [CrossRef]
- Mo, S.M.; Zeng, J.C.; Xu, W.B. Attractive and Repulsive Fully Informed Particle Swarm Optimization based on the modified Fitness Model. Soft Comput. 2016, 20, 863–884. [Google Scholar] [CrossRef]
- Dong, W.Y.; Kang, L.L.; Zhang, W.S. Opposition-based particle swarm optimization with adaptive mutation strategy. Soft Comput. 2017, 21, 5081–5090. [Google Scholar] [CrossRef]
- Wang, H.D.; Jin, Y.C.; Doherty, J. Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive Problems. IEEE Trans. Cybern. 2017, 47, 2664–2677. [Google Scholar] [CrossRef] [Green Version]
- Ye, W.X.; Feng, W.Y.; Fan, S.H. A novel multi-swarm particle swarm optimization with dynamic learning strategy. Appl. Soft Comput. 2017, 61, 832–843. [Google Scholar] [CrossRef]
- Dong, W.Y.; Zhou, M.C. A Supervised Learning and Control Method to Improve Particle Swarm Optimization Algorithms. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1135–1148. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Li, K.S.; Lin, Z.Y.; Yang, J.; Shen, X.L. A hybrid particle swarm optimization algorithm using adaptive learning strategy. Inf. Sci. 2018, 436, 162–177. [Google Scholar] [CrossRef]
- Liang, J.J.; Qin, A.K.; Member, S.; Suganthan, P.N.; Member, S.; Baskar, S. Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [Google Scholar] [CrossRef]
- Nasir, M.; Das, S.; Maity, D.; Sengupta, S.; Halder, U.; Suganthan, P.N. A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf. Sci. 2012, 209, 16–36. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y. A social learning particle swarm optimization algorithm for scalable optimization. Inf. Sci. 2015, 291, 43–60. [Google Scholar] [CrossRef]
- Jordehi, A.R. Enhanced leader PSO (ELPSO): A new PSO variant for solving global optimisation problems. Appl. Soft Comput. 2015, 26, 401–417. [Google Scholar] [CrossRef]
- Lynn, N.; Suganthan, P.N. Ensemble particle swarm optimizer. Appl. Soft Comput. 2017, 55, 533–548. [Google Scholar] [CrossRef]
- Gong, Y.J.; Li, J.J.; Zhou, Y.C.; Li, Y.; Chung, H.S.H.; Shi, Y.H.; Zhang, J. Genetic Learning Particle Swarm Optimization. IEEE Trans. Cybern. 2016, 46, 2277–2290. [Google Scholar] [CrossRef]
- Lynn, N.; Suganthan, P.N. Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 2015, 24, 11–24. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Sanderson, A.C. JADE: Adaptive Differential Evolution With Optional External Archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Hansen, N.; Muller, S.D.; Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 2003, 11, 1–18. [Google Scholar] [CrossRef]
- Wu, G. Across neighbourhood search for numerical optimization. Inf. Sci. 2016, 329, 597–618. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Shi, Y.H.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the IEEE World Congress on Computational Intelligence, 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar] [CrossRef]
- Chen, W.N.; Zhang, J.; Lin, Y.; Chen, N.; Zhan, Z.H.; Chung, H.S.H.; Li, Y.; Shi, Y.H. Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 2013, 17, 241–258. [Google Scholar] [CrossRef]
- Yu, K.J.; Wang, X.; Wang, Z.L. Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization. Knowl.-Based Syst. 2016, 96, 156–170. [Google Scholar] [CrossRef]
- Holland, J.H. Erratum: Genetic Algorithms and the Optimal Allocation of Trials. Siam J. Comput. 1973, 2, 88–105. [Google Scholar] [CrossRef]
- Higashi, N.; Iba, H. Particle swarm optimization with Gaussian mutation. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 26 April 2003; pp. 72–79. [Google Scholar]
- Jiao, W.; Liu, G.; Liu, D. Elite Particle Swarm Optimization with mutation. In Proceedings of the Asia Simulation Conference—International Conference on System Simulation and Scientific Computing, Beijing, China, 10–12 October 2018; pp. 800–803. [Google Scholar]
- Wang, H.; Wang, W.J.; Wu, Z.J. Particle swarm optimization with adaptive mutation for multimodal optimization. Appl. Math. Comput. 2013, 221, 296–305. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, B.L. A hierarchical particle swarm optimizer with latin sampling based memetic algorithm for numerical optimization. Appl. Soft Comput. 2013, 13, 2823–2836. [Google Scholar] [CrossRef] [Green Version]
- Pehlivanoglu, Y.V. A New Particle Swarm Optimization Method Enhanced With a Periodic Mutation Strategy and Neural Networks. IEEE Trans. Evol. Comput. 2013, 17, 436–452. [Google Scholar] [CrossRef]
- Qiu, C.Y.; Wang, C.L.; Zuo, X.Q. A novel multi-objective particle swarm optimization with K-means based global best selection strategy. Int. J. Comput. Int. Syst. 2013, 6, 822–835. [Google Scholar] [CrossRef]
- Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Wu, T.; Weir, J.D. An Adaptive Particle Swarm Optimization With Multiple Adaptive Methods. IEEE Trans. Evol. Comput. 2013, 17, 705–720. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization. Available online: http://www.ntu.edu.sg/home/epnsugan/ (accessed on 15 October 2016).
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1999; Volume 2, p. 787. [Google Scholar]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference, 5th ed.; Chapman & Hall: London, UK, 2010. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671. [Google Scholar] [CrossRef]
- Pothiya, S.; Ngamroo, I.; Kongprawechnon, W. Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints. Energy Convers. Manag. 2008, 49, 506–516. [Google Scholar] [CrossRef]
- Chaturvedi, K.T.; Pandit, M.; Srivastava, L. Self-Organizing Hierarchical Particle Swarm Optimization for Nonconvex Economic Dispatch. IEEE Trans. Power Syst. 2008, 23, 1079–1087. [Google Scholar] [CrossRef]
- Sun, J.; Palade, V.; Wu, X.J.; Fang, W.; Wang, Z. Solving the Power Economic Dispatch Problem with Generator Constraints by Random Drift Particle Swarm Optimization. IEEE Trans. Ind. Inform. 2013, 10, 222–232. [Google Scholar] [CrossRef]
- Pothiya, S.; Ngamroo, I.; Kongprawechnon, W. Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Int. J. Electr. Power 2010, 32, 478–487. [Google Scholar] [CrossRef]
- Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K. Evolutionary programming techniques for economic load dispatch. Int. J. Emerg. Electr. Power Syst. 2003, 7, 83–94. [Google Scholar] [CrossRef]
- Reddy, A.S.; Vaisakh, K. Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res. 2013, 96, 237–245. [Google Scholar] [CrossRef]
- Mohammadi, F.; Abdi, H. A Modified Crow Search Algorithm (MCSA) for Solving Economic Load Dispatch Problem. Appl. Soft Comput. 2018, 71, 51–65. [Google Scholar] [CrossRef]
- Adarsh, B.R.; Raghunathan, T.; Jayabarathi, T.; Yang, X.S. Economic dispatch using chaotic bat algorithm. Energy 2016, 96, 666–675. [Google Scholar] [CrossRef]
- Ghorbani, N.; Babaei, E. Exchange market algorithm for economic load dispatch. Int. J. Electr. Power 2016, 75, 19–27. [Google Scholar] [CrossRef]
- Duman, S.; Yorukeren, N.; Altas, I.H. A novel modified hybrid PSOGSA based on fuzzy logic for non-convex economic dispatch problem with valve-point effect. Int J. Electr. Power 2015, 64, 121–135. [Google Scholar] [CrossRef]
- Zakian, P.; Kaveh, A. Economic dispatch of power systems using an adaptive charged system search algorithm. Appl. Soft Comput. 2018, 73, 607–622. [Google Scholar] [CrossRef]
No. | Algorithm | Year | Parameter Settings |
---|---|---|---|
1 | ML-CLPSO | / | Ps = 40, ω = 0.9–0.4, c1 = 2.5–0.5, c2 = 0.5–2.5, stag1m = 6, NL = 6 |
2 | CLPSO-AM | / | Ps = 40, ω = 0.9–0.4, c1 = 2.5–0.5, c2 = 0.5–2.5, stag1m = 6, stag2m = 40, η = 0.6 |
3 | ML-CLPSO-AM | / | Ps = 40, ω = 0.9–0.4, c1 = 2.5–0.5, c2 = 0.5–2.5, stag1m = 6, stag2m = 40 , NL = 10, η = 0.6 |
4 | PSO-cf [50] | 2002 | Ps = 40, χ = 0.7298, c1 = c2 = 2.05 |
5 | FIPS [23] | 2004 | Ps = 40, χ = 0.7298, φ = 4.1 |
6 | FDR-PSO [28] | 2003 | Ps = 40, φ1 = 1, φ2 = 1, φ3 = 2, ω = 0.9–0.4 |
7 | CLPSO [48] | 2006 | Ps = 40, ω = 0.9‒0.4, c = 1.49445, |
8 | CLPSO-G [55] | / | Ps = 40, ω = 0.99‒0.2, c1 = 2.5‒0.5, c2 = 0.5–2.5 |
9 | SL-PSO [51] | 2015 | M = 100, α = 0.5, β = 0.01, Ps = M + ceil(D/10) |
10 | HCLPSO [55] | 2015 | Ps = 40, ω = 0.99–0.2, c1 = 2.5–0.5, c2 = 0.5‒2.5, c = 3–1.5, g1 = 15, g2 = 25 |
11 | EL-PSO [52] | 2015 | Ps = 1500, ω = 0.9–0.4, c1 = c2 = 2, h = 1, s = 2, F = 1.2 |
12 | GL-PSO [54] | 2016 | Ps = 50, ω = 0.7298, c = 1.49618, pm = 0.01, sg = 7 |
13 | EPSO [53] | 2017 | Reference [53] |
Function | CLPSO | CLPSO-G | ML-CLPSO | CLPSO-AM | ML-CLPSO-AM |
---|---|---|---|---|---|
f1 | <1.443E+01 | <3.111E+03 | <2.394E+03 | >4.798E+03 | 4.348E+03 |
f | >2.187E+12 | >2.502E+05 | >1.248E+01 | >2.208E+01 | 0.000E+00 |
f3 | >1.920E+04 | <6.147E-04 | <4.880E-06 | <1.707E-09 | 3.671E-02 |
f4 | >7.262E+01 | >7.312E+01 | >8.381E+01 | <6.104E+01 | 6.538E+01 |
f5 | >4.216E+01 | >4.107E+01 | >2.018E+01 | >4.479E+01 | 1.437E+01 |
f6 | >7.089E-08 | >6.614E-04 | >4.093E-07 | >7.047E-05 | 2.190E-08 |
f7 | >9.413E+01 | >9.434E+01 | >7.735E+01 | >9.183E+01 | 4.469E+01 |
f8 | >4.962E+01 | >4.712E+01 | >1.986E+01 | >4.720E+01 | 1.377E+01 |
f9 | >5.864E+01 | >5.802E+00 | >2.534E-02 | >5.033E+00 | 2.175E-02 |
f10 | >2.214E+03 | >2.528E+03 | >2.668E+03 | >2.567E+03 | 2.312E+02 |
f11 | >4.786E+01 | >5.739E+01 | >1.625E+01 | >6.958E+01 | 9.753E+00 |
f12 | >2.926E+05 | <2.341E+04 | <1.603E+04 | <2.473E+04 | 3.138E+04 |
f13 | <2.802E+02 | <1.045E+04 | <8.177E+03 | <9.862E+03 | 1.755E+04 |
f14 | >2.046E+04 | <5.145E+03 | <2.184E+03 | <2.313E+03 | 6.311E+03 |
f15 | <1.086E+02 | >4.153E+03 | >2.172E+03 | >7.085E+03 | 2.092E+03 |
f16 | >4.137E+02 | >6.832E+02 | >2.042E+02 | >4.018E+02 | 2.862E+01 |
f17 | >8.360E+01 | >1.139E+02 | >4.646E+01 | >1.202E+02 | 2.472E+01 |
f18 | >1.001E+05 | >1.146E+05 | >1.142E+05 | <7.270E+04 | 1.087E+05 |
f19 | <6.657E+01 | <6.650E+03 | <4.560E+03 | =1.122E+04 | 1.096E+04 |
f20 | >1.189E+02 | >1.478E+02 | >1.223E+02 | >1.534E+02 | 7.202E+01 |
f21 | >2.454E+02 | >2.456E+02 | >2.200E+02 | >2.521E+02 | 2.142E+02 |
f22 | =1.034E+02 | =1.006E+02 | =1.000E+02 | >2.615E+02 | 1.000E+02 |
f23 | >3.955E+02 | >4.059E+02 | >3.655E+02 | >3.944E+02 | 3.522E+02 |
f24 | >4.786E+02 | >4.719E+02 | >4.370E+02 | >4.644E+02 | 4.279E+02 |
f25 | =3.869E+02 | =3.874E+02 | =3.870E+02 | =3.874E+02 | 3.869E+02 |
f26 | <3.037E+02 | >1.056E+03 | <7.546E+02 | >1.143E+03 | 7.926E+02 |
f27 | >5.105E+02 | >5.171E+02 | =5.041E+02 | =5.052E+02 | 5.039E+02 |
f28 | >4.129E+02 | <3.444E+02 | <3.319E+02 | <3.505E+02 | 3.621E+02 |
f29 | >5.151E+02 | >5.188E+02 | >4.404E+02 | >4.936E+02 | 4.213E+02 |
f30 | =4.697E+03 | <4.511E+03 | <3.420E+03 | <4.182E+03 | 4.756E+03 |
w/t/l | 22/3/5 | 20/2/8 | 18/3/9 | 19/3/8 | / |
best | 5 | 0 | 5 | 3 | 19 |
Function | PSO-cf | FIPS | FDR-PSO | SL-PSO | EL-PSO | EPSO | GL-PSO | HCLPSO | ML-CLPSO-AM |
---|---|---|---|---|---|---|---|---|---|
f1 | >5.819E+03 | <3.513E+03 | >4.773E+03 | >5.106E+03 | <2.404E+03 | <2.683E+03 | <2.933E+03 | <7.772E+01 | 4.348E+03 |
f2 | >5.320E+20 | >1.108E+15 | >1.259E+10 | >1.523E+11 | >4.634E+14 | >2.208E+01 | >1.272E+04 | >2.145E+06 | 0.000E+00 |
f3 | <1.717E-08 | >4.089E+03 | >1.546E-08 | >7.047E+03 | <3.258E-02 | <8.345E-13 | >1.815E+01 | <1.575E-03 | 3.671E-02 |
f4 | >1.447E+02 | >1.247E+02 | <2.850E+01 | >7.736E+01 | >7.800E+01 | <6.907E+00 | <2.525E+01 | >6.848E+01 | 6.538E+01 |
f5 | >8.075E+01 | >1.375E+02 | >5.657E+01 | >1.842E+01 | >1.070E+02 | >4.249E+01 | >5.189E+01 | >4.277E+01 | 1.437E+01 |
f6 | >6.666E+00 | >2.600E-08 | >7.507E-02 | >1.682E-06 | >2.064E+01 | >3.702E-05 | >3.085E-04 | <3.956E-13 | 2.190E-08 |
f7 | >1.277E+02 | >1.915E+02 | >9.450E+01 | >1.878E+02 | >1.335E+02 | >8.188E+01 | >8.448E+01 | >8.523E+01 | 4.469E+01 |
f8 | >9.030E+01 | >1.361E+02 | >5.715E+01 | >1.738E+01 | >8.856E+01 | >4.729E+01 | >5.023E+01 | >4.372E+01 | 1.377E+01 |
f9 | >6.503E+02 | <0.000E+00 | >1.907E+01 | >8.401E-02 | >9.486E+02 | >2.398E+01 | >7.633E+00 | >2.074E+01 | 2.175E-02 |
f10 | >3.638E+03 | >6.305E+03 | >3.082E+03 | >1.006E+03 | >3.423E+03 | >2.153E+03 | >2.880E+03 | >2.070E+03 | 2.312E+02 |
f11 | >1.371E+02 | >7.088E+01 | >1.039E+02 | >2.806E+01 | >6.677E+01 | >7.407E+01 | >6.895E+01 | >5.509E+01 | 9.753E+00 |
f12 | >1.554E+06 | >5.291E+05 | <2.136E+04 | >4.592E+04 | >7.220E+04 | <2.134E+04 | <2.432E+04 | >3.588E+04 | 3.138E+04 |
f13 | >1.060E+06 | <1.330E+04 | <1.679E+04 | <1.573E+04 | <2.707E+03 | <3.078E+03 | <9.857E+03 | <7.374E+02 | 1.755E+04 |
f14 | >4.570E+04 | <6.170E+03 | <4.440E+03 | >1.743E+04 | <9.221E+01 | <2.701E+03 | <1.716E+03 | <3.442E+03 | 6.311E+03 |
f15 | >1.457E+04 | >1.651E+04 | >7.190E+03 | <1.890E+03 | <1.388E+03 | <4.325E+02 | >3.388E+03 | <3.305E+02 | 2.092E+03 |
f16 | >9.090E+02 | >8.411E+02 | >6.923E+02 | >1.537E+02 | >8.995E+02 | >6.223E+02 | >8.225E+02 | >4.413E+02 | 2.862E+01 |
f17 | >4.503E+02 | >1.626E+02 | >1.961E+02 | >9.080E+01 | >2.324E+02 | >1.678E+02 | >1.876E+02 | >9.811E+01 | 2.472E+01 |
f18 | >1.328E+05 | >3.075E+05 | <8.228E+04 | <1.024E+05 | <2.274E+04 | <6.494E+04 | <5.444E+04 | <9.355E+04 | 1.087E+05 |
f19 | >1.302E+04 | <5.781E+03 | <8.812E+03 | <2.226E+03 | <3.712E+03 | <3.858E+02 | <7.901E+03 | <1.580E+02 | 1.096E+04 |
f20 | >4.708E+02 | >1.927E+02 | >2.182E+02 | >1.326E+02 | >3.312E+02 | >1.998E+02 | >2.756E+02 | >1.267E+02 | 7.202E+01 |
f21 | >2.896E+02 | >3.381E+02 | >2.595E+02 | >2.200E+02 | >2.951E+02 | >2.341E+02 | >2.512E+02 | >2.401E+02 | 2.142E+02 |
f22 | >2.555E+03 | =1.000E+02 | >9.137E+02 | =1.002E+02 | >2.675E+02 | =1.005E+02 | =1.002E+02 | =1.002E+02 | 1.000E+02 |
f23 | >4.392E+02 | >4.624E+02 | >4.123E+02 | >3.706E+02 | >4.909E+02 | >4.005E+02 | >4.037E+02 | >3.941E+02 | 3.522E+02 |
f24 | >5.057E+02 | >5.636E+02 | >4.700E+02 | >4.477E+02 | >5.172E+02 | >4.577E+02 | >4.739E+02 | >4.673E+02 | 4.279E+02 |
f25 | >4.171E+02 | =3.918E+02 | =3.882E+02 | =3.874E+02 | =3.911E+02 | =3.875E+02 | =3.900E+02 | =3.869E+02 | 3.869E+02 |
f26 | >2.255E+03 | >1.942E+03 | >1.355E+03 | >1.186E+03 | >2.036E+03 | <7.263E+02 | >1.438E+03 | <4.306E+02 | 7.926E+02 |
f27 | >5.892E+02 | >5.457E+02 | >5.304E+02 | >5.195E+02 | >5.363E+02 | >5.179E+02 | >5.170E+02 | >5.124E+02 | 5.039E+02 |
f28 | >4.392E+02 | >4.066E+02 | <3.132E+02 | >3.755E+02 | >4.133E+02 | <3.219E+02 | =3.595E+02 | >3.758E+02 | 3.621E+02 |
f29 | >9.545E+02 | >6.983E+02 | >6.613E+02 | >4.895E+02 | >8.371E+02 | >5.972E+02 | >6.719E+02 | >5.089E+02 | 4.213E+02 |
f30 | >4.606E+04 | >2.809E+04 | <4.378E+03 | <3.709E+03 | >6.639E+03 | <4.083E+03 | >5.454E+03 | <4.500E+03 | 4.756E+03 |
w/t/l | 29/0/1 | 23/2/5 | 21/1/8 | 23/2/5 | 22/1/7 | 16/2/12 | 19/3/8 | 18/2/10 | / |
best | 0 | 2 | 1 | 1 | 2 | 3 | 0 | 7 | 16 |
Function | PSO-cf | FIPS | FDR-PSO | SL-PSO | EL-PSO | EPSO | GL-PSO | HCLPSO | ML-CLPSO-AM |
---|---|---|---|---|---|---|---|---|---|
f1 | 9 | 5 | 7 | 8 | 2 | 3 | 4 | 1 | 6 |
f2 | 9 | 8 | 5 | 6 | 7 | 2 | 3 | 4 | 1 |
f3 | 3 | 8 | 2 | 9 | 5 | 1 | 7 | 4 | 6 |
f4 | 9 | 8 | 3 | 6 | 7 | 1 | 2 | 5 | 4 |
f5 | 7 | 9 | 6 | 2 | 8 | 3 | 5 | 4 | 1 |
f6 | 8 | 3 | 7 | 4 | 9 | 5 | 6 | 1 | 2 |
f7 | 6 | 9 | 5 | 8 | 7 | 2 | 3 | 4 | 1 |
f8 | 8 | 9 | 6 | 2 | 7 | 4 | 5 | 3 | 1 |
f9 | 8 | 1 | 5 | 3 | 9 | 7 | 4 | 6 | 2 |
f10 | 8 | 9 | 6 | 2 | 7 | 4 | 5 | 3 | 1 |
f11 | 9 | 6 | 8 | 2 | 4 | 7 | 5 | 3 | 1 |
f12 | 9 | 8 | 2 | 6 | 7 | 1 | 3 | 5 | 4 |
f13 | 9 | 5 | 7 | 6 | 2 | 3 | 4 | 1 | 8 |
f14 | 9 | 6 | 5 | 8 | 1 | 3 | 2 | 4 | 7 |
f15 | 8 | 9 | 7 | 4 | 3 | 2 | 6 | 1 | 5 |
f16 | 9 | 7 | 5 | 2 | 8 | 4 | 6 | 3 | 1 |
f17 | 9 | 4 | 7 | 2 | 8 | 5 | 6 | 3 | 1 |
f18 | 8 | 9 | 4 | 6 | 1 | 3 | 2 | 5 | 7 |
f19 | 9 | 5 | 7 | 3 | 4 | 2 | 6 | 1 | 8 |
f20 | 9 | 4 | 6 | 3 | 8 | 5 | 7 | 2 | 1 |
f21 | 7 | 9 | 6 | 2 | 8 | 3 | 5 | 4 | 1 |
f22 | 9 | 1 | 8 | 3 | 7 | 6 | 3 | 3 | 1 |
f23 | 7 | 8 | 6 | 2 | 9 | 4 | 5 | 3 | 1 |
f24 | 7 | 9 | 5 | 2 | 8 | 3 | 6 | 4 | 1 |
f25 | 9 | 8 | 5 | 3 | 7 | 4 | 6 | 1 | 1 |
f26 | 9 | 7 | 5 | 4 | 8 | 2 | 6 | 1 | 3 |
f27 | 9 | 8 | 6 | 5 | 7 | 4 | 3 | 2 | 1 |
f28 | 9 | 7 | 1 | 5 | 8 | 2 | 3 | 6 | 4 |
f29 | 9 | 7 | 5 | 2 | 8 | 4 | 6 | 3 | 1 |
f30 | 9 | 8 | 3 | 1 | 7 | 2 | 6 | 4 | 5 |
Average | 8.233 | 6.800 | 5.333 | 4.033 | 6.367 | 3.367 | 4.667 | 3.133 | 2.900 |
overall | 9 | 8 | 6 | 4 | 7 | 3 | 5 | 2 | 1 |
Function | JADE | ABC | CMA-ES | GWO | ANS | SSA | ML-CLPSO-AM |
---|---|---|---|---|---|---|---|
f1 | <1.364E-14 | <2.410E+02 | <2.842E-14 | >2.409E+09 | <3.358E+01 | >5.381E+03 | 4.348E+03 |
f | >1.219E+04 | >5.913E+10 | =0.000E+00 | >8.014E+28 | >2.810E+06 | >1.024E+06 | 0.000E+00 |
f3 | >6.864E+03 | >1.105E+05 | <1.046E-13 | >3.383E+04 | >1.506E+04 | <3.429E-08 | 3.671E-02 |
f4 | <4.879E+01 | <2.243E+01 | <1.472E+01 | >2.022E+02 | <3.567E+01 | >8.904E+01 | 6.538E+01 |
f5 | >2.640E+01 | >8.314E+01 | >3.057E+02 | >9.683E+01 | >4.948E+01 | >1.121E+02 | 1.437E+01 |
f6 | <1.546E-13 | <3.820E-13 | >6.355E+01 | >8.566E+00 | >3.725E-07 | >2.884E+01 | 2.190E-08 |
f7 | >5.493E+01 | >1.043E+02 | >7.504E+02 | >1.679E+02 | >8.234E+01 | >1.546E+02 | 4.469E+01 |
f8 | >2.541E+01 | >9.357E+01 | >2.248E+02 | >8.509E+01 | >5.472E+01 | >1.200E+02 | 1.377E+01 |
f9 | <7.162E-03 | >1.166E+03 | >4.697E+03 | >7.787E+02 | >1.225E+02 | >2.018E+03 | 2.175E-02 |
f10 | >1.872E+03 | >2.571E+03 | >4.566E+03 | >3.009E+03 | >2.291E+03 | >3.810E+03 | 2.312E+02 |
f11 | >3.489E+01 | >7.107E+02 | >1.594E+02 | >7.469E+02 | >2.181E+01 | >1.588E+02 | 9.753E+00 |
f12 | <1.204E+03 | >1.009E+06 | <1.721E+03 | >5.357E+07 | >3.633E+05 | >1.342E+06 | 3.138E+04 |
f13 | <4.296E+01 | >1.938E+04 | <2.147E+03 | >2.086E+06 | <5.011E+02 | >1.036E+05 | 1.755E+04 |
f14 | <3.709E+03 | >1.383E+05 | <1.699E+02 | >3.546E+05 | >4.686E+04 | <3.435E+03 | 6.311E+03 |
f15 | >2.541E+03 | >4.093E+03 | <2.062E+02 | >5.967E+05 | <1.346E+02 | >5.081E+04 | 2.092E+03 |
f16 | >3.719E+02 | >6.126E+02 | >1.353E+03 | >8.156E+02 | >6.253E+02 | >8.770E+02 | 2.862E+01 |
f17 | >8.579E+01 | >1.907E+02 | >3.490E+02 | >3.132E+02 | >1.724E+02 | >3.387E+02 | 2.472E+01 |
f18 | <1.865E+04 | >2.858E+05 | <1.717E+02 | >1.385E+06 | >1.234E+05 | >1.760E+05 | 1.087E+05 |
f19 | <1.552E+03 | >1.533E+04 | <1.644E+02 | >6.058E+05 | <1.495E+02 | >2.986E+05 | 1.096E+04 |
f20 | >1.207E+02 | >2.104E+02 | >1.372E+03 | >3.321E+02 | >2.162E+02 | >3.927E+02 | 7.202E+01 |
f21 | >2.267E+02 | <2.107E+02 | >3.976E+02 | >2.901E+02 | >2.509E+02 | >3.108E+02 | 2.142E+02 |
f22 | =1.000E+02 | >1.144E+02 | >5.830E+03 | >2.206E+03 | >6.238E+02 | >2.229E+03 | 1.000E+02 |
f23 | >3.735E+02 | >4.202E+02 | >2.306E+03 | >4.518E+02 | >4.012E+02 | >4.644E+02 | 3.522E+02 |
f24 | >4.395E+02 | <3.815E+02 | >5.518E+02 | >5.204E+02 | >5.234E+02 | >5.192E+02 | 4.279E+02 |
f25 | =3.870E+02 | <3.844E+02 | >3.882E+02 | >4.752E+02 | =3.850E+02 | >3.987E+02 | 3.869E+02 |
f26 | >1.202E+03 | <2.973E+02 | >2.274E+03 | >2.176E+03 | >8.069E+02 | >1.982E+03 | 7.926E+02 |
f27 | =5.039E+02 | >5.138E+02 | =5.000E+02 | >5.549E+02 | >5.145E+02 | >5.305E+02 | 5.039E+02 |
f28 | <3.478E+02 | >3.987E+02 | <3.513E+02 | >6.196E+02 | >3.977E+02 | >3.961E+02 | 3.621E+02 |
f29 | >4.759E+02 | >6.232E+02 | >7.836E+02 | >8.480E+02 | >5.745E+02 | >1.049E+03 | 4.213E+02 |
f30 | <2.157E+03 | >1.549E+04 | >5.315E+03 | >7.078E+06 | =4.724E+03 | >1.188E+06 | 4.756E+03 |
w/t/l | 16/3/11 | 23/0/7 | 18/2/10 | 30/0/0 | 23/2/5 | 28/0/2 | |
best | 7 | 4 | 7 | 0 | 2 | 0 | 12 |
Problem | Statistic | PSO-cf | FIPS | FDR-PSO | SL-PSO | EL-PSO | EPSO | GL-PSO | HCLPSO | ML-CLPSO-AM |
---|---|---|---|---|---|---|---|---|---|---|
6 Units | Mean | 1.550E+04 | 1.547E+04 | 1.547E+04 | 1.551E+04 | 1.547E+04 | 1.545E+04 | 1.548E+04 | 1.545E+04 | 1.545E+04 |
St.D | 3.773E+01 | 1.197E+01 | 9.664E+00 | 1.897E+01 | 1.945E+01 | 2.121E+00 | 2.154E+01 | 2.170E+00 | 3.653E+00 | |
Max | 1.560E+04 | 1.549E+04 | 1.548E+04 | 1.554E+04 | 1.551E+04 | 1.545E+04 | 1.552E+04 | 1.545E+04 | 1.545E+04 | |
Min | 1.545E+04 | 1.545E+04 | 1.545E+04 | 1.547E+04 | 1.545E+04 | 1.544E+04 | 1.545E+04 | 1.545E+04 | 1.544E+04 | |
15 Units | Mean | 3.310E+04 | 3.297E+04 | 3.304E+04 | 3.298E+04 | 3.306E+04 | 3.293E+04 | 3.294E+04 | 3.297E+04 | 3.273E+04 |
St.D | 1.324E+02 | 5.105E+01 | 5.911E+01 | 8.433E+01 | 8.433E+01 | 3.745E+01 | 4.928E+01 | 3.347E+01 | 3.786E+01 | |
Max | 3.330E+04 | 3.307E+04 | 3.317E+04 | 3.315E+04 | 3.321E+04 | 3.303E+04 | 3.306E+04 | 3.303E+04 | 3.281E+04 | |
Min | 3.287E+04 | 3.288E+04 | 3.295E+04 | 3.284E+04 | 3.290E+04 | 3.289E+04 | 3.287E+04 | 3.290E+04 | 3.269E+04 | |
40 Units | Mean | 1.441E+05 | 1.372E+05 | 1.414E+05 | 1.329E+05 | 1.419E+05 | 1.358E+05 | 1.406E+05 | 1.353E+05 | 1.283E+05 |
St.D | 6.492E+03 | 3.093E+03 | 5.180E+03 | 3.097E+03 | 4.586E+03 | 2.238E+03 | 4.740E+03 | 1.674E+03 | 6.357E+02 | |
Max | 1.565E+05 | 1.424E+05 | 1.508E+05 | 1.415E+05 | 1.490E+05 | 1.397E+05 | 1.480E+05 | 1.374E+05 | 1.309E+05 | |
Min | 1.312E+05 | 1.325E+05 | 1.351E+05 | 1.305E+05 | 1.358E+05 | 1.321E+05 | 1.318E+05 | 1.320E+05 | 1.272E+05 |
Problem | PSO-cf | FIPS | FDR-PSO | SL-PSO | EL-PSO | EPSO | GL-PSO | HCLPSO | ML-CLPSO-AM |
---|---|---|---|---|---|---|---|---|---|
6 Units | 8 | 4 | 4 | 9 | 4 | 1 | 7 | 1 | 1 |
15 Units | 9 | 4 | 7 | 6 | 8 | 2 | 3 | 4 | 1 |
40 Units | 9 | 5 | 7 | 2 | 8 | 4 | 6 | 3 | 1 |
Average | 8.667 | 4.333 | 6.000 | 5.667 | 6.667 | 2.333 | 5.333 | 2.667 | 1.000 |
Overall | 9 | 4 | 7 | 6 | 8 | 2 | 5 | 3 | 1 |
Algorithm | Best Cost ($/h) | Mean Cost ($/h) | Maximum Cost ($/h) |
---|---|---|---|
CBA [84] | 15,450.24 | 15,454.76 | 15,518.66 |
SA [77] | 15,461.10 | 15,488.98 | 15,519.87 |
MTS [77] | 15,450.14 | 15,451.17 | 15,453.64 |
MCSA [83] | 15,449.1672 | 15,449.2358 | 15,449.3854 |
SOH-PSO [78] | 15,446.02 | 15,497.35 | 15,609.64 |
DE [79] | 15,444.9466 | 15,450.1339 | 15,472.0651 |
*RD-PSO [79] | 15,442.7575 | 15,445.0245 | 15,455.2936 |
ML-CLPSO-AM | 15,444.1923 | 15,446.5392 | 15,449.0358 |
Algorithm | Best Cost ($/h) | Mean Cost ($/h) | Maximum Cost ($/h) |
---|---|---|---|
SA [77] | 32,786.40 | 32,869.51 | 33,028.95 |
MTS [77] | 32,716.87 | 32,767.21 | 32,796.15 |
SOH-PSO [78] | 32,751 | 32,878 | 32,945 |
ACSS [87] | 32,678.1290 | 32,727.6967 | 32,761.3126 |
HGPSO [79] | 32,864.0501 | 33,034.1894 | 33,280.2655 |
DE [79] | 32,818.5792 | 32,990.8673 | 33,116.9340 |
*RD-PSO [79] | 32,652.3357 | 32,744.5873 | 32,959.7592 |
ML-CLPSO-AM | 32,694.1963 | 32,728.3782 | 32,813.3675 |
Algorithm | Best Cost ($/h) | Mean Cost ($/h) | Maximum Cost ($/h) |
---|---|---|---|
ACO [80] | 121,811.3700 | 121,930.5800 | 122,048.0600 |
CEP [81] | 123,488.29 | 124,793.48 | 126,902.89 |
EMA [85] | 121,412.5355 | 121,417.1328 | 121,426.1548 |
MCSA [83] | 121,412.140 | 121,413.280 | 121,414.324 |
SDE [82] | 121,412.54 | 121,415.72 | 121,418.58 |
FPSOGSA [86] | 121,412.54211 | 121,413.5619 | 121,414.9838 |
*RD-PSO [79] | 128,864.4525 | 129,482.0970 | 131,129.0861 |
ML-CLPSO-AM | 127,188.4367 | 128,319.3124 | 130,873.5517 |
Unit (MW) | Output | Unit (MW) | Output | Economic | Output |
---|---|---|---|---|---|
P1 | 446.7141 | P4 | 143.4893 | PT | 1275.4220 |
P2 | 173.1494 | P5 | 163.9166 | PL | 12.4221 |
P3 | 262.7955 | P6 | 85.3571 | Cost | 15,444.19 |
Unit (MW) | Output | Unit (MW) | Output | Unit (MW) | Output |
---|---|---|---|---|---|
P1 | 454.9034 | P7 | 429.9984 | P13 | 25.28378 |
P2 | 379.9322 | P8 | 68.50954 | P14 | 16.61231 |
P3 | 129.9973 | P9 | 59.56914 | P15 | 15.15478 |
P4 | 129.9356 | P10 | 159.8812 | PT | 2659.5114 |
P5 | 169.9948 | P11 | 79.82684 | PL | 29.4981 |
P6 | 459.9836 | P12 | 79.92868 | Cost | 32,694.1960 |
Unit (MW) | Output | Unit (MW) | Output | Unit (MW) | Output |
---|---|---|---|---|---|
P1 | 110.5773 | P15 | 465.5772 | P29 | 10.30963 |
P2 | 110.1358 | P16 | 343.512 | P30 | 81.38597 |
P3 | 85.77042 | P17 | 389.6023 | P31 | 180.0739 |
P4 | 150.951 | P18 | 469.7308 | P32 | 189.1115 |
P5 | 83.85475 | P19 | 510.7922 | P33 | 181.8391 |
P6 | 89.80644 | P20 | 287.6341 | P34 | 158.6189 |
P7 | 258.3048 | P21 | 522.3104 | P35 | 193.7992 |
P8 | 283.6892 | P22 | 502.1889 | P36 | 197.6772 |
P9 | 285.4642 | P23 | 503.5271 | P37 | 108.5601 |
P10 | 131.3871 | P24 | 485.1643 | P38 | 109.7186 |
P11 | 94.59752 | P25 | 523.6777 | P39 | 108.7393 |
P12 | 370.3646 | P26 | 522.0327 | P40 | 525.4569 |
P13 | 403.3944 | P27 | 10.18045 | PT | 10,499.9561 |
P14 | 449.8235 | P28 | 10.61457 | Cost | 127,188.4367 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, A.; Sun, W. Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems. Energies 2019, 12, 116. https://doi.org/10.3390/en12010116
Lin A, Sun W. Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems. Energies. 2019; 12(1):116. https://doi.org/10.3390/en12010116
Chicago/Turabian StyleLin, Anping, and Wei Sun. 2019. "Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems" Energies 12, no. 1: 116. https://doi.org/10.3390/en12010116
APA StyleLin, A., & Sun, W. (2019). Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems. Energies, 12(1), 116. https://doi.org/10.3390/en12010116