An Experimental and Numerical Study on Supported Ultra-Lean Methane Combustion
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Triple-Slot-Jet Burner
2.2. PIV Measurement
3. Numerical Analysis
3.1. Governing Equations
3.2. Boundary Conditions
3.3. Grid and Domain Selection
4. Results
4.1. Experimental Results
4.2. Calculated Flow Patterns and PIV Measurement
4.3. OH Concentration
4.4. OH and CO Diffusion Vectors
4.5. Flame Shape
4.6. Calculated and Measured Temperature Isopleths
5. Discussions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.; Ramaswamy, V.; Artexo, P.; Berntsen, T.; Betts, R.; Fahey, D.W. Changes in atmospheric constituents and in radiative forcing. In Climate 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquiz, M., Averyt, K.B., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 129–234. [Google Scholar]
- Lombardi, L.; Carnevale, E.; Corti, A. Greenhouse effect reduction and energy recovery from waste landfill. Energy 2006, 31, 3208–3219. [Google Scholar] [CrossRef]
- Jiang, X.; Mira, D.; Cluff, D.L. The combustion mitigation of methane as a non-CO2 greenhouse gas. Prog. Energy Combust. Sci. 2018, 66, 176–199. [Google Scholar] [CrossRef]
- Su, S.; Yu, X. A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit. Energy 2015, 79, 428–438. [Google Scholar] [CrossRef]
- Schuller, T.; Durox, D.; Candel, S. Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners, Combust. Flame 2003, 135, 525–537. [Google Scholar] [CrossRef]
- Lee, B.-J.; Kim, J.-S.; Lee, S. Enhancement of blowout limit by the interaction of multiple nonpremixed jet flames. Combust. Sci. Technol. 2004, 176, 482–497. [Google Scholar] [CrossRef]
- Hawkes, E.R.; Chen, J.H. Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames. Combust. Flame 2004, 138, 242–258. [Google Scholar] [CrossRef]
- Ren, J.-Y.; Egolfopoulos, F.N. NOx Emission control of lean methane-air combustion with addition of methane reforming products. Combust. Sci. Technol. 2002, 174, 181–205. [Google Scholar] [CrossRef]
- Joannon, M.D.E.; Sabia, P.; Tregrossi, A.; Cavaliere, A. Dynamic behavior of methane oxidation in premixed flow reactor. Combust. Sci. Technol. 2004, 176, 769–783. [Google Scholar] [CrossRef]
- Kimura, I.; Ukawa, H. Studies on the Bunsen Flames of Fuel-Rich Mixture. In Proceedings of the 8th Symposium (International) on Combustion, Pasadena, CA, USA, 28 August–3 September 1960; The Combustion Institute: Pittsburgh, PA, USA, 1956; pp. 521–523. [Google Scholar]
- Singer, J.M. Burning Velocity Measurements on Slot Burners; Comparison with Cylindrical Burner Determination. In Proceedings of the 4th Symposium (International) on Combustion, Cambridge, MA, USA, 1–5 September 1952; The Combustion Institute: Pittsburgh, PA, USA, 1952; pp. 352–358. [Google Scholar]
- Menon, R.; Gollahalli, S.R. Multiple Jet Gas Flames in Still Air, ASME, HTD; ASME: New York, NY, USA, 1985; Volume 45, pp. 27–133. [Google Scholar]
- Menon, R.; Gollahalli, S.R. Investigation of Interacting Multiple Jets in Cross Flow. Combust. Sci. Technol. 1988, 60, 375–389. [Google Scholar] [CrossRef]
- Roper, F.G. Laminar Diffusion Flame Sizes for Interacting Burners. Combust. Flame 1979, 34, 19–27. [Google Scholar] [CrossRef]
- Seigo, K.; Satoshi, H.; Yoshito, U.; Syuichi, M.; Katsuo, A. Characteristics of combustion of Rich-Lean Flame Burner under Low Load Combustion. In Proceedings of the 20th International Colloquium on the Dynamics of Explosion and Reactive Systems, Montreal, QC, Canada, 31 July–5 August 2005. [Google Scholar]
- Lin, H.-C.; Chen, B.-C.; Ho, C.-C.; Chao, Y.-C. A Study of Mutual Interaction of Two Premixed Flame in Lean Combustion. In Proceedings of the Asia-Pacific Conference on Combustion, Nagoya, Japan, 20–23 May 2007. [Google Scholar]
- Lin, H.-C.; Chen, B.-C.; Ho, C.-C.; Chao, Y.-C. Mutual Interaction of Two Methane Premixed Flames in Extremely Lean Combustion. In Proceedings of the 21th International Colloquium on the Dynamics of Explosion and Reactive Systems, Poitiers, France, 23–27 July 2007. [Google Scholar]
- Chao, B.H.; Egolfopoulos, F.N.; Law, C.K. Structure and Propagation of Premixed Flame in Nozzle-Generated Counterflow. Combust. Flame 1997, 109, 620–638. [Google Scholar] [CrossRef]
- Chelliah, H.K.; Bui-Pham, M.; Seshadri, K.; Law, C.K. Numerical Description of the Structure of Counterflow Heptane-Air Flames Using Detailed and Reduced Chemistry with Comparison to Experiment. In Proceedings of the Twenty-Fourth Symposium (International) on Combustion, Sydney, Australia, 5–10 July 1992; The Combustion Institute: Pittsburgh, PA, USA, 1992; pp. 851–857. [Google Scholar]
- Kaiser, C.; Liu, J.-B.; Ronney, P.D. Diffusive-Thermal Instability of Counterflow Flames at Low Lewis Number. In Proceedings of the 38th Aerospace Sciences Meeting & Exhibit, Reno, Nevada, 10–13 January 2000. [Google Scholar]
- Sohrab, S.H.; Ye, Z.Y.; Law, C.K. Theory of Interactive Combustion of Counterflow Premixed Flames. Combust. Sci. Technol. 1986, 45, 27–45. [Google Scholar] [CrossRef]
- Vagelopoulos, C.M.; Egolfopoulos, F.N.; Law, K.C. Further Considerations on the Determination of Laminar Flame Speeds with the Counterflow Twin Flame Technique. In Proceedings of the Twenty-Fifth Symposium (International) on Combustion, Irvine, CA, USA, 31 July–5 August 1994; The Combustion Institute: Pittsburgh, PA, USA, 1994; pp. 1341–1347. [Google Scholar]
- Sung, C.J.; Liu, J.B.; Law, C.K. On the Scalar Structure of Nonequidiffusive Premixed Flames in Counterflow. Combust. Flame 1996, 106, 168–183. [Google Scholar] [CrossRef]
- Zheng, X.L.; Law, C.K. Ignition of premixed hydrogen/air by heated counterflow under reduced and elevated pressures. Combust. Flame 2004, 136, 168–179. [Google Scholar] [CrossRef]
- Sung, C.J.; Law, C.K. Structural Sensitivity, Response, and Extinction of Diffusion and Premixed Flames in Oscillating Counterflow. Combust. Flame 2000, 123, 375–388. [Google Scholar] [CrossRef]
- Lin, H.-C.; Cheng, T.-S.; Chen, B.-C.; Ho, C.-C.; Chao, Y.-C. A comprehensive study of two interactive parallel premixed methane flames on lean combustion. Proc. Combust. Inst. 2009, 32, 995–1002. [Google Scholar] [CrossRef]
- Cheng, Z.; Pitz, R.; Wehrmeyer, J. Opposed Jet Flames of Very Lean or Rich Premixed Propane-Air Reactants vs. Hot Products. Combust. Flame 2002, 128, 232–241. [Google Scholar]
- Cheng, Z.; Wehrmeyer, J.A.; Pitz, R.W. Lean or ultra-lean stretched planar methane/air flames. Proc. Combust. Inst. 2005, 30, 285–293. [Google Scholar] [CrossRef]
- Cheng, Z.; Pitz, R.; Wehrmeyer, J. Lean and ultralean stretched propane–air counterflow flames. Combust. Flame 2006, 145, 647–662. [Google Scholar] [CrossRef]
- Law, C.K. Combustion Physics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Smooke, M.D. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames; Lecture Note in Physics 384; Springer: Berlin, Germany, 1991. [Google Scholar]
- GRI-Mech. Available online: http://combustion.berkeley.edu/gri-mech/ version30 /text30.html (accessed on 30 July 1999).
Apparatus | Model | Range | Uncertainty |
---|---|---|---|
Thermocouple | R-type | 233–2043 K | ±4.3% at 1800 K |
Particle image velocimetry (PIV) | Nd:YAG pulse lasers (LOTIS TII) digital CCD camera (sharpVISIONTM) | double-shutter mode 0–200 ns | ±10% |
Boundary Conditions (BC) and Assumptions | Parameters | Maximum Deviation to the Measured Data |
---|---|---|
| Flame height (mm) * | 1% (Figure 11) |
Temperature (K) | 8% (Figure 12) | |
Velocity (m/s) | 18% (Figure 7) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-C.; Chen, G.-B.; Wu, F.-H.; Li, H.-Y.; Chao, Y.-C. An Experimental and Numerical Study on Supported Ultra-Lean Methane Combustion. Energies 2019, 12, 2168. https://doi.org/10.3390/en12112168
Lin H-C, Chen G-B, Wu F-H, Li H-Y, Chao Y-C. An Experimental and Numerical Study on Supported Ultra-Lean Methane Combustion. Energies. 2019; 12(11):2168. https://doi.org/10.3390/en12112168
Chicago/Turabian StyleLin, Ho-Chuan, Guan-Bang Chen, Fang-Hsien Wu, Hong-Yeng Li, and Yei-Chin Chao. 2019. "An Experimental and Numerical Study on Supported Ultra-Lean Methane Combustion" Energies 12, no. 11: 2168. https://doi.org/10.3390/en12112168
APA StyleLin, H. -C., Chen, G. -B., Wu, F. -H., Li, H. -Y., & Chao, Y. -C. (2019). An Experimental and Numerical Study on Supported Ultra-Lean Methane Combustion. Energies, 12(11), 2168. https://doi.org/10.3390/en12112168