Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics
Abstract
:1. Introduction
2. Method
2.1. Interactive Optimization Scheme
Start |
Read control variables from Matlab; |
Delete old model file of Airpak (); |
Create new model file () according to template file’s format |
() and update the control variables; |
Call Airpak to run the CFD simulation; |
WHEN the CFD simulation meets the stop criteria |
Save the results and transfers them from Airpak to Matlab by files; |
End |
2.2. Multiple Objectives and Control Variables
2.2.1. Objectives
2.2.2. Control Variables
2.3. Online–Offline Strategy
3. Model Construction Using CFD
3.1. Structure of the Venlo Greenhouse
3.2. CFD Model Construction
3.3. Simulation Results
4. Model Validation with Field Experiment
4.1. Experiment Setting
4.2. Experiment Results
5. Multi-Objectives Optimization of the Greenhouse Environment
5.1. Optimization Setting
5.2. Results and Analysis
5.2.1. Objective Space Analysis
5.2.2. Control Variable Space Analysis
5.2.3. Full Simulation of Optimized Greenhouse Model
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Sensor No. | T (C) | Sensor No. | T (C) | Sensor No. | T (C) |
---|---|---|---|---|---|
35.75 | 30.55 | 31.24 | |||
28.17 | 34.71 | 29.53 | |||
28.12 | 32.26 | 34.49 | |||
35.38 | 31.51 | 31.76 | |||
30.47 | 34.93 | 29.58 | |||
28.60 | 32.05 | 35.06 | |||
34.88 | 30.82 | 31.31 | |||
31.69 | 35.93 | 29.80 | |||
29.18 | 31.46 | 34.53 | |||
35.48 | 30.14 | 30.76 | |||
31.86 | 35.68 | 28.45 |
Sensor No. | T (C) | Sensor No. | T (C) | Sensor No. | T (C) |
---|---|---|---|---|---|
36.44 | 31.02 | 31.93 | |||
30.57 | 34.72 | 30.37 | |||
29.05 | 32.21 | 34.79 | |||
35.00 | 31.10 | 31.51 | |||
30.40 | 34.89 | 30.63 | |||
29.19 | 32.40 | 35.23 | |||
34.79 | 30.61 | 31.21 | |||
31.61 | 35.90 | 29.92 | |||
29.86 | 31.75 | 34.88 | |||
35.04 | 30.84 | 31.08 | |||
31.77 | 35.82 | 29.77 |
Sensor No. | V (m/s) | Sensor No. | V (m/s) |
---|---|---|---|
2.20 | 1.80 | ||
2.20 | 2.40 | ||
0.65 | 0.60 | ||
0.71 | 0.75 | ||
0.60 | 0.30 | ||
0.80 | 0.70 | ||
0.20 | 0.11 | ||
0.10 | 0.20 | ||
0.38 | 0.57 | ||
0.40 | 0.50 |
References
- Van Henten, E. Greenhouse Climate Management: An Optimal Control Approach; Agricultural University: Kerala, India, 1994. [Google Scholar]
- Lee, I.B.; Short, T.H. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse. Trans. ASAE 2000, 43, 745–753. [Google Scholar] [CrossRef]
- Khaoua, S.O.; Bournet, P.E.; Migeon, C.; Boulard, T.; Chasseriaux, G. Analysis of Greenhouse Ventilation Efficiency based on Computational Fluid Dynamics. Biosyst. Eng. 2006, 95, 83–98. [Google Scholar] [CrossRef]
- Piscia, D.; Mun¯oz, P.; Panadès, C.; Montero, J. A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Comput. Electron. Agric. 2015, 115, 129–141. [Google Scholar] [CrossRef]
- Santolini, E.; Pulvirenti, B.; Benni, S.; Barbaresi, L.; Torreggiani, D.; Tassinari, P. Numerical study of wind-driven natural ventilation in a greenhouse with screens. Comput. Electron. Agric. 2017, 149, 41–53. [Google Scholar] [CrossRef]
- Tang, P.; Li, H.; Issaka, Z.; Chen, C. Impact forces on the drive spoon of a large cannon irrigation sprinkler: Simple theory, CFD numerical simulation and validation. Biosyst. Eng. 2017, 159, 1–9. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. J. Saudi Soc. Agric. Sci. 2016, 15, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Chen, Y.; Hassan, S.G.; Li, D. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO. Comput. Electron. Agric. 2016, 122, 94–102. [Google Scholar] [CrossRef]
- Tong, G.; Christopher, D.M.; Zhang, G. New insights on span selection for Chinese solar greenhouses using CFD analyses. Comput. Electron. Agric. 2017, 149, 3–15. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Guo, S.; Ma, C.; Wang, J.; Jin, S. Simulation and optimization of solar greenhouses in Northern Jiangsu Province of China. Energy Build. 2014, 78, 143–152. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Zou, Z.; Wang, S. CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosyst. Eng. 2016, 142, 12–26. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Guo, S.; Zhang, J.; Wei, B.; Sun, J.; Shu, S. Ventilation optimization of solar greenhouse with removable back walls based on CFD. Comput. Electron. Agric. 2017, 149, 16–25. [Google Scholar] [CrossRef]
- Coffey, B.; Haghighat, F.; Morofsky, E.; Kutrowski, E. A software framework for model predictive control with GenOpt. Energy Build. 2010, 42, 1084–1092. [Google Scholar] [CrossRef]
- Jasak, H.; Jemcov, A.; Tukovic, Z. A C++ library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics; IUC Dubrovnik Croatia: Dubrovnik, Croatia, 2007; Volume 1000, pp. 1–20. [Google Scholar]
- Asadi, E.; Silva, M.; Antunes, C.; Dias, L. A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB. Build. Environ. 2012, 56, 370–378. [Google Scholar] [CrossRef]
- Futrell, B.J.; Ozelkan, E.C.; Brentrup, D. Bi-objective optimization of building enclosure design for thermal and lighting performance. Build. Environ. 2015, 92, 591–602. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Q. Optimal air distribution design in enclosed spaces using an adjoint method. Inverse Probl. Sci. Eng. 2015, 23, 760–779. [Google Scholar] [CrossRef]
- van Henten, E.J.; Bontsema, J. Time-scale decomposition of an optimal control problem in greenhouse climate management. Control Eng. Pract. 2009, 17, 88–96. [Google Scholar] [CrossRef]
- Hasni, A.; Taibi, R.; Draoui, B.; Boulard, T. Optimization of Greenhouse Climate Model Parameters Using Particle Swarm Optimization and Genetic Algorithms. Energy Procedia 2011, 6, 371–380. [Google Scholar] [CrossRef] [Green Version]
- van Beveren, P.; Bontsema, J.; van Straten, G.; van Henten, E. Optimal control of greenhouse climate using minimal energy and grower defined bounds. Appl. Energy 2015, 159, 509–519. [Google Scholar] [CrossRef]
- Li, K.; Xue, W.; Liu, G. Exploring the Environment/Energy Pareto Optimal Front of an Office Room Using Computational Fluid Dynamics-Based Interactive Optimization Method. Energies 2017, 10, 231. [Google Scholar] [CrossRef]
- Li, K.; Pan, L.; Xue, W.; Jiang, H.; Mao, H. Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study. Energies 2017, 10, 245. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Kroner, O. Crop Based Climate Regimes for Energy Saving in Greenhouse Cultivation. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2003. [Google Scholar]
- Raviv, M.; Medina, S.; Wendin, C.; Lieth, J.H. Development of alternate cut-flower rose greenhouse temperature set-points based on calorimetric plant tissue evaluation. Sci. Hortic. 2010, 126, 454–461. [Google Scholar] [CrossRef]
- Coussirat, M.; Guardo, A.; Jou, E.; Egusquiza, E.; Cuerva, E.; Alavedra, P. Performance and influence of numerical sub-models on the CFD simulation of free and forced convection in double-glazed ventilated facades. Energy Build. 2008, 40, 1781–1789. [Google Scholar] [CrossRef]
- Fluent Inc. Airpak 3.0 User Guide; Fluent Inc.: Lebanon, NH, USA, 2007. [Google Scholar]
- Lehmann, T.M.; Gonner, C.; Spitzer, K. Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imaging 1999, 18, 1049–1075. [Google Scholar] [CrossRef] [PubMed]
Parameter type | Value (Unit) |
---|---|
Operating pressure | 101,325 |
Sunshine fraction | 0.9 |
Ground reflectance | 0.1 |
Default temperature | 24 C |
Material of roof and wall | Float glass |
- Density of glass | 2400 |
- Specific heat of glass | 790 J/kgK |
- Conductivity of glass | 2.58 W/mK |
Category | Parameter | Design Range |
---|---|---|
Control variables | Speed of fan | 0.5–5.0 m/s |
Heat loads of the east roof | 100–300 | |
Velocity of emission | 0.01–0.10 m/s | |
Objectives & related | Objective I: ideal temperature | 306 K |
parameters | Objective II: ideal concentration | 1000 ppm(mass) |
Objective III: energy consumption | minimum | |
Mass fraction of injection | 95% | |
Density of | 1.977 | |
Local prices of electricity & | 0.56 CNY/kWh & 1.614 CNY/KG | |
NSGA-II | Number of generations | 25 |
Population size | 10 | |
Crossover probability | 0.8 | |
Number of elites produced | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Xue, W.; Mao, H.; Chen, X.; Jiang, H.; Tan, G. Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics. Energies 2019, 12, 2873. https://doi.org/10.3390/en12152873
Li K, Xue W, Mao H, Chen X, Jiang H, Tan G. Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics. Energies. 2019; 12(15):2873. https://doi.org/10.3390/en12152873
Chicago/Turabian StyleLi, Kangji, Wenping Xue, Hanping Mao, Xu Chen, Hui Jiang, and Gang Tan. 2019. "Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics" Energies 12, no. 15: 2873. https://doi.org/10.3390/en12152873
APA StyleLi, K., Xue, W., Mao, H., Chen, X., Jiang, H., & Tan, G. (2019). Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics. Energies, 12(15), 2873. https://doi.org/10.3390/en12152873