A 3-In-1 Approach to Evaluate Gas Hydrate Inhibitors
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Methods
2.3.1. Crystal Formation History
2.3.2. Hydrate Formation
2.3.3. Hydrate Dissociation
3. Results and Discussion
3.1. Morphology
3.1.1. Water + + MEG ()
3.1.2. Water + CH + NaCl ( = 5.44%)
3.1.3. Water + CH + PVP ()
3.2. Overall Result
3.2.1. Overall Morphology
3.2.2. Phase Equilibria
3.2.3. Apparent Kinetics
3.2.4. Hydrate Halo Growth
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van der Waals, J.H.; Platteeuw, J.C. Clathrate solutions. Adv. Chem. Phys. 1959, 2, 1–57. [Google Scholar]
- Schicks, J.M.; Reepmester, J.A. The Coexistence of Two Different Methane Hydrate Phases under Moderate Pressure and Temperature Conditions: Kinetic versus Thermodynamic Products. Chem. Int. Ed. 2004, 43, 3310–3313. [Google Scholar] [CrossRef] [PubMed]
- Urdahl, O.; Lund, A.; Mork, P.; Nilsen, T. Inhibition of gas hydrate formation by means of chemical additives—I. Development of an experimental set-up for characterization of gas hydrate inhibitor efficiency with respect to flow properties and deposition. Chem. Eng. Sci. 1995, 50, 863–870. [Google Scholar] [CrossRef]
- Lafond, P.G.; Olcott, K.A.; Sloan, E.D.; Koh, C.A.; Sum, A.K. Measurements of methane hydrate equilibrium in systems inhibited with NaCl and methanol. J. Chem. Thermodyn. 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Perfeldt, C.M.; Chua, P.C.; Daraboina, N.; Friis, D.; Kristiansen, E.; Ramlov, H.; Woodley, J.M.; Kelland, M.A.; Von Solms, N. Inhibition of Gas Hydrate Nucleation and Growth: Efficacy of an Antifreeze Protein from the longhorn beetle Rhagium mordax. Energy Fuels 2014, 28, 3666–3672. [Google Scholar] [CrossRef]
- Cha, M.; Shin, K.; Kim, J.; Chang, D.; Seo, Y.; Lee, H.; Kang, S. Thermodynamic and kinetic hydrate inhibition performance of aqueous ethylene glycol solutions for natural gas. Chem. Eng. Sci. 2013, 99, 184–213. [Google Scholar] [CrossRef]
- Chong, Z.R.; Chana, A.H.M.; Babu, P.; Yanga, M.; Linga, P. Effect of NaCl on methane hydrate formation and dissociation in porous media. J. Nat. Gas Sci. Eng. 2015, 27, 178–189. [Google Scholar] [CrossRef]
- Nagashima, K.; Yamamoto, Y.; Komai, T.; Hoshino, H.; Ohga, K. Interferometric Observation of Salt Concentration Distribution in Liquid Phase Around THF Clathrate Hydrate During Directional Growth. J. Jpn. Inst. Energy 1999, 78, 326–331. [Google Scholar] [CrossRef]
- Davenport, J.R.; Musa, O.M.; Paterson, M.J.; Piepenbrock, M.M.; Fucke, K.; Steed, J.W. A simple chemical model for clathrate hydrate inhibition by polyvinylcaprolactam. Chem. Commun. 2011, 35, 9891–9893. [Google Scholar] [CrossRef]
- Kelland, M.A.; Svartaas, T.M.; Ovsthus, J.; Tomita, T.; Mizuta, K. Studies on some alkylamide surfactant gas hydrate antiagglomerants. Chem. Eng. Sci. 2006, 61, 4290–4298. [Google Scholar] [CrossRef]
- Sloan, E.D., Jr.; Koh, C. Clathrate Hydrates of Natural Gases; CRC Press: Boca Raton, FL, USA, 2007; pp. 32–58. [Google Scholar]
- Posteraro, D.; Ivall, J.; Maric, M.; Servio, P. New insights into the effect of polyvinylpyrrolidone (PVP) concentration on methane hydrate growth. 2. Liquid phase methane mole fraction. Chem. Eng. Sci. 2015, 126, 91–98. [Google Scholar] [CrossRef]
- Posteraro, D.; Verrett, J.; Maric, M.; Servio, P. Hydrate anti-agglomeration and synergy effect in normal octane at varying water cuts and salt concentrations. J. Nat. Gas Sci. Eng. 2016, 34, 1–5. [Google Scholar] [CrossRef]
- Bruusgaard, H.; Lessard, L.D.; Servio, P. Morphology study of structure I methane hydrate formation and decomposition of water droplets in the presence of biological and polymeric kinetic inhibitors. Cryst. Growth Des. 2009, 9, 3014–3023. [Google Scholar] [CrossRef]
- Walker, V.K.; Zeng, H.; Ohno, H.; Daraboina, N.; Sharifi, H.; Bagherzadeh, S.A.; Alavi, S.; Englezos, P. Antifreeze proteins as gas hydrate inhibitors. Can. J. Chem. 2015, 93, 839–849. [Google Scholar] [CrossRef]
- Bergeron, S.; Beltran, J.G.; Servio, P. Reaction rate constant of methane clathrate formation. Fuel 2010, 2, 294–301. [Google Scholar] [CrossRef]
- Englezos, P.; Kalogerakis, N.; Dholabhai, P.D.; Bishnoi, P.R. Kinetics of formation of methane and ethane gas hydrates. Chem. Eng. Sci. 1987, 42, 2647–2658. [Google Scholar] [CrossRef]
- Lederhos, J.P.; Long, J.P.; Sum, A.; Christiansen, R.L.; Sloan, E.D. Effective kinetic inhibitors for natural gas hydrates. Chem. Eng. Sci. 1996, 51, 1221–1229. [Google Scholar] [CrossRef]
- Tohidi, B.; Anderson, R.; Mozaffar, H.; Tohidi, F. The return of kinetic hydrate inhibitors. Energy Fuels 2015, 29, 8254–8260. [Google Scholar] [CrossRef]
- Bruusgaard, H.; Beltran, J.G.; Servio, P. Vapor-liquid water-hydrate equilibrium data for the system N2 + CO2 + H2O. J. Chem. Eng. Data 2008, 53, 2594–2597. [Google Scholar] [CrossRef]
- Luna-Ortiz, E.; Healey, M.; Anderson, R.; Sorhaug, E. Crystal Growth Inhibition Studies for the Qualification of a Kinetic Hydrate Inhibitor under Flowing and Shut-In Conditions. Energy Fuels 2014, 28, 2902–2913. [Google Scholar] [CrossRef]
- Huo, Z.; Freer, E.; Lamar, M.; Sannigrahi, B.; Knauss, D.M.; Sloan, E.D. Hydrate plug prevention by anti-agglomeration. Chem. Eng. Sci. 2001, 56, 4979–4991. [Google Scholar] [CrossRef]
- Chua, P.C.; Kelland, M.A. Study of the Gas Hydrate Anti-agglomerant Performance of a Series of n-Alkyl-tri (n-butyl) ammonium Bromides. Energy Fuels 2013, 27, 1285–1292. [Google Scholar] [CrossRef]
- Bishnoi, P.R. Gas Hydrate—My Personal Ecperinces and Challenges. In Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, 13–16 June 2005; pp. 1–18. [Google Scholar]
- DuQuesnay, J.R.; Posada, M.C.D.; Beltran, J.G. Novel gas hydrate reactor design: 3-in-1 assessment of phase equilibria, morphology and kinetics. Fluid Phase Equilib. 2015, 413, 148–157. [Google Scholar] [CrossRef]
- Udegbunam, L.U.; DuQuesnay James, R.; Osorio, L.; Walker, V.K.; Beltran, J.G. Phase equilibria, kinetics and morphology of methane hydrate inhibited by antifreeze proteins: Application of a novel 3-in-1 method. J. Chem. Thermodyn. 2018, 117, 155–163. [Google Scholar] [CrossRef]
- Sowa, B.; Maeda, N. Statistical Study of the Memory Effect in Model Natural Gas Hydrate Systems. J. Phys. Chem. A 2015, 119, 10784–10790. [Google Scholar] [CrossRef]
- Takeya, S.; Hori, A.; Hondoh, T.; Uchida, T. Freezing-Memory Effect of Water on Nucleation of CO2 Hydrate Crystals. J. Phys. Chem. B 2000, 104, 4164–4168. [Google Scholar] [CrossRef]
- Buchanan, P.; Soper, A.K.; Westacott, R.E.; Creek, J.L.; Hobson, G.; Koh, C.A. Search for memory effects in methane hydrate: Structure of water before hydrate formation and after hydrate decomposition. J. Chem. Phys. 2005, 123, 164507. [Google Scholar] [CrossRef]
- Thompson, H.; Soper, A.K.; Buchanan, P.; Aldiwan, N.; Creek, J.L.; Koh, C.A. Methane hydrate formation and decomposition: Structural studies via neutron diffraction and empirical potential structure refinement. J. Chem. Phys. 2006, 124, 164508–464508. [Google Scholar] [CrossRef]
- Esmail, S.; Beltran, J.G. Methane hydrate propagation on surfaces of varying wettability. J. Nat. Gas Sci. Eng. 2016, 35, 1535–1543. [Google Scholar] [CrossRef]
- Beltran, J.G.; Servio, P. Morphological Investigations of Methane- Hydrate Films Formed on a Glass Surface. Cryst. Growth Des. 2010, 10, 4339–4347. [Google Scholar] [CrossRef]
- Sakemoto, R.; Sakamoto, H.; Shiraiwa, K.; Ohmura, R.; Uchida, T. Clathrate hydrate crystal growth at the seawater/hydrophobic- guest- liquid interface. Cryst. Growth Des. 2009, 10, 1296–1300. [Google Scholar] [CrossRef]
- Folas, G.K.; Berg, O.J.; Solbraa, E.; Fredheim, A.O.; Kontogeorgis, A.M.; Michelsen, M.L.; Stenby, E.H. High-pressure vapor–liquid equilibria of systems containing ethylene glycol, water and methane: Experimental measurements and modeling. Fluid Phase Equilib. 2007, 251, 52–58. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G.; Han, G.; Guo, X.; Guo, T. Experimental study on the solubility of natural gas components in water with or without hydrate inhibitor. Fluid Phase Equilib. 2003, 1, 143–154. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lim, B.D.; Lee, J.E.; Lee, C.S. Solubilities of Carbon Dioxide, Methane, and Ethane in Sodium Chloride Solution Containing Gas Hydrate. J. Chem. Eng. Data 2008, 53, 1351–1354. [Google Scholar] [CrossRef]
- Bzdek, B.R.; Power, R.M.; Simpson, S.H.; Reid, J.P.; Royall, C.P. Precise, contactless measurements of the surface tension of picolitre aerosol droplets. Chem. Sci. 2016, 1, 274–285. [Google Scholar] [CrossRef]
- Tsierkezos, N.G.; Molinou, I.E. Thermodynamic properties of water+ ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data 1998, 6, 989–993. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.C.; Lee, J.D. Morphology study of methane–propane clathrate hydrates on the bubble surface in the presence of SDS or PVCap. J. Cryst. Growth 2014, 402, 249–259. [Google Scholar] [CrossRef]
- Wu, R.; Kozielski, K.A.; Hartley, P.G.; May, E.F.; Boxall, J.; Maeda, N. Methane–propane mixed gas hydrate film growth on the surface of water and Luvicap EG solutions. Energy Fuels 2013, 27, 2548–2554. [Google Scholar] [CrossRef]
- Cha, M.; Shin, K.; Seo, Y.; Shin, J.; Kang, S. Catastrophic growth of gas hydrates in the presence of kinetic hydrate inhibitors. J. Phys. Chem. A 2013, 117, 13988–13995. [Google Scholar] [CrossRef]
- Kumar, R.; Lee, J.D.; Song, M.; Englezos, P. Kinetic inhibitor effects on methane/propane clathrate hydrate-crystal growth at the gas/water and water/n-heptane interfaces. J. Cryst. Growth 2008, 310, 1154–1166. [Google Scholar] [CrossRef]
- Lee, J.D.; Englezos, P. Unusual kinetic inhibitor effects on gas hydrate formation. Chem. Eng. Sci. 2006, 61, 1368–1376. [Google Scholar] [CrossRef]
- Sharifi, H.; Englezos, P. Accelerated Hydrate Crystal Growth in the Presence of Low Dosage Additives Known as Kinetic Hydrate Inhibitors. J. Chem. Eng. Data 2014, 60, 336–342. [Google Scholar] [CrossRef]
- Sharifi, H.; Ripmeester, J.; Walker, V.K.; Englezos, P. Kinetic inhibition of natural gas hydrates in saline solutions and heptane. Fuel 2014, 117, 109–117. [Google Scholar] [CrossRef]
- Sharifi, H.; Walker, V.K.; Ripmeester, J.; Englezos, P. Insights into the behavior of biological clathrate hydrate inhibitors in aqueous saline solutions. Cryst. Growth Des. 2014, 14, 2923–2930. [Google Scholar] [CrossRef]
- Sharifi, H.; Ripmeester, J.; Englezos, P. Recalcitrance of gas hydrate crystals formed in the presence of kinetic hydrate inhibitors. J. Nat. Gas Sci. Eng. 2016, 35, 1573–1578. [Google Scholar] [CrossRef]
- Daraboina, N.; Ripmeester, J.A.; Walker, V.K.; Englezos, P. Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 1. High pressure calorimetry. Energy Fuels 2011, 10, 4392–4397. [Google Scholar] [CrossRef]
- Daraboina, N.; Ripmeester, J.A.; Walker, V.K.; Englezos, P. Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 3. Structural and compositional changes. Energy Fuels 2011, 10, 4398–4404. [Google Scholar] [CrossRef]
- Makogon, Y.F.; Makogon, T.Y.; Holditch, S.A. Kinetics and mechanisms of gas hydrate formation and dissociation with inhibitors. Ann. N. Y. Acad. Sci. 2000, 912, 777–796. [Google Scholar] [CrossRef]
- Sloan, E.D. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–363. [Google Scholar] [CrossRef]
- Mohammadi, A.H.; Richon, D. Gas hydrate phase equilibrium in the presence of ethylene glycol or methanol aqueous solution. Ind. Eng. Chem. Res. 2010, 49, 8865–8869. [Google Scholar] [CrossRef]
- Robinson, D.B. Hydrate Formation and Inhibition in Gas or Gas Condensate Streams. Can. Pet. Technol. 1986, 25. [Google Scholar] [CrossRef]
- Cha, M.; Hu, Y.; Sum, A.K. Methane hydrate phase equilibria for systems containing NaCl, KCl, and NH4Cl. Fluid Phase Equilib. 2016, 413, 2–9. [Google Scholar] [CrossRef]
- Anderson, R.; Mozaffar, H.; Tohidi, B.; Glenat, P. Applicatio of a crystal growth inhibition based KHI evaluation method to commercial formulation assessment. In Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, Scotland, 17–21 July 2011. [Google Scholar]
- Kishimoto, M.; Iijima, S.; Ohmura, R. Crystal growth of clathrate hydrate at the interface between seawater and hydrophobic-guest liquid: Effect of elevated salt concentration. Ind. Eng. Chem. Res. 2012, 51, 5224–5229. [Google Scholar] [CrossRef]
- Peng, B.; Sun, C.; Chen, G.; Yang, L.; Zhou, W.; Pang, W. Hydrate film growth at the interface between gaseous CO2 and sodium chloride solution. Sci. China Chem. 2009, 52, 676–682. [Google Scholar] [CrossRef]
- Uchida, T.; Ikeda, I.Y.; Takeya, S.; Ebinuma, T.; Nagao, J.; Narita, H. CO2 hydrate film formation at the boundary between CO2 and water: Effects of temperature, pressure and additives on the formation rate. J. Cryst. Growth 2002, 237, 383–387. [Google Scholar] [CrossRef]
- Gordienko, R.; Ohno, H.; Singh, V.K.; Jia, Z.; Ripmeester, J.A.; Walker, V.K. Towards a green hydrate inhibitor: Imaging antifreeze proteins on clathrates. PLoS ONE 2010, 5, e8953. [Google Scholar] [CrossRef]
- Jensen, L.; Ramlov, H.; Thomsen, K.; Von Solms, N. Inhibition of methane hydrate formation by ice-structuring proteins. Ind. Eng. Chem. Res. 2010, 49, 1486–1492. [Google Scholar] [CrossRef]
- Kitamura, M.; Mori, Y.H. Clathrate-hydrate film growth along water/methane phase boundaries-an observational study. Cryst. Res. Technol. 2013, 48, 511–519. [Google Scholar] [CrossRef]
- Daraboina, N.; Moudrakovski, I.L.; Ripmeester, J.A.; Walker, V.K.; Englezos, P. Assessing the performance of commercial and biological gas hydrate inhibitors using nuclear magnetic resonance microscopy and a stirred autoclave. Fuel 2013, 105, 630–635. [Google Scholar] [CrossRef]
- Ivall, J.; Pasieka, J.; Posteraro, D.; Servio, P. Profiling the Concentration of the Kinetic Inhibitor Polyvinylpyrrolidone throughout the Methane Hydrate Formation Process. Energy Fuels 2015, 29, 2329–2335. [Google Scholar] [CrossRef]
- Mori, Y.; Mochizuki, T. Modeling of Mass Transport across a Hydrate Layer Intervening between Liquid Water and ‘Guest’ Fluid Phases. In Proceedings of the 2nd International Symposium on Gas Hydrates, Daejeon, Korea, 1–2 November 1996; pp. 267–274. [Google Scholar]
- Mori, Y.H.; Mochizuki, T. Mass transport across clathrate hydrate films a capillary permeation model. Chem. Eng. Sci. 1997, 52, 3613–3616. [Google Scholar] [CrossRef]
- Davies, S.R.; Sloan, E.D.; Sum, A.K.; Koh, C.A. In situ studies of the mass transfer mechanism across a methane hydrate film using high-resolution confocal Raman spectroscopy. J. Phys. Chem. C 2009, 114, 1173–1180. [Google Scholar] [CrossRef]
- Austvik, T.; Li, X.; Gjertsen, L.H. Hydrate plug properties: Formation and removal of plugs. Ann. N. Y. Acad. Sci. 2000, 912, 294–303. [Google Scholar] [CrossRef]
Chemical Name | Source | Purity | Purity Units |
---|---|---|---|
MEG | Fisher Scientific, Canada | ≥99.80% | Mass Fraction |
NaCl | Caledon Laboratory Ltd. | ≥99.00% | Mass Fraction |
PVP | Sigma-Aldrich Canada Co. | N/A | N/A |
CH4 | Air Liquide, QC Canada | 99.99% | Mass Fraction |
N2 | Air Liquide, QC Canada | 99.99% | Mass fraction |
Distilled Water | In-house | See caption | See caption |
System | T/K | /K | p/ MPa |
---|---|---|---|
Water | 277.48 | 0.14 | 4.00 |
Water | 281.31 | 0.08 | 6.01 |
PVP | 281.38 | 0.08 | 6.15 |
PVP | 281.83 | 0.06 | 6.28 |
PVP | 281.82 | 0.10 | 6.25 |
NaCl | 276.72 | 0.12 | 4.84 |
NaCl | 277.61 | 0.11 | 5.39 |
NaCl | 279.23 | 0.40 | 6.66 |
MEG | 279.65 | 0.08 | 5.99 |
MEG | 280.48 | 0.22 | 6.53 |
MEG | 275.72 | 0.06 | 4.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, N.; Chowdhury, N.B.; Beltran, J.G. A 3-In-1 Approach to Evaluate Gas Hydrate Inhibitors. Energies 2019, 12, 2921. https://doi.org/10.3390/en12152921
Kumar N, Chowdhury NB, Beltran JG. A 3-In-1 Approach to Evaluate Gas Hydrate Inhibitors. Energies. 2019; 12(15):2921. https://doi.org/10.3390/en12152921
Chicago/Turabian StyleKumar, Narendra, Niaz Bahar Chowdhury, and Juan G. Beltran. 2019. "A 3-In-1 Approach to Evaluate Gas Hydrate Inhibitors" Energies 12, no. 15: 2921. https://doi.org/10.3390/en12152921
APA StyleKumar, N., Chowdhury, N. B., & Beltran, J. G. (2019). A 3-In-1 Approach to Evaluate Gas Hydrate Inhibitors. Energies, 12(15), 2921. https://doi.org/10.3390/en12152921