Wavelet Scale Variance Analysis of Wind Extremes in Mountainous Terrains
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Definition of Wind Extremes and Their Statistical Features
3.2. The Wavelet Variance
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ummels, B.C.; Gibescu, M.; Pelgrum, E.; Kling, W.L.; Brand, A.J. Impacts of Wind Power on Thermal Generation Unit Commitment and Dispatch. IEEE Trans. Energy Convers. 2007, 22, 44–51. [Google Scholar] [CrossRef]
- Demirci, E.; Cuhadaroglu, B. Statistical analysis of wind circulation and air pollution in urban Trabzon. Energy Build. 2000, 31, 49–53. [Google Scholar] [CrossRef]
- Cermak, J.E. Wind-tunnel development and trends in applications to civil engineering. J. Wind Eng. Ind. Aerodyn. 2003, 91, 355–370. [Google Scholar] [CrossRef]
- Sterk, G.; Jacobs, A.F.G.; Van Boxel, J.H. The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surf. Proc. Land. 1998, 23, 877–887. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Nagarajan, R. Evidence of crossover phenomena in wind-speed data. IEEE Trans Circuits Syst. I 2004, 51, 2255–2262. [Google Scholar] [CrossRef]
- Raupach, M.R.; Thom, A.S.; Edwards, I. A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Bound. Layer Meteorol. 1980, 18, 373–397. [Google Scholar] [CrossRef]
- Parsons, D.R.; Walker, I.J.; Wiggs, G.F.S. Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry. Geomorphology 2004, 59, 149–164. [Google Scholar] [CrossRef]
- Celik, A.N. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey, April 2004. Renew. Energy 2004, 29, 593–604. [Google Scholar] [CrossRef]
- Karakasidis, T.E.; Charakopoulos, A. Detection of low-dimensional chaos in wind time series. Chaos Solit. Fractals 2009, 41, 1723–1732. [Google Scholar] [CrossRef]
- Avdakovic, S.; Lukac, A.; Nuhanovic, A.; Music, M. Wind Speed Data Analysis using Wavelet Transform. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2011, 5, 138–142. [Google Scholar]
- Kavasseri, R.G.; Nagarajan, R. A multifractal description of wind speed records. Chaos Solit. Fractals 2005, 24, 165–173. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Nagarajan, R. A qualitative description of boundary layer wind speed records. Fluct. Noise Lett. 2006, 6, 201–213. [Google Scholar] [CrossRef]
- Koçak, K. Examination of persistence properties of wind speed records using detrended fluctuation analysis. Energy 2009, 34, 1980–1985. [Google Scholar] [CrossRef]
- Santos, M.D.O.; Stosic, T.; Stosic, B.D. Long-term correlations in hourly wind speed records in Pernambuco. Braz. Phys. A 2012, 391, 1546–1552. [Google Scholar] [CrossRef]
- Feng, T.; Fu, Z.T.; Deng, X.; Mao, J.Y. A brief description to different multi-fractal behaviors of daily wind speed records over China. Phys. Lett. A 2009, 373, 4134–4141. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M. Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher—Shannon information plane. J. Stat. Mech. 2011, 2001, P07001. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Kanevski, M. Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions. Appl. Energy 2016, 162, 1052–1061. [Google Scholar] [CrossRef]
- Fu, Z.T.; Li, Q.L.; Yuan, N.M.; Yao, Z.H. Multi-scale entropy analysis of vertical wind variation series in atmospheric boundary-layer. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 83–91. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, X.-N.; Li, J.-H.; Meng, Q.-H. The Scaling Properties of High-frequency Wind Speed Records Based on Multiscale Multifractal Analysis. Acta Phys. Pol. B 2016, 47, 2205–2224. [Google Scholar] [CrossRef]
- Walker, I.J. Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research. Geomorphology 2005, 68, 57–76. [Google Scholar] [CrossRef]
- Martius, O.; Pfahl, S.; Chevalier, C. A global quantification of compound precipitation and wind extremes. Geophys. Res. Lett. 2016, 43, 7709–7717. [Google Scholar] [CrossRef] [Green Version]
- Froidevaux, P.; Schwanbeck, J.; Weingartner, R.; Chevalier, C.; Martius, O. Flood triggering in Switzerland: The role of daily to monthly preceding precipitation. Hydrol. Earth Syst. Sci. 2015, 19, 3903–3924. [Google Scholar] [CrossRef]
- Klawa, M.; Ulbrich, U. A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat. Hazards Earth Syst. Sci. 2003, 3, 725–732. [Google Scholar] [CrossRef] [Green Version]
- MeteoSwiss. Automatic Monitoring Network, Internal Report. 2018. Available online: https://www.meteoswiss.admin.ch (accessed on 5 August 2019).
- Jun, M.; Stein, M.L. An approach to producing space: Time covariance functions on spheres. Technometrics 2007, 49, 468–479. [Google Scholar] [CrossRef]
- Porcu, E.; Bevilacqua, M.; Genton, M.G. Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Am. Stat. Assoc. 2016, 111, 888–898. [Google Scholar] [CrossRef]
- Cramer, H.; Leadbetter, M.R. Stationary and Related Stochastic Processes; Dover Publications Inc.: Mineaola, NY, USA, 1967. [Google Scholar]
- Lindsay, R.W.; Percival, D.B.; Rothrock, D.A. The discrete wavelet transform and the scale analysis of the surface properties of sea ice. IEEE Trans. Geosci. Rem. Sens. 1996, 34, 771–787. [Google Scholar] [CrossRef]
- Thurner, S.; Feurstein, M.; Teich, M.C. Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology. Phys. Rev. Lett. 1997, 80, 1544–1547. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- Addison, P.S. The Illustrated Wavelet Transform Handbook; Taylor & Francis: Didcot/Abingdon, UK, 2002. [Google Scholar]
- Helbig, N.; Mott, R.; van Herwijnen, A.; Winstral, A.; Jonas, T. Parameterizing surface wind speed over complex topography. J. Geophys. Res. Atmos. 2017, 122, 651–667. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, P.A.; Dudhia, J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. Climatol. 2012, 51, 300–316. [Google Scholar] [CrossRef]
95% Threshold | 97.5% Threshold | 99% Threshold | |||||
---|---|---|---|---|---|---|---|
Scale | r | p-Value | r | p-Value | r | p-Value | |
Δx = 25 m | 1 | 0.19 | 0.039 | 0.19 | 0.033 | 0.27 | 0.002 |
2 | 0.19 | 0.032 | 0.21 | 0.019 | 0.24 | 0.007 | |
3 | 0.17 | 0.059 | 0.19 | 0.034 | 0.26 | 0.003 | |
4 | 0.17 | 0.067 | 0.17 | 0.061 | 0.21 | 0.018 | |
5 | 0.15 | 0.109 | 0.21 | 0.016 | 0.17 | 0.059 | |
6 | 0.22 | 0.015 | 0.24 | 0.006 | −0.13 | 0.138 | |
7 | 0.23 | 0.011 | −0.13 | 0.147 | - | - | |
8 | 0.00 | 0.999 | - | - | - | - |
95% Threshold | 97.5% Threshold | 99% Threshold | |||||
---|---|---|---|---|---|---|---|
Scale | r | p-Value | r | p-Value | r | p-Value | |
Δx = 25 m | 1 | 0.19 | 0.034 | 0.20 | 0.026 | 0.25 | 0.004 |
2 | 0.21 | 0.018 | 0.22 | 0.011 | 0.24 | 0.006 | |
3 | 0.21 | 0.018 | 0.22 | 0.011 | 0.23 | 0.009 | |
sbg 250 m | 1 | 0.25 | 0.005 | 0.25 | 0.004 | 0.30 | 0.001 |
2 | 0.26 | 0.003 | 0.28 | 0.001 | 0.28 | 0.001 | |
3 | 0.25 | 0.004 | 0.26 | 0.003 | 0.28 | 0.001 | |
sbg 1000 m | 1 | 0.23 | 0.008 | 0.22 | 0.011 | 0.28 | 0.001 |
2 | 0.23 | 0.007 | 0.24 | 0.006 | 0.24 | 0.006 | |
3 | 0.21 | 0.016 | 0.23 | 0.009 | 0.26 | 0.003 |
95% Threshold | 97.5% Threshold | 99% Threshold | |||||
---|---|---|---|---|---|---|---|
Scale | r | p-Value | r | p-Value | r | p-Value | |
Δx = 25 m | 1 | 0.18 | 0.037 | 0.17 | 0.055 | 0.15 | 0.089 |
2 | 0.20 | 0.022 | 0.18 | 0.043 | 0.15 | 0.082 | |
3 | 0.22 | 0.012 | 0.20 | 0.023 | 0.11 | 0.206 | |
Δx = 250 m | 1 | 0.16 | 0.062 | 0.16 | 0.075 | 0.17 | 0.054 |
2 | 0.15 | 0.083 | 0.14 | 0.118 | 0.18 | 0.035 | |
3 | 0.15 | 0.081 | 0.17 | 0.056 | 0.21 | 0.019 | |
Δx = 1000 m | 1 | 0.27 | 0.002 | 0.31 | 0.000 | 0.28 | 0.001 |
2 | 0.27 | 0.002 | 0.27 | 0.002 | 0.30 | 0.001 | |
3 | 0.28 | 0.001 | 0.32 | 0.000 | 0.28 | 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telesca, L.; Guignard, F.; Helbig, N.; Kanevski, M. Wavelet Scale Variance Analysis of Wind Extremes in Mountainous Terrains. Energies 2019, 12, 3048. https://doi.org/10.3390/en12163048
Telesca L, Guignard F, Helbig N, Kanevski M. Wavelet Scale Variance Analysis of Wind Extremes in Mountainous Terrains. Energies. 2019; 12(16):3048. https://doi.org/10.3390/en12163048
Chicago/Turabian StyleTelesca, Luciano, Fabian Guignard, Nora Helbig, and Mikhail Kanevski. 2019. "Wavelet Scale Variance Analysis of Wind Extremes in Mountainous Terrains" Energies 12, no. 16: 3048. https://doi.org/10.3390/en12163048
APA StyleTelesca, L., Guignard, F., Helbig, N., & Kanevski, M. (2019). Wavelet Scale Variance Analysis of Wind Extremes in Mountainous Terrains. Energies, 12(16), 3048. https://doi.org/10.3390/en12163048