Thermally Anisotropic Composites for Improving the Energy Efficiency of Building Envelopes †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Walls, TAC, and Heat Sink/Source
2.2. Environmental Chamber and Test Conditions
2.3. Numerical Simulation Methods and Tools
3. Results
3.1. LSCS Experimental Evaluations
3.2. COMSOL Validation Results
3.3. Annual Simulation Results
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- Bhamare, D.K.; Rathod, M.K.; Banerjee, J. Passive cooling techniques for building and their applicability in different climatic zones-The State of Art. Energy Build. 2019, 198, 467–490. [Google Scholar] [CrossRef]
- Kosny, J.; Fallahi, A.; Shukla, N.; Kossecka, E.; Ahbari, R. Thermal load mitigation and passive cooling in residential attics containing PCM-enhanced insulations. Sol. Energy 2014, 108, 164–177. [Google Scholar] [CrossRef]
- Biswas, K.; Shukla, Y.; Desjarlais, A.; Rawal, R. Thermal characterization of full-scale PCM products and numerical simulations, including hysteresis, to evaluate energy impacts in an envelope application. Appl. Therm. Eng. 2018, 138, 501–512. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Thue, J.V.; Tenpierik, M.J.; Grynning, S.; Uvslokk, S.; Gustavsen, A. Vacuum insulation panels for building applications: A review and beyond. Energy Build. 2010, 42, 147–172. [Google Scholar] [CrossRef] [Green Version]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011, 43, 761–769. [Google Scholar] [CrossRef]
- Biswas, K. Development and Validation of Numerical Models for Evaluation of Foam-Vacuum Insulation Panel Composite Boards, Including Edge Effects. Energies 2018, 11, 2228. [Google Scholar] [CrossRef]
- Termentzidis, K. Thermal conductivity anisotropy in nanostructures and nanostructured materials. J. Phys. D-Appl. Phys. 2018, 51, 094003. [Google Scholar] [CrossRef]
- Huang, S.R.; Bao, J.; Ye, H.; Wang, N.; Yuan, G.J.; Ke, W.; Zhang, D.S.; Yue, W.; Fu, Y.F.; Ye, L.L.; et al. The Effects of Graphene-Based Films as Heat Spreaders for Thermal Management in Electronic Packaging. In Proceedings of the 17th International Conference on Electronic Packaging Technology, Wuhan, China, 16–19 August 2016; pp. 889–892. [Google Scholar]
- Suszko, A.; El-Genk, M.S. Thermally anisotropic composite heat spreaders for enhanced thermal management of high-performance microprocessors. Int. J. Therm. Sci. 2016, 100, 213–228. [Google Scholar] [CrossRef]
- Cometto, O.; Samani, M.K.; Liu, B.; Sun, S.X.; Tsang, S.H.; Liu, J.; Zhou, K.; Teo, E.H.T. Control of Nanoplane Orientation in voBN for High Thermal Anisotropy in a Dielectric Thin Film: A New Solution for Thermal Hotspot Mitigation in Electronics. ACS Appl. Mater. Interfaces 2017, 9, 7456–7464. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.Q.; Lee, J. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling. Nanotechnology 2018, 29, 045404. [Google Scholar] [CrossRef] [PubMed]
- Narayana, S.; Sato, Y. Heat Flux Manipulation with Engineered Thermal Materials. Phys. Rev. Lett. 2012, 108, 214303. [Google Scholar] [CrossRef] [PubMed]
- Vemuri, K.P.; Bandaru, P.R. Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials. Appl. Phys. Lett. 2013, 103, 133111. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Wang, S.W. Interactive Building Load Management for Smart Grid. In Proceedings of the 2012 Power Engineering and Automation Conference, Wuhan, China, 14–16 September 2012; pp. 371–375. [Google Scholar]
- Perino, M.; Serra, V. Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings. J. Facade Des. Eng. 2015, 3, 143–163. [Google Scholar] [CrossRef] [Green Version]
- Lufkin, S. Towards dynamic active facades. Nat. Energy 2019, 4, 635–636. [Google Scholar] [CrossRef]
- ASTM. ASTM C1363-11, Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASHRAE. Handbook—Fundamentals. 2013. Available online: https://www.ashrae.org/technical-resources/ashrae-handbook (accessed on 4 October 2019).
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- ANSI/ASHRAE/IES Standard 90.1-2016, in Energy Standard for Buildings Except Low-Rise Residential Buildings; ASHRAE: Atlanta, GA, USA, 2016.
- Residential Prototype Building Models. Available online: https://www.energycodes.gov/development/residential/iecc_models (accessed on 4 October 2019).
- Krese, G.; Lampret, Z.; Butala, V.; Prek, M. Determination of a building’s balance point temperature as an energy characteristic. Energy 2018, 165, 1034–1049. [Google Scholar] [CrossRef]
Material | Thermal Conductivity [k, W/(m·K)] | Density [ρ, kg/m3] | Specific Heat [cp, J/(kg·K)] |
---|---|---|---|
Gypsum | 0.159 | 640.7 | 879.2 |
Wood stud | 0.144 | 576.7 | 1632.9 |
Fiberglass | 0.039 | 7.8 | 837.4 |
OSB | 0.130 | 656.8 | 1884.1 |
XPS | 0.029 | 32.0 | 1465.4 |
Aluminum | 238 | 2700 | 900 |
Copper | 400 | 8960 | 385 |
Test Parameter | Base | Base + XPS | Base + TAC | |
---|---|---|---|---|
Summer | Cooling load (Wh) | 5310 | 3021 | 770 |
% difference | - | −43.1% | −85.5% | |
Winter | Heating load (Wh) | 4781 | 2629 | 1760 |
% difference | - | −45.0% | −63.2% |
Wall Type | Performance Metric | North | East | South | West |
---|---|---|---|---|---|
Phoenix | |||||
Base | Heat gain (kWh/m2) | 19.0 | 31.6 | 36.1 | 32.4 |
Base + XPS | Heat gain (kWh/m2) | 11.4 | 18.1 | 20.3 | 18.9 |
% difference | −40.1% | −42.6% | −43.9% | −41.6% | |
Base + TAC | Heat gain (kWh/m2) | 10.6 | 14.3 | 15.8 | 14.9 |
% difference | −44.2% | −54.7% | −56.4% | −53.8% | |
Base | Heat loss (kWh/m2) | −14.9 | −10.9 | −10.1 | −12.7 |
Base + XPS | Heat loss (kWh/m2) | −8.9 | −5.7 | −4.2 | −6.3 |
% difference | −40.0% | −48.1% | −58.8% | −50.3% | |
Base + TAC | Heat loss (kWh/m2) | −3.6 | −2.5 | −2.2 | −3.1 |
% difference | −75.8% | −77.0% | −78.1% | −75.6% | |
Baltimore | |||||
Base | Heat gain (kWh/m2) | 5.1 | 10.4 | 12.1 | 10.6 |
Base + XPS | Heat gain (kWh/m2) | 2.6 | 5.1 | 5.2 | 5.4 |
% difference | −49.3% | −50.7% | −57.1% | −48.8% | |
Base + TAC | Heat gain (kWh/m2) | 4.2 | 5.7 | 5.9 | 6.0 |
% difference | −17.6% | −45.2% | −51.1% | −43.3% | |
Base | Heat loss (kWh/m2) | −37.9 | −32.9 | −30.1 | −34.4 |
Base + XPS | Heat loss (kWh/m2) | −23.4 | −19.7 | −16.7 | −20.4 |
% difference | −38.3% | −40.3% | −44.6% | −40.7% | |
Base + TAC | Heat loss (kWh/m2) | −11.9 | −10.4 | −9.1 | −10.9 |
% difference | −68.6% | −68.5% | −69.6% | −68.3% |
Wall Type | Performance Metric | North | East | South | West |
---|---|---|---|---|---|
Base + XPS | Peak reduction (%) | 40.6 | 53.0 | 46.5 | 48.7 |
Peak shift (h) | 0.7 | 4.0 | 3.8 | 1.2 | |
Base + TAC | Peak reduction (%) | 58.6 | 69.3 | 63.6 | 66.6 |
Peak shift (h) | 0.6 | 5.0 | 3.6 | 1.1 |
Wall Type | Cooling and Fan Energy Use (kWh) | % Difference | Heating Energy Use (kWh) | % Difference |
---|---|---|---|---|
Phoenix | ||||
Base | 11,278 | - | 4855 | - |
Base + XPS | 10,268 | −9.0% | 3804 | −21.6% |
Base + TAC | 9998 | −11.3% | 3342 | −31.2% |
Baltimore | ||||
Base | 4158 | - | 21,945 | - |
Base + XPS | 3801 | −8.6% | 19,244 | −12.3% |
Base + TAC | 3838 | −7.7% | 17,413 | −20.6% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, K.; Shrestha, S.; Hun, D.; Atchley, J. Thermally Anisotropic Composites for Improving the Energy Efficiency of Building Envelopes. Energies 2019, 12, 3783. https://doi.org/10.3390/en12193783
Biswas K, Shrestha S, Hun D, Atchley J. Thermally Anisotropic Composites for Improving the Energy Efficiency of Building Envelopes. Energies. 2019; 12(19):3783. https://doi.org/10.3390/en12193783
Chicago/Turabian StyleBiswas, Kaushik, Som Shrestha, Diana Hun, and Jerald Atchley. 2019. "Thermally Anisotropic Composites for Improving the Energy Efficiency of Building Envelopes" Energies 12, no. 19: 3783. https://doi.org/10.3390/en12193783
APA StyleBiswas, K., Shrestha, S., Hun, D., & Atchley, J. (2019). Thermally Anisotropic Composites for Improving the Energy Efficiency of Building Envelopes. Energies, 12(19), 3783. https://doi.org/10.3390/en12193783