Optimal Position of the Intermediate Coils in a Magnetic Coupled Resonant Wireless Power Transfer System
Abstract
:1. Introduction
2. Theoretical Analysis of MCR-WPT System with Intermediate Coils
2.1. Equivalent Circuit Model with a Single-Intermediate Coil
2.2. Equivalent Circuit Model of a Two-Intermediate Coil WPT System
3. Simulation of an MCR-WPT System with Intermediate Coils
3.1. Simulation of a Single-Intermediate Coil WPT System
3.2. Simulation of a Two-Intermediate Coil WPT System
4. Experimental Verification and Analysis
4.1. The Structure of a Coil
4.2. Experimental Results Using a Network Analyzer
4.3. Experimental Results Using the Proposed Prototype
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karalis, A.; Joannopoulos, J.D.; Soljačić, M. Efficient Wireless Non-radiative Mid-Range Energy Transfer. Ann. Phys. 2008, 323, 34–48. [Google Scholar] [CrossRef]
- Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science 2007, 317, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Muneer, B.; Li, Y.; Zhu, Q. Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 281–291. [Google Scholar] [CrossRef]
- Machnoor, M.; Rodríguez, E.S.G.; Kosta, P.; Stang, J.; Lazzi, G. Analysis and Design of a 3-Coil Wireless Power Transmission System for Biomedical Applications. IEEE Trans. Antennas Propag. 2019, 67, 5012–5024. [Google Scholar] [CrossRef]
- Moon, S.; Moon, G.W. Wireless Power Transfer System With an Asymmetric Four-Coil Resonator for Electric Vehicle Battery Chargers. IEEE Trans. Power Electron. 2016, 31, 6844–6854. [Google Scholar]
- Cheng, C.; Lu, F.; Zhou, Z.; Li, W.; Zhu, C.; Zhang, H.; Deng, Z.; Chen, X.; Mi, C. Load-Independent Wireless Power Transfer System for Multiple Loads Over a Long Distance. IEEE Trans. Power Electron. 2019, 34, 9279–9288. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xue, C.; Lin, J. Distance-Insensitive Wireless Power Transfer Using Mixed Electric and Magnetic Coupling for Frequency Splitting Suppression. IEEE Trans. Microw. Theory Tech. 2017, 65, 4307–4316. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, X.; Wang, C.; He, Y. Comparative Analysis of Two-Coil and Three-Coil Structures for Wireless Power Transfer. IEEE Trans. Power Electron. 2017, 32, 341–352. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, G.; Jing, L.; Liu, Q.; Yuan, W.; Liu, Z.; Feng, X. Wireless Power Transfer With HTS Transmitting and Relaying Coils. IEEE Trans. Appl. Supercond. 2015, 25, 1–5. [Google Scholar] [CrossRef]
- Zhu, G.; Gao, D. Effects of intermediate coil on power transfer capability and efficiency in three-coil wireless power transfer system. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 2–5 August 2017; pp. 1–6. [Google Scholar]
- Moon, S.; Kim, B.C.; Cho, S.Y.; Ahn, C.H.; Moon, G.W. Analysis and Design of a Wireless Power Transfer System With an Intermediate Coil for High Efficiency. IEEE Transa. Ind. Electron. 2014, 61, 5861–5870. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G. A Novel Wireless Power Transfer System With Double Intermediate Resonant Coils. IEEE Trans. Ind. Electron. 2016, 63, 2174–2180. [Google Scholar] [CrossRef]
- Yang, D.; Won, S.; Hong, H. Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils. In Proceedings of the 2nd Asia Conference on Power and Electrical Engineering (ACPEE), Shanghai, China, 24–26 March 2017. [Google Scholar]
- Luo, S.; Li, S.; Zhao, H. Reactive power comparison of four-coil, LCC and CLC compensation network for wireless power transfer. In Proceedings of the 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 20–22 May 2017; pp. 268–271. [Google Scholar]
- Liu, C.; Ge, S.; Guo, Y.; Li, H.; Cai, G. Double-LCL resonant compensation network for electric vehicles wireless power transfer: Experimental study and analysis. IET Power Electron. 2016, 9, 2262–2270. [Google Scholar] [CrossRef]
- Huang, S.; Li, Z.; Lu, K. Frequency splitting suppression method for four-coil wireless power transfer system. IET Power Electron. 2016, 9, 2859–2864. [Google Scholar] [CrossRef]
- Narayanamoorthi, R.; Vimala Juliet, A.; Chokkalingam, B. Cross Interference Minimization and Simultaneous Wireless Power Transfer to Multiple Frequency Loads Using Frequency Bifurcation Approach. IEEE Trans. Power Electron. 2019, 34, 10898–10909. [Google Scholar] [CrossRef]
- Varghese, B.J.; Bobba, P.B.; Kavitha, M. Effects of coil misalignment in a four coil implantable wireless power transfer system. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016; pp. 1–6. [Google Scholar]
- Yang, C.L.; Chang, C.K.; Lee, S.Y.; Chang, S.J.; Chiou, L.Y. Efficient Four-Coil Wireless Power Transfer for Deep Brain Stimulation. IEEE Trans. Microw. Theory Tech. 2017, 65, 2496–2507. [Google Scholar] [CrossRef]
- Tan, L.; Guo, J.; Huang, X.; Wen, F. Output power stabilisation of wireless power transfer system with multiple transmitters. IET Power Electron. 2016, 9, 1374–1380. [Google Scholar] [CrossRef]
- Dai, Z.; Fang, Z.; Huang, H.; He, Y.; Wang, J. Selective Omnidirectional Magnetic Resonant Coupling Wireless Power Transfer With Multiple-Receiver System. IEEE Access. 2018, 6, 19287–19294. [Google Scholar] [CrossRef]
- Arakawa, T.; Goguri, S.; Krogmeier, J.V.; Kruger, A.; Love, D.J.; Mudumbai, R.; Swabey, M.A. Optimizing Wireless Power Transfer From Multiple Transmit Coils. IEEE Access. 2018, 6, 23828–23838. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Li, Q.; Xu, J.; Meng, T.; Zhang, B.; Zhang, Z. Analysis and Compensation of Incomplete Coupling for Omnidirectional Wireless Power Transfer. Energies 2019, 12, 3277. [Google Scholar] [CrossRef]
- Zierhofer, C.M.; Hochmair, E.S. Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Trans. Biomed. Eng. 1996, 43, 708–714. [Google Scholar] [CrossRef]
- Wheeler, H.A. Simple Inductance Formulas for Radio Coils. Proc. Instit. Radio Eng. 1928, 16, 1398–1400. [Google Scholar] [CrossRef]
- Hui, S.Y.R.; Zhong, W.; Lee, C.K. A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer. IEEE Trans. Power Electron. 2014, 29, 4500–4511. [Google Scholar] [CrossRef]
Symbol | Definition |
---|---|
the transmitter and the intermediate coil-1 | |
the intermediate coil-1 and the intermediate coil-2 | |
the intermediate coil-2 and the receiver coil | |
the transmitter and the receiver coil | |
the transmitter and intermediate coil-2 | |
the intermediate coil-1 and the receiver coil |
Parameters | Values |
---|---|
Transmitter coil inductance | 17.254 H |
Transmitter compensation capacitor | 223.94 nF |
Transmitter coil resistance | 229.7 mΩ |
Intermediate coil-1 inductance | 17.250 H |
Intermediate coil-1 compensation capacitor | 224.96 nF |
Intermediate coil-1 resistance | 216.53 mΩ |
Intermediate coil-2 inductance | 17.164 H |
Intermediate coil-2 compensation capacitor | 224.54 nF |
Intermediate coil-2 resistance | 218.07 mΩ |
Receiver coil inductance | 17.196 H |
Receiver compensation capacitor | 224.02 nF |
Receiver coil resistance | 231.92 mΩ |
Inverter output angular frequency | 81.3 KHz |
Distance Coefficient | Distance Ratio between Coils/cm | |
---|---|---|
= 0.34, = 0.34 | 17:16:17 | 0.035131 |
= 0.26, = 0.26 | 13:24:13 | 0.22256 |
= 0.24, = 0.24 | 12:26:12 | 0.26769 |
= 0.22, = 0.22 | 11:28:11 | 0.30252 |
= 0.20, = 0.20 | 10:30:10 | 0.3333 |
= 0.16, = 0.16 | 8:34:8 | 0.37346 |
= 0.14, = 0.14 | 7:36:7 | 0.37428 |
= 0.12, = 0.12 | 6:38:6 | 0.35832 |
Distance Coefficient | Distance Ratio between Coils/cm | /mA | (%) | (%) |
---|---|---|---|---|
= 0.34, = 0.34 | 17:16:17 | 23.7 | 5.97 | 3.78 |
= 0.26, = 0.26 | 13:24:13 | 173 | 0.51 | 0.53 |
= 0.24, = 0.24 | 12:26:12 | 237 | 0.57 | 0.21 |
= 0.22, = 0.22 | 11:28:11 | 316 | 0.31 | 0.15 |
= 0.20, = 0.20 | 10:30:10 | 366 | 0.47 | 0.43 |
= 0.16, = 0.16 | 8:34:8 | 367 | 0.3 | 0.36 |
= 0.14, = 0.14 | 7:36:7 | 353 | 0.31 | 0.29 |
= 0.12, = 0.12 | 6:38:6 | 330 | 0.32 | 0.51 |
= 0.26, = 0.48 | 13:13:24 | 10.95 | 12.68 | 8.36 |
= 0.16, = 0.50 | 8:17:25 | 6.39 | 18.72 | 14.4 |
= 0.16, = 0.34 | 8:25:17 | 184 | 0.28 | 0.55 |
= 0.64, = 0.18 | 32:9:9 | 5.9 | 20.02 | 13.46 |
= 0.64, = 0.10 | 32:13:5 | 21.8 | 3.47 | 3.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Tian, J.; Won, S.; Zhou, B.; Cheng, Z.; Hu, B. Optimal Position of the Intermediate Coils in a Magnetic Coupled Resonant Wireless Power Transfer System. Energies 2019, 12, 3991. https://doi.org/10.3390/en12203991
Yang D, Tian J, Won S, Zhou B, Cheng Z, Hu B. Optimal Position of the Intermediate Coils in a Magnetic Coupled Resonant Wireless Power Transfer System. Energies. 2019; 12(20):3991. https://doi.org/10.3390/en12203991
Chicago/Turabian StyleYang, Dongsheng, Jiangwei Tian, Sokhui Won, Bowen Zhou, Zixin Cheng, and Bo Hu. 2019. "Optimal Position of the Intermediate Coils in a Magnetic Coupled Resonant Wireless Power Transfer System" Energies 12, no. 20: 3991. https://doi.org/10.3390/en12203991
APA StyleYang, D., Tian, J., Won, S., Zhou, B., Cheng, Z., & Hu, B. (2019). Optimal Position of the Intermediate Coils in a Magnetic Coupled Resonant Wireless Power Transfer System. Energies, 12(20), 3991. https://doi.org/10.3390/en12203991