Innovative System for Heat Recovery and Combustion Gas Cleaning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Combustion Gas Cleaning and Heat Recovery from Combustion of Liquid Fuels
2.2. Innovative System for Heat Recovery and Combustion Gas Cleaning
- second stage combustion gas—air exchanger;
- sprinkler;
- first stage combustion gas—air exchanger;
- condensation track;
- combustion gas—fuel exchanger;
- separator;
- combustion gas tunnel;
- combustion gas fan;
- water tank;
- sedimentation tank;
- water pump;
- pipes;
- control valves;
- air fan; and
- fuel pump.
3. Results and Discussion
- to intensify the use of combustion gases in the chamber;
- to save fuel;
- to obtain a higher content of H2O in combustion gases (e.g., in driers) and CO2 (in technological processes); and
- to lower the temperature of combustion gases discharged to the environment.
- for a one-zone chamber 1–1.15;
- for a counter-current flow of combustion gases and heated medium in the chamber 1.1–1.3; and
- for a multi-zone chamber 1.3–1.5.
4. Conclusions
5. Patents
Author Contributions
Conflicts of Interest
References
- IEA. Weo 2017; World Energy Outlook; OECD: Paris, France, 2017; pp. 33–61. [Google Scholar]
- Wojdyga, K.; Chorzelski, M. Chances for Polish district heating systems. Energy Procedia 2017, 116, 106–118. [Google Scholar] [CrossRef]
- Ziemele, J.; Cilinskis, E.; Blumberga, D. Pathway and restriction in district heating systems development towards 4th generation district heating. Energy 2018, 152, 108–118. [Google Scholar] [CrossRef]
- Lombardi, L.; Carnevale, E.; Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 2015, 37, 26–44. [Google Scholar] [CrossRef] [PubMed]
- Barma, M.C.; Saidur, R.; Rahman, S.M.; Allouhi, A.; Akash, B.A.; Sait, S.M. A review on boilers energy use, energy savings, and emissions reductions. Renew. Sustain. Energy Rev. 2017, 79, 970–983. [Google Scholar] [CrossRef]
- Blanco, J.M.; Peña, F. Increase in the boiler’s performance in terms of the acid dew point temperature: Environmental advantages of replacing fuels. Appl. Therm. Eng. 2008, 28, 777–784. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, C.; Xu, G.; Han, Y.; Fang, Y.; Zhang, D. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery. Energy Convers. Manag. 2015, 89, 137–146. [Google Scholar] [CrossRef]
- Liu, L.; Fu, L.; Jiang, Y. Application of an exhaust heat recovery system for domestic hot water. Energy 2010, 35, 1476–1481. [Google Scholar] [CrossRef]
- Chen, Q.; Finney, K.; Li, H.; Zhang, X.; Zhou, J.; Sharifi, V.; Swithenbank, J. Condensing boiler applications in the process industry. Appl. Energy 2012, 89, 30–36. [Google Scholar] [CrossRef]
- Zhu, K.; Xia, J.; Xie, X.; Jiang, Y. Total heat recovery of gas boiler by absorption heat pump and direct-contact heat exchanger. Appl. Therm. Eng. 2014, 71, 213–218. [Google Scholar] [CrossRef]
- Qu, M.; Abdelaziz, O.; Yin, H. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement. Energy Convers. Manag. 2014, 87, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Ziembicki, P.; Bernasiński, J.; Kozioł, J. The production of chilled water from a low-temperature medium of district heating systems. In Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wrocław, Poland, 23–28 June 2019. [Google Scholar]
- Suntivarakorn, R.; Treedet, W. Improvement of Boiler’s Efficiency Using Heat Recovery and Automatic Combustion Control System. Energy Procedia 2016, 100, 193–197. [Google Scholar] [CrossRef]
- Pan, H.; Zhong, W.; Wang, Z.; Wang, G. Optimization of industrial boiler combustion control system based on genetic algorithm. Comput. Electr. Eng. 2018, 70, 987–997. [Google Scholar] [CrossRef]
- Chen, X.; Gao, L.; Zhou, J.; Gao, H.; Wang, L.; Wang, X.; Chen, B. Boiler combustion control model of large-scale coal-fired power plant with asymmetric artificial neural networks. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017. [Google Scholar]
- Cheng, Y.; Huang, Y.; Pang, B.; Zhang, W. ThermalNet: A deep reinforcement learning-based combustion optimization system for coal-fired boiler. Eng. Appl. Artif. Intell. 2018, 74, 303–311. [Google Scholar] [CrossRef]
- Junblut, H.; Horning, M.; Lohman, G.; Herne., J. Optimirung von Heizoelfeuerungsanlagen durch Additives. Technische Arbeitstagung. Mineraloeltechnik 1997, 42, 1–24. [Google Scholar]
- Codina Gironès, V.; Moret, S.; Peduzzi, E.; Nasato, M.; Maréchal, F. Optimal use of biomass in large-scale energy systems: Insights for energy policy. Energy 2017, 137, 789–797. [Google Scholar] [CrossRef]
- Ling, Z.; Zhou, H.; Ren, T. Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner. Energy 2015, 91, 110–116. [Google Scholar] [CrossRef]
- Liu, H.; Chaney, J.; Li, J.; Sun, C. Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging. Fuel 2013, 103, 792–798. [Google Scholar] [CrossRef]
- Agarwal, S.; Suhane, A. Study of Boiler Maintenance for Enhanced Reliability of System A Review. Mater. Today Proc. 2017, 4, 1542–1549. [Google Scholar] [CrossRef]
- Guziałowska-Tic, J.; Tic, W.J. Analysis of the adverse impact of an iron-based combustion modifier for liquid fuels on human health. J. Clean. Prod. 2018, 174, 1527–1533. [Google Scholar] [CrossRef]
- Poullikkas, A. Cost-benefit analysis for the use of additives in heavy fuel oil fired boilers. Energy Convers. Manag. 2004, 45, 1725–1734. [Google Scholar] [CrossRef]
- Romero, C.E.; Li, Y.; Bilirgen, H.; Sarunac, N.; Levy, E.K. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers. Fuel 2006, 85, 204–212. [Google Scholar] [CrossRef]
- Altin, R.; Çetinkaya, S.; Yücesu, H.S. Potential of using vegetable oil fuels as fuel for diesel engines. Energy Convers. Manag. 2001, 42, 529–538. [Google Scholar] [CrossRef]
- Omankiewicz, D.; Brodzik, K.; Bielczyc, P. Identyfikacja metoda̧ GC-MS zwia̧zków w spalinach z zapłonem iskrowym zasilanych paliwem z dodatkiem biometanolu. Logistyka 2015, 3, 2901–2910. [Google Scholar]
- Weber, C.; Gebhardt, B.; Fahl, U. Market transformation for energy efficient technologies—Success factors and empirical evidence for gas condensinng boilers. Energy 2002, 27, 287–315. [Google Scholar] [CrossRef]
- Persson, U.; Münster, M. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review. Energy 2016, 110, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Varga, Z.; Palotai, B. Comparison of low temperature waste heat recovery methods. Energy 2017, 137, 1286–1292. [Google Scholar] [CrossRef]
- Ostrowski, P.; Pronobis, M.; Gramatyka, F.; Olewiński, H.; Habram, T. Sposób Oraz Instalacja Odzysku Ciepła i Mokrego Oczyszczania Niskotemperaturowych Spalin Odprowadzanych do Otoczenia, Zwłaszcza Komór Spalania. Patent. 2010. Available online: https://grab.uprp.pl/PrzedmiotyChronione/Strony%20witryny/Wyszukiwanie%20proste.aspx (accessed on 1 August 2019).
- Ostrowski, P.; Pronobis, M.; Gramatyka, F.; Hausner, J.; Kalisz, S.; Ostrowski, Z.; Wejkowski, R. Sposób Intensyfikacji Wykorzystania Ciepła Odzyskanego w Układach SchłAdzania Niskotemperaturowych Spalin Odprowadzanych do Otoczenia. Patent. 2015. Available online: https://grab.uprp.pl/PrzedmiotyChronione/Strony%20witryny/Wyszukiwanie%20proste.aspx (accessed on 1 August 2019).
- Kreikler, W. Device for Creation of e.g. Temperature Changes in Old and/or New Oil-fired Boilers, Has Exhaust Gas Ventilators Producing Low Pressure, and Burner Whose Nozzle Holder is Heated with hot Water or Cold Water. Patent. 2013. Available online: https://pl.espacenet.com/ (accessed on 1 August 2019).
- Szargut, J. Termodynamika techniczna; Wydawnictwo Politechniki Śla̧skiej: Gliwice, Poland, 1991; pp. 64–75. [Google Scholar]
- Kozioł, J.; Tkocz, M. Odzysk Energii Odpadowej oraz wody ze Spalin odpływaja̧cych z kotła Elektrociepłowni. III Konferencja Naukowo-Techniczna “Współczesne Technologie i Urza̧dzenia Energetyczne”, Cracow, Poland. 16 November 2013. Available online: http://www.bg.polsl.pl/expertus/view/exprec.php?term=0000089693 (accessed on 1 August 2019).
- Szargut, J.; Ziȩbik, A.; Kozioł, J.; Inni, I. Racjonalizacja Użytkowania Energii w Zakładach Przemysłowych; FPE: Warszawa, Poland, 1994. [Google Scholar]
- Szargut, J.; Andrzej, Z. Podstawy Energetyki Cieplnej; Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 2000. (In Polish) [Google Scholar]
- Szargut, J.; Koziol, J. Influence of the temperature distribution in the furnace chamber on the effects of recuperation. Gaswaerme Int. 1990, 39, 180–184. [Google Scholar]
- Kozioł, J.; Ziembicki, P.; Bernasiński, J. Sposób i Instalacja do Oszczȩdzania Paliwa, Oczyszczania Spalin Oraz Odzysku Wody ze Spalin w Komorach Spalania. Patent. 2015. Available online: https://grab.uprp.pl/PrzedmiotyChronione/Strony%20witryny/Wyszukiwanie%20proste.aspx (accessed on 1 August 2019).
Type of Fuel | ||
---|---|---|
Light fuel oil | 0.157 | 0.223 |
Heavy fuel oil | 0.160 | 0.229 |
Natural gas | 0.115 | 0.147 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziembicki, P.; Kozioł, J.; Bernasiński, J.; Nowogoński, I. Innovative System for Heat Recovery and Combustion Gas Cleaning. Energies 2019, 12, 4255. https://doi.org/10.3390/en12224255
Ziembicki P, Kozioł J, Bernasiński J, Nowogoński I. Innovative System for Heat Recovery and Combustion Gas Cleaning. Energies. 2019; 12(22):4255. https://doi.org/10.3390/en12224255
Chicago/Turabian StyleZiembicki, Piotr, Joachim Kozioł, Jan Bernasiński, and Ireneusz Nowogoński. 2019. "Innovative System for Heat Recovery and Combustion Gas Cleaning" Energies 12, no. 22: 4255. https://doi.org/10.3390/en12224255
APA StyleZiembicki, P., Kozioł, J., Bernasiński, J., & Nowogoński, I. (2019). Innovative System for Heat Recovery and Combustion Gas Cleaning. Energies, 12(22), 4255. https://doi.org/10.3390/en12224255