A Model of the On-State Voltage across IGBT Modules Based on Physical Structure and Conduction Mechanisms
Abstract
:1. Introduction
2. Theoretical Analysis of the IGBT Module Model in On-State Status
2.1. Threshold Voltages and Working Conditions of the IGBT Module
2.2. On-State Conduction Mechanism of the IGBT Module
2.3. Model of the On-State Voltage
3. Experimental Results
3.1. Measurements of the Collector-Emitter Threshold
3.2. Extraction of the Package Resistance
3.3. The Acquisition Method of On-State Chip Resistance
3.4. Method for Calculating On-State Voltage
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, W.; Qian, X. Design of 3KW wind and solar hybrid independent power supply system for 3G base station. In Proceedings of the Second International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, 30 November–1 December 2009; pp. 289–292. [Google Scholar]
- Li, H.; Hu, Y.; Liu, S.; Li, Y.; Liao, X.; Liu, Z. An improved thermal network model of the IGBT module for wind power converters considering the effects of base plate solder fatigue. IEEE Trans. Device Mater. Reliab. 2016, 16, 570–575. [Google Scholar] [CrossRef]
- Ueta, T.; Nagao, M.; Hamada, K. Application of electrical circuit simulations in hybrid vehicle development. IEEE Trans. Electron Devices 2013, 60, 544–550. [Google Scholar] [CrossRef]
- Song, Y.; Wang, B. Evaluation methodology and control strategies for improving reliability of HEV power electronic system. IEEE Trans. Veh. Technol. 2014, 63, 3661–3676. [Google Scholar] [CrossRef]
- Zahedi, B.; Norum, L.E. Modeling and simulation of All-Electric ships with low-voltage DC hybrid power systems. IEEE Trans. Power Electron. 2013, 28, 4525–4537. [Google Scholar] [CrossRef]
- Cao, W.; Mecrow, B.C.; Atkinson, G.J.; Bennett, J.W.; Atkinson, D.J. Overview of electric motor technologies used for more electric aircraft (MEA). IEEE Trans. Ind. Electron. 2012, 59, 3523–3531. [Google Scholar]
- Yang, S.; Bryant, A.T.; Mawby, P.A.; Xiang, D.; Ran, L.; Tavner, P. An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 2011, 47, 1441–1451. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Ma, K. Future on power electronics for wind turbine systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 139–152. [Google Scholar] [CrossRef]
- Bie, X.; Qin, F.; An, T.; Zhao, J.; Fang, C. Numerical simulation of the wire bonding reliability of IGBT module under power cycling. In Proceedings of the International Conference on Electronic Packaging Technology, Harbin, China, 16–19 August 2017; pp. 1396–1401. [Google Scholar]
- Bahman, A.S.; Ma, K.; Ghimire, P.; Iannuzzo, F.; Blaabjerg, F. A 3-D-lumped thermal network model for long-term load profiles analysis in high-power IGBT modules. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1050–1063. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, X.; Xie, X.; Huo, Y.; Qi, S.; Hu, D. Research on IGBT module failure caused by thermal stress damage. In Proceedings of the IEEE International Conference on Solid-State and Integrated Circuit Technology, Qingdao, China, 31 Octorber–3 November 2018; pp. 1–3. [Google Scholar]
- Chen, Y.; Li, W.; Iannuzzo, F.; Luo, H.; He, X.; Blaabjerg, F. Investigation and classification of short-circuit failure modes based on three-dimensional safe operating area for high-power IGBT modules. IEEE Trans. Power Electron. 2018, 33, 1075–1086. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X.; Ren, Y.; Feng, L.; Chen, W.; Pei, Y. Advanced active gate drive for switching performance improvement and overvoltage protection of high-power IGBTs. IEEE Trans. Power Electron. 2018, 33, 3802–3815. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, D.; Li, M.; Ning, P.; Wang, F.; Liang, Z. Development of Si IGBT phase-leg modules for operation at 200 °C in hybrid electric vehicle applications. IEEE Trans. Power Electron. 2013, 28, 5557–5567. [Google Scholar] [CrossRef]
- Nishimura, T.; Ikeda, Y.; Hokazono, H.; Mochizuki, E.; Takahashi, Y. Improving reliability of IGBT surface electrode for 200 °C operation. In Proceedings of the International Power Electronics Conference, Hiroshima, Japan, 18–21 May 2014; pp. 2870–2873. [Google Scholar]
- Luo, H.; Li, W.; Iannuzzo, F.; He, X.; Blaabjerg, F. Enabling junction temperature estimation via collector-side thermo-sensitive electrical parameters through emitter stray inductance in high-power IGBT modules. IEEE Trans. Ind. Electron. 2018, 65, 4724–4738. [Google Scholar] [CrossRef]
- Geissmann, S.; De Michielis, L.; Corvasce, Ch.; Rahimo, M.; Andenna, M. Extraction of dynamic avalanche during IGBT turn off. Microelectron. Reliab. 2017, 76–77, 495–499. [Google Scholar] [CrossRef]
- Halick, M.S.M.; Kandasamy, K.; Jet, T.K.; Sundarajan, P. Online computation of IGBT on-state resistance for off-shelf three-phase two-level power converter systems. Microelectron. Reliab. 2016, 64, 379–386. [Google Scholar] [CrossRef]
- Bęczkowski, S.; Ghimre, P.; Vega, A.R.; Munk-Nielsen, S.; Rannestad, B.; Thøgersen, P. Online Vce measurement method for wear-out monitoring of high power IGBT modules. In Proceedings of the European Conference on Power Electronics and Applications, Lille, France, 2–6 September 2013; pp. 1–7. [Google Scholar]
- Baker, N.; Dupont, L.; Munknielsen, S.; Iannuzzo, F.; Liserre, M. IR Camera validation of IGBT junction temperature measurement via peak gate current. IEEE Trans. Power Electron. 2017, 32, 3099–3111. [Google Scholar] [CrossRef]
- Das, S.C.; Narayanan, G.; Tiwari, A. Experimental study on the influence of junction temperature on the relationship between IGBT switching energy loss and device current. Microelectron. Reliab. 2018, 80, 134–143. [Google Scholar] [CrossRef]
- Ku, T.; Lin, C.; Chen, C.; Hsu, C.; Hsieh, W.; Hsieh, S. Coordination of PV inverters to mitigate voltage violation for load transfer between distribution feeders with high penetration of PV installation. IEEE Trans. Ind. Appl. 2016, 52, 1167–1174. [Google Scholar] [CrossRef]
- Bruckner, T.; Bernet, S. Estimation and measurement of junction temperatures in a three-level voltage source converter. IEEE Trans. Power Electron. 2007, 22, 3–12. [Google Scholar] [CrossRef]
- Luo, H.; Chen, Y.; Sun, P.; Li, W.; He, X. Junction temperature extraction approach with turn-off delay time for high-voltage high-power IGBT modules. IEEE Trans. Power Electron. 2016, 31, 5122–5132. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, L.; Zhang, Y.; Wang, K.; Du, X.; Sun, P. Active junction temperature control of IGBT based on adjusting the turn-off trajectory. IEEE Trans. Power Electron. 2017, 33, 5811–5823. [Google Scholar] [CrossRef]
- Dupont, L.; Avenas, Y. Evaluation of thermo-sensitive electrical parameters based on the forward voltage for on-line chip temperature measurements of IGBT devices. In Proceedings of the Energy Conversion Congress and Exposition, Pittsburgh, PA, USA, 14–18 September 2014; pp. 4028–4035. [Google Scholar]
- Amoiridis, A.; Anurag, A.; Ghimire, P.; Munk-Nielsen, S.; Baker, N. Vce-based chip temperature estimation methods for high power IGBT modules during power cycling—A comparison. In Proceedings of the European Conference on Power Electronics and Applications, Geneva, Switzerland, 8–10 September 2015; pp. 1–9. [Google Scholar]
- Ji, B.; Pickert, V.; Zahawi, B.; Zhang, M. In-situ bond wire health monitoring circuit for IGBT power modules. In Proceedings of the IET International Conference on Power Electronics, Bristol, UK, 27–29 March 2012; pp. 1–6. [Google Scholar]
- Peng, Y.; Sun, P.; Zhou, L.; Du, X.; Cai, J. A temperature-independent method for monitoring the degradation of bond wires in IGBT modules based on transfer characteristics. In Proceedings of the Applied Power Electronics Conference and Exposition, Tampa, FL, USA, 26–30 March 2017; pp. 751–755. [Google Scholar]
- Ji, B.; Pickert, V.; Cao, W. In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle. IEEE Trans. Power Electron. 2013, 28, 5568–5577. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, W. An Online Frequency-Domain function temperature estimation method for IGBT modules. IEEE Trans. Power Electron. 2015, 30, 4633–4637. [Google Scholar] [CrossRef]
- Smet, V.; Forest, F.; Huselstein, J.-J.; Rashed, A.; Richardeau, F. Evaluation of Vce monitoring as a real-time method to estimate aging of bond wire-IGBT modules stressed by power cycling. IEEE Trans. Ind. Electron. 2013, 60, 2760–2770. [Google Scholar] [CrossRef]
- Pedersen, K.B.; Peter, K.K.; Pedersen, K.; Uhrenfeldt, C.; Munk-Nielsen, S. Vce as early indicator of IGBT module failure mode. In Proceedings of the IEEE International Reliability Physics Symposium, Monterey, CA, USA, 2–6 April 2017; pp. FA-1.1–FA-1.6. [Google Scholar]
- Han, J.; Ma, M.; Chu, K.; Zhang, X.; Lin, Z. In-situ diagnostics and prognostics of wire bonding faults in IGBT modules of three-level neutral-point-clamped inverters. In Proceedings of the Power Electronics and Motion Control Conference, Hefei, China, 22–26 May 2016; pp. 3262–3267. [Google Scholar]
- Trintis, I.; Ghimire, P.; Munk-Nielsen, S.; Rannestad, B. On-state voltage drop based power limit detection of IGBT inverters. In Proceedings of the European Conference on Power Electronics and Applications, Geneva, Switzerland, 8–10 September 2015; pp. 1–9. [Google Scholar]
- Ghimire, P.; Beczkowski, S.; Munk-Nielsen, S.; Rannestad, B.; Thøgersen, P.B. A review on real time physical measurement techniques and their attempt to predict wear-out status of IGBT. In Proceedings of the European Conference on Power Electronics and Applications, Lille, France, 2–6 September 2013; pp. 1–10. [Google Scholar]
- Gelagaev, R.; Jacqmaer, P.; Driesen, J. A fast voltage clamp circuit for the accurate measurement of the dynamic on-resistance of power transistors. IEEE Trans. Ind. Electron. 2015, 62, 1241–1250. [Google Scholar] [CrossRef]
- Guacci, M.; Bortis, D.; Kolar, J.W. On-state voltage measurement of fast switching power semiconductors. CPSS TPEA 2018, 3, 163–176. [Google Scholar] [CrossRef]
- Hefner Jr, A.R.; Blackburn, D.L. An analytical model for the steady-state and transient characteristics of the power insulated-gate bipolar transistor. Solid State Electron. 1988, 31, 1513–1532. [Google Scholar] [CrossRef]
- Wang, H.; Su, M.; Sheng, K. Theoretical performance limit of the IGBT. IEEE Trans. Electron Devices 2017, 64, 4184–4192. [Google Scholar] [CrossRef]
- Ma, C.L.; Lauritzen, P.O.; Lin, P.; Budihardjo, I.; Sigg, J. A systematic approach to modeling of power semiconductor devices based on charge control principles. In Proceedings of the Power Electronics Specialist Conference, Taipei, China, 20–25 June 1994; pp. 31–37. [Google Scholar]
- Lauritzen, P.O.; Andersen, G.K.; Helsper, M. A basic IGBT model with easy parameter extraction. In Proceedings of the Annual Power Electronics Specialists Conference, Vancouver, BC, Canada, 17–21 June 2001; pp. 2160–2165. [Google Scholar]
- Nawaz, M.; Chimento, F.; Mora, N.; Zannoni, M. Simple spice based modeling platform for 4.5 kV power IGBT modules. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 279–286. [Google Scholar]
- Miyake, M.; Navarro, D.; Feldmann, U.; Mattausch, H.J.; Kojima, T.; Ogawa, T.; Ueta, T. HiSIM-IGBT: A compact Si-IGBT model for power electronic circuit design. IEEE Trans. Electron Devices 2013, 60, 571–579. [Google Scholar] [CrossRef]
- Perez, S.; Kotecha, R.M.; Rashid, A.; Hossain, M.M.; Vrotsos, T.; Francis, A.M.; Mantooth, A.H.; Santi, E.; Hudgins, J.L. A datasheet driven unified Si/SiC compact IGBT model for N-channel and P-channel devices. IEEE Trans. Power Electron. 2018, PP, 1. [Google Scholar] [CrossRef]
- Baliga, B.J. Fundamentals of Power Semiconductor Devices, 1st ed.; Springer: Boston, MA, USA, 2008; pp. 776–883. [Google Scholar]
- The datasheet of the IGBT module we tested in this paper. Available online: https://www.semikron.com/products/product-classes/igbt-modules/detail/skm75gb12t4-22892010.html (accessed on 16 May 2017).
Voltage (V) | a | Standard Error | b | Standard Error | R-Square | Vce-th (V) |
---|---|---|---|---|---|---|
0.6 | 5.61701 | 0.01724 | −3.25972 | 0.027 | 0.99342 | 0.5803 |
0.9 | 5.94661 | 0.01148 | −3.85935 | 0.01933 | 0.99783 | 0.6490 |
0.92 | 5.96143 | 0.01129 | −3.88716 | 0.0191 | 0.99793 | 0.6520 |
0.93 | 5.96969 | 0.01119 | −3.90269 | 0.01898 | 0.99799 | 0.6537 |
0.94 | 5.97575 | 0.01113 | −3.91408 | 0.01891 | 0.99803 | 0.6549 |
1.4 | 6.30752 | 0.00789 | −4.56373 | 0.01497 | 0.9994 | 0.7235 |
Ic (A) | Ron-chip (mΩ) | Vce-cal (V) | Vce-mea (V) | Error (%) |
---|---|---|---|---|
20 | 13.5899 | 1.1322 | 1.1294 | 0.5135 |
40 | 8.6814 | 1.4133 | 1.4112 | 0.1488 |
60 | 6.6801 | 1.6725 | 1.6957 | −1.3681 |
75 | 6.6801 | 1.9209 | 1.9261 | −0.2855 |
Ic (A) | Ron-chip (mΩ) | Vce-cal (V) | Vce-mea (V) | Error (%) |
---|---|---|---|---|
20 | 13.5899 | 0.9946 | 0.9811 | 1.37 |
40 | 10.6344 | 1.1903 | 1.1540 | 3.14 |
60 | 9.1791 | 1.3555 | 1.3223 | 2.51 |
80 | 8.5702 | 1.5043 | 1.5001 | 0.27 |
100 | 8.5702 | 1.7197 | 1.7019 | 1.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Q.; Du, M.; Ouyang, Z.; Wei, K.; Hurley, W.G. A Model of the On-State Voltage across IGBT Modules Based on Physical Structure and Conduction Mechanisms. Energies 2019, 12, 851. https://doi.org/10.3390/en12050851
Kong Q, Du M, Ouyang Z, Wei K, Hurley WG. A Model of the On-State Voltage across IGBT Modules Based on Physical Structure and Conduction Mechanisms. Energies. 2019; 12(5):851. https://doi.org/10.3390/en12050851
Chicago/Turabian StyleKong, Qingyi, Mingxing Du, Ziwei Ouyang, Kexin Wei, and William Gerard Hurley. 2019. "A Model of the On-State Voltage across IGBT Modules Based on Physical Structure and Conduction Mechanisms" Energies 12, no. 5: 851. https://doi.org/10.3390/en12050851
APA StyleKong, Q., Du, M., Ouyang, Z., Wei, K., & Hurley, W. G. (2019). A Model of the On-State Voltage across IGBT Modules Based on Physical Structure and Conduction Mechanisms. Energies, 12(5), 851. https://doi.org/10.3390/en12050851