LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.1.1. Function, Functional Unit and System Boundaries
2.1.2. Description of Selective Collection Systems
- Door-to-door: in this system, citizens leave each waste fraction outside their house, separated according to a pre-established collection schedule based on daily waste generation. A garbage truck collects waste from door-to-door bins on a specific collection day. Compacting waste trucks collect the waste from the containers (one truck for each collected fraction) in order to deliver it to final treatment. A full service scheme includes the cleaning with hot and cold water and detergent of containers using a mobile container washing vehicle.
- Pneumatic collection: this system uses a network of urban pipes, underground storage containers and waste inlets and chutes. Several indoor and outdoor collection points are available for the waste fractions. Waste bags are dropped inside underground containers through a chute and, according to a collecting schedule, waste is transported by a vacuum system to a collection plant. This plant, located in the centre of the collection network, is the heart of the system composed of turbo fans, cyclones, waste compressors, cleaning filters and general equipment, such as conveyor belts, cranes, compressed air and automated control systems. This collection method uses electricity to collect and compact the different waste streams [39].
2.1.3. Assumptions
- The production of aluminium and the production of fiberglass have been excluded because, at the time of model construction, no data was available. In addition, the environmental impact associated with the manufacture of these materials is not large enough to cause a deviation of the results due to the small quantities used compared to the stainless steel, the main material of which containers are made. Therefore, it is assumed that all containers are completely made of stainless steel, as well as the pipes.
- The installation of the waste pneumatic system, the manufacture of the waste collection plant, as well as the construction of the sorting plant have not been included in the model. This is due to the lack of available data and irrelevance of the environmental impacts within the pneumatic collection system. It can be reasonably assumed that, when expressed per FU, their contribution to the waste manage life cycle will be minimal. This assumption is based on the environmental impacts caused by other processes involved and the considered lifespan of these infrastructures.
- The end of life is not included because it was outside the system boundaries.
- The manufacture of the waste valves, filters and cyclones are not inventoried because it has been considered that the associated environmental impact is insignificant compared to the waste transported by this system and valves/cyclone lifespan.
- The vehicle manufacture was also excluded from the analysis.
2.1.4. Description of the Scenarios under Study
2.1.5. Allocations
2.2. Life Cycle Inventory (LCI)
2.2.1. Door-to-Door Collection
2.2.2. Pneumatic Collection
3. Results and Discussion
3.1. Comparison of the Two Waste Collection Systems
3.2. Sensitivity Analysis
3.2.1. Effectiveness of the Biodegradable Collection
3.2.2. Population Density
4. Conclusions
5. Proclamations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anagnostopoulos, T.; Zaslavsky, A.; Kolomvatsos, K.; Medvedev, A.; Amirian, P.; Morley, J.; Hadjieftymiades, S. Challenges and opportunities of waste management in IoT-enabled smart cities: A survey. IEEE Trans. Sustain. Comput. 2017, 2, 275–289. [Google Scholar] [CrossRef]
- Talari, S.; Shafie-Khah, M.; Siano, P.; Loia, V.; Tommasetti, A.; Catalao, J.P.S. A review of smart cities based on the internet of things concept. Energies 2017, 10, 421. [Google Scholar] [CrossRef]
- Taheri, M.; Gholamalifard, M.; Ghazizade, M.J.; Rahimoghli, S. Environmental impact assessment of municipal solid waste disposal site in Tabriz, Iran using rapid impact assessment matrix. Impact Assess. Proj. Apprais. 2014, 32, 162–169. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F.V. What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050. Urban Development; The World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Capuzano, R.; González-Martínez, S. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manag. 2016, 54, 3–12. [Google Scholar] [CrossRef] [PubMed]
- EUROSTAT. Statistical Office of the European Union. 2018. Available online: www.ec.europa.eu/eurostat/web/waste/municipal-waste-generation-and-treatment-by-treatment- (accessed on 19 October 2018).
- Díaz-Díaz, R.; Muñoz, L.; Pérez-González, D. The business model evaluation tool for smart cities: Application to SmartSantander use case. Energies 2017, 10, 262. [Google Scholar] [CrossRef]
- Albertí, J.; Balaguera, A.; Brodhag, C.; Fullana-i-Palmer, P. Towards life cycle sustainability assessment of cities. A review of background knowledge. Sci. Total Environ. 2017, 609, 1049–1063. [Google Scholar] [CrossRef]
- EC. European Parliament and Council Directive 1994/62/EC on Packaging and Packaging Waste. 1994. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31994L0062&from=EN (accessed on 19 October 2018).
- EC. European Parliament and Council Directive 2004/62/EC Amending Directive 94/62/EC on Packaging and Packaging Waste. 2004. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:f8128bcf-ee21-4b9c-b506-e0eaf56868e6.0004.02/DOC_1&format=PDF (accessed on 19 October 2018).
- EC. European Parliament and Council Directive 2010/75/EU on Industrial Emissions (Integrated Pollution Prevention and Control). 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0075&from=EN (accessed on 19 October 2018).
- EC. European Council Directive 1999/31/EC on the Landfill of Waste. 1999. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN (accessed on 19 October 2018).
- EC. European Parliament and Council Directive 2008/98/EC on Waste and Repealing Certain Directives. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN (accessed on 19 October 2018).
- Arushanyan, Y.; Björklund, A.; Eriksson, O.; Finnveden, G.; Söderman, M.L.; Sundqvist, J.; Stenmarck, A. Environmental assessment of possible future waste management scenarios. Energies 2017, 10, 247. [Google Scholar] [CrossRef]
- UNDP. Sustainable Development Goals. 2015. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 19 October 2018).
- MITECO. Introducción a los Modelos de Gestión de Residuos (Introduction to the Residues Management Models). 2018. Available online: /www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/domesticos/gestion/modelo_gestion/Default.aspx (accessed on 19 October 2018). (In Spanish).
- Bernad-Beltrán, D.; Simó, A.; Bovea, M.D. Attitude towards the incorporation of the selective collection of biowaste in a municipal solid waste management system. A case study. Waste Manag. 2014, 34, 2434–2444. [Google Scholar] [CrossRef]
- Di Mateo, U.; Nastasi, B.; Albo, A.; Astiaso-Garcia, D. Energy contribution of OFMSW (organic Fraction of Municipal Solid Waste) to energy-environmental sustainability in urban areas at small scale. Energies 2017, 10, 229. [Google Scholar] [CrossRef]
- Laso, J.; Hoehn, D.; Margallo, M.; García-Herrero, I.; Batlle-Bayer, L.; Bala, A.; Fullana-i-Palmer, P.; Vázquez-Rowe, I.; Irabien, A.; Aldaco, R. Assessing energy and environmental efficiency of the Spanish agri-food system using the LCA/DEA methodology. Energies 2018, 11, 3395. [Google Scholar] [CrossRef]
- Garcia-Herrero, I.; Hoeh, D.; Margallo, M.; Laso, J.; Bala, A.; Batlle-Bayer, I.; Fullana, P.; Vázquez-Rowe, I.; Gonzalez, M.J.; Durá, M.J.; et al. On the estimation of potential food waste reduction to support sustainable production and consumption policies. Food Policy 2018, 80, 24–38. [Google Scholar] [CrossRef]
- Thyberg, K.L.; Tonjes, D.J. Drivers of food waste and their implications for sustainable policy development. Resour. Conserv. Recycl. 2016, 106, 110–123. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Emanuelsson, A. The Methodology of the FAO Study: “Global Food Losses and Food Waste–Extent, Causes and Prevention”–FAO; The Swedish Institute for Food and Biotechnology (SIK): Göteborg, Sweden, 2013. [Google Scholar]
- Ley 22/2011. de 28 de Julio, de Residuos y Suelos Contaminados. BOE-A-2011-13046. 2011. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2011-13046 (accessed on 19 October 2018).
- Residuos Profesional. Galdakao Implanta la Recogida Neumática de Materia Orgánica (Galdakao Set up the Pneumatic Collection of Organic Residues). 2014. Available online: www.residuosprofesional.com/galdakao-implanta-la-recogida-neumatica-de-materia-organica/ (accessed on 22 December 2018). (In Spanish).
- Madridfree. Madrid Estrena el Contenedor Marrón de Materia Orgánica (Madrid Launches the Brown Container of Organic Residues). 2017. Available online: www. madridfree.org/madrid-contenedor-marron/ (accessed on 19 October 2018). (In Spanish).
- Teerioja, N.; Moliis, K.; Kuvaja, E.; Ollikainen, M.; Punkkinen, H.; Merta, E. Pneumatic vs. door-to-door waste collection systems in existing urban areas: A comparison of economic performance. Waste Manag. 2012, 32, 1782–1791. [Google Scholar] [CrossRef]
- Ecoembes. 2018. Available online: www.ecoembes.com (accessed on 15 October 2018).
- Avfall Sverige. Swedish Waste Management; Swedish Waste Management and Recycling Association: Malmö, Sweden, 2016; Available online: https://www.avfallsverige.se/in-english/ (accessed on 15 October 2018).
- Iriarte, A.; Gabarrell, X.; Rieradevall, J. LCA of selective waste collection systems in dense urban areas. Waste Manag. 2009, 29, 903–914. [Google Scholar] [CrossRef]
- ISO 14040. Environmental Management–Life Cycle Assessment–Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Bala, A.; Raugei, M.; Fullana-i-Palmer, P. Introducing a new method for calculating the environmental credits of end-of-life material recovery in attributional LCA. Int. J. Life Cycle Assess. 2015, 20, 645–654. [Google Scholar]
- Mora, C.; Manzini, R.; Gamberi, M.; Cascini, A. Environmental and economic assessment for the optimal configuration of a sustainable solid waste collection system: A “kerbside” case study. Prod. Plan. Control 2014, 25, 737–761. [Google Scholar] [CrossRef]
- Gilardino, A.; Rojas, J.; Mattos, H.; Larrea-Gallegos, G.; Vázquez-Rowe, I. Combining operational research and Life Cycle Assessment to optimize municipal solid waste collection in a district in Lima (Peru). J. Clean. Prod. 2017, 156, 589–603. [Google Scholar] [CrossRef]
- Pérez, J.; Lumbreras, J.; de la Paz, D.; Rodríguez, E. Methodology to evaluate the environmental impact to urban solid waste containerization system: A case study. J. Clean. Prod. 2017, 150, 197–213. [Google Scholar] [CrossRef]
- Pires, A.; Sargedas, J.; Miguel, M.; Pina, J.; Martinho, G. A case study of packaging waste collection systems in Portugal–Part II: Environmental and economic analysis. Waste Manag. 2017, 61, 108–116. [Google Scholar] [CrossRef]
- Yildiz-Geyhan, E.; Altun-Ciftçioglu, G.A.; Neset Kadirgan, M.A. Social life cycle assessment of different packaging waste collection system. Resour. Conserv. Recycl. 2017, 124, 1–12. [Google Scholar] [CrossRef]
- Punkkinen, H.; Merta, E.; Teerioja, N.; Moliis, K.; Kuvaja, E. Environmental sustainability comparison of a hypothetical pneumatic waste collection system. Waste Manag. 2012, 32, 1775–1781. [Google Scholar] [CrossRef]
- Aranda-Usón, A.; Ferreira, G.; Zambrana-Vázquez, D.; Zabalza-Bribián, I.; Llera-Sastresa, E. Environmental-benefit analysis of two urban waste collection systems. Sci. Total Environ. 2013, 463–464, 72–77. [Google Scholar] [CrossRef]
- Keucken, A.; Habagil, M.; Batstone, D.; Jeppsson, U.; Arnell, M. Anaerobic co-digestion of sludge and organic food waste-performance, inhibition and impact on the microbial community. Energies 2018, 11, 2325. [Google Scholar] [CrossRef]
- Margallo, M.; Onandía, R.; Aldaco, R.; Irabien, A. When life cycle thinking is necessary for decision making: Emerging cleaner technologies in the chlor-alkali industry. Chem. Eng. Trans. 2016, 52, 475–480. [Google Scholar]
- ISO 14044. Environmental Management–Life Cycle Assessment–Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Guinée, J.B.; Udo de Haes, H.A.; Huppes, G. Quantitative life cycle assessment of products. 1: Goal definition and inventory. J. Clean. Prod. 1993, 1, 3–13. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment–Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Food and Environment of Spain. PEMAR: Plan Estatal Marco de Gestión de Residuos 2016–2022 (Waste Management Plan 2016–2022); Ministerio de Agricultura, Alimentación y Medio Ambiente de España. Ministry of Agriculture, Food and Environment of Spain: Madrid, Spain, 2015. (In Spanish) [Google Scholar]
- Cobo, S.; Dominguez-Ramos, A.; Irabien, A. Trade-offs between nutrient circularty and environmental impacts in the management of organic waste. Environ. Sci. Technol. 2018, 52, 10923–10933. [Google Scholar] [CrossRef]
- Hoehn, D.; Margallo, M.; Laso, J.; García-Herrero, I.; Bala, A.; Fullana-i-Palmer, P.; Irabien, A.; Aldaco, R. Energy Embedded in Food Loss Management and in the Production of Uneaten Food: Seeking a Sustainable Pathway. Energies 2019, 12, 767. [Google Scholar] [CrossRef]
- Garcia-Herrero, I.; Margallo, M.; Onandía, R.; Aldaco, R.; Irabien, A. Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach. Sci. Total Environ. 2017, 580, 147–157. [Google Scholar] [CrossRef]
- Righi, S.; Oliviero, L.; Pedrini, M.; Buscaroli, A.; Della Casa, C. Life Cycle Assessment of management systems for sewage sludge and food waste: Centralized and decentralized approaches. J. Clean. Prod. 2013, 44, 8–17. [Google Scholar] [CrossRef]
- MERMA, Spanish Ministry of Environment and Rural and Marine Affairs. Agencia d’Ecologia Urbana de Barcelona. Diagnóstico de la Gestión de Residuos de Competencia Municipal. Caso 2: Modelo 4 Contenedores. Aplicación del Programa SIMUR (Municipal Waste Management Diagnosis. Case 2: 4 Containers Model. SIMUR Programme Application). 2011. Available online: www.mapama.gob.es/ca/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/simur_marm_caso_5__4cont_tcm8-230480.pdf (accessed on 14 March 2018). (In Spanish).
- Thinkstep. Gabi 6 Software and Database on Life Cycle Assessment; Thinkstep: Leinfelden-Echterdingen, Germany, 2017. [Google Scholar]
- Envac. Situación de la Recogida Automática o Neumática de Residuos en España y en la Región sur de Europa, Sistemas Sostenibles de Recogida Neumática de Residuos. (State of the Art of the Automatic or Pneumatic Collection of Residues in Spain and South Europe Region, Sustainable Systems of Pneumatic Collection of Residues. 2010. Available online: https://www.envac.es/ (accessed on 14 March 2018). (In Spanish).
- Ros Roca. Recogida Neumática de Residuos, Descripción General del Sistema, Fichas Técnicas Centrales de Recogida. (Pneumatic Collection of Residues, General Description of the System, Collection Data Sheets). 2011. Available online: www.rosroca.es/es/ (accessed on 19 October 2018). (In Spanish).
- Hernandez, C. Recogida Neumática de Residuos Sólidos Urbanos, España. Conama10, Congreso Nacional del Medio Ambiente. (National Congress of Environment. Pneumatic Collection of Municipal Solid Waste, Spain); Congress Communication: Madrid, Spain, 2010; Available online: http://www.conama10.conama.org/conama10/download/files/CT%202010/40864.pdf (accessed on 18 October 2018). (In Spanish)
- Medina-Díaz, R. Ecodiseño y Sostenibilidad en el Sistema de Recogida de los RSU. (Eco-Designing and Sustainability in the Collection of MSW). Proyecto de fin de Carrera; Universidad Pontificia Comillas–Escuela Técnica Superior de Ingeniería (ICAI): Madrid, Spain, 2009; Available online: https://www.iit.comillas.edu/pfc/resumenes/4a30edc029ec1.pdf (accessed on 18 October 2018). (In Spanish)
- Puig, R.; Fullana-i-Palmer, P.; Baquero, G.; Riba, J.; Bala, A. A Cumulative Energy Demand indicator (CED), Life Cycle based, for Industrial Waste Management decision making. Waste Manag. 2013, 33, 2789–2797. [Google Scholar] [CrossRef]
- Popa, C.L.; Carutasu, G.; Cotet, C.E.; Carutasu, N.L.; Dobrescu, T. Smart city platform development for an automated waste collection system. Sustainability 2017, 9, 2064. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, M.; Yang, H. A review of the energy performance and life-cycle assessment of buildings-integrated photovoltaic (BIPV) systems. Energies 2018, 11, 3157. [Google Scholar] [CrossRef]
- Eriksson, O. Energy and waste management. Energies 2017, 10, 1072. [Google Scholar] [CrossRef]
- INE. Instituto Nacional de Estadística (Spanish Statical Office). 2018. Available online: https://www.ine.es/ (accessed on 11 March 2019).
- Mateu-Sbert, J.; Ricci-Cabello, I.; Villalonga-Olives, E.; Cabeza-Irigoyen, E. The impact of tourism on municipal solid waste generation: The case of Menorca Island (Spain). Waste Manag. 2013, 33, 2589–2593. [Google Scholar] [CrossRef]
- Gidarakos, E.; Havas, G.; Ntzamilis, P. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete. Waste Manag. 2006, 26, 668–679. [Google Scholar] [CrossRef]
- Ranieri, L.; Mossa, G.; Pellegrino, R.; Digiesi, S. Energy recovery from the organic fraction of municipal solid waste: A real options-based facility assessment. Sustainability 2018, 10, 368–383. [Google Scholar] [CrossRef]
- Digiesi, S.; Facchini, F.; Mossa, G.; Mummolo, G.; Verriello, R. A Cyber-based DSS for a Low Carbon Integrated Waste Management System in a Smart City. IFAC-PapersOnLine 2015, 48, 2356–2361. [Google Scholar] [CrossRef]
Municipal Solid Waste Fraction | Percentage |
---|---|
Organic Matter | 42% |
Paper/Cardboard | 15% |
Plastic | 9% |
Glass | 8% |
Other | 8% |
Moisture and food debris | 7% |
Textile | 5% |
Metals | 3% |
Wood | 2% |
Bricks | 1% |
Units | Quantity | ||
---|---|---|---|
Door-to-door collection | |||
Inputs | Container | m3·FU−1 | 0.11 |
HDPE | kg·m3 container | 4.61 | |
Stainless steel cold rolled | kg·m3 container | 1.33 | |
Styrene-butadiene-rubber | kg·m3 container | 0.23 | |
Detergent | kg·m3 container | 2.22 | |
Water | m3· m3 container | 84.7 | |
Diesel | L·FU−1 | 3.98 | |
Gasoline | L·FU−1 | 0.07 | |
Pneumatic collection | |||
Inputs | Electricity | MJ·FU−1 | 438 |
Stainless steel cold rolled | kg·FU−1 | 0.05 | |
Water | m3·FU−1 | 1.00 × 10−4 | |
Sorting plant | |||
Inputs | Electricity | MJ·t waste−1 | 4.86 |
Composting plant | |||
Inputs | Electricity | MJ· t waste−1 | 446 |
Lubricant | kg·FU−1 t waste−1 | 0.10 | |
Water | kg· t waste−1 | 186 | |
Diesel | kg· t waste−1 | 0.64 | |
Outputs | Biogas | kg· t waste−1 | 333 |
Compost | kg· t waste−1 | 210 | |
NH3 | kg· t waste−1 | 0.04 | |
CH4 | kg· t waste−1 | 2.34 × 103 | |
CO | kg· t waste−1 | 0.40 | |
HCl | kg· t waste−1 | 6.00 × 10−3 | |
NOx | kg· t waste−1 | 0.30 | |
NMVOC | kg· t waste−1 | 0.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laso, J.; García-Herrero, I.; Margallo, M.; Bala, A.; Fullana-i-Palmer, P.; Irabien, A.; Aldaco, R. LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain. Energies 2019, 12, 1407. https://doi.org/10.3390/en12071407
Laso J, García-Herrero I, Margallo M, Bala A, Fullana-i-Palmer P, Irabien A, Aldaco R. LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain. Energies. 2019; 12(7):1407. https://doi.org/10.3390/en12071407
Chicago/Turabian StyleLaso, Jara, Isabel García-Herrero, María Margallo, Alba Bala, Pere Fullana-i-Palmer, Angel Irabien, and Rubén Aldaco. 2019. "LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain" Energies 12, no. 7: 1407. https://doi.org/10.3390/en12071407
APA StyleLaso, J., García-Herrero, I., Margallo, M., Bala, A., Fullana-i-Palmer, P., Irabien, A., & Aldaco, R. (2019). LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain. Energies, 12(7), 1407. https://doi.org/10.3390/en12071407