A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review
Abstract
:1. Introduction
- at the building design and construction level (passive and active designs),
- at the indoor environmental quality control level (management of indoor environment controls),
- and at the occupant level.
2. Methods
2.1. Research Methods Used
2.2. Holistic Analysis of Review Papers
3. Definition of Indoor Environmental Quality
3.1. Healthy Environment
3.2. General Definition of IEQ and Approaches of Standardization
3.2.1. Thermal Comfort
3.2.2. Visual Comfort
3.2.3. Indoor Air Quality
3.2.4. Acoustic Quality
3.3. Occupant Satisfaction/ Well-Being
3.4. Adverse Impacts of Poor IEQ
3.4.1. Thermal Comfort
3.4.2. Visual Comfort
3.4.3. Indoor Air Quality
3.4.4. Acoustic Comfort
4. Human Factors in Adaptation
- physical adaptive actions (e.g., increase their physical activity, change their clothes, altering their environment);
- behavioral adjustment (e.g., change of habits or tolerance limits);
- physiological adaptation (e.g., accommodation of the eye); where limits of the adaptation are imposed by the human physiology in it of itself.
4.1. Limits of Human Physical Adaptive Actions
4.2. Human Behavioral Limits
- means in the form of knowledge about how to or which technology to use,
- motive for change in form of reason or incentive,
- and opportunity in form of available resources such as time and money, further strengthened by the ease of use, general acceptance of changed behavior by other people and maintenance of comfort and health.
4.3. Human Physiological Limits
4.3.1. Physiological Limits of Human Somatosensory System
4.3.2. Physiological Limits of Human Vision
4.3.3. Physiological Limits of Human Auditory System
4.3.4. Physiological Limits of Human Sensitivity to Inhalation of Pollutants
5. Built Environment
5.1. Sustainability of the Built Environment
5.2. Energy Efficiency of the Built Environment
5.3. Building Design Level
5.4. Building Technology Level
5.4.1. High-Performance Building Envelopes
5.4.2. Efficient Appliances
5.4.3. Building Automation and Climate Control Systems
5.5. Interactions Between Occupant and Building
5.5.1. Income Level of Building Occupants
5.5.2. Age Composition and Education of Building Occupants
5.5.3. Available and Perceived Control
5.5.4. Training on Building System Control Operation
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CABS | climate adaptive building shell |
IEQ | indoor environment quality |
HOPE | Health Optimization Protocol for Energy-efficient building |
WHO | World Health Organization |
LARES | Large Analysis and Review of Housing and Health |
QS | questionnaire survey |
SBS | sick building syndrome |
UNFCCC | United Nations Framework Convention on Climate Change |
GHG | greenhouse gas |
IEA | International Energy Agency |
HPBE | high-performance building envelopes |
BACS | building automation and control systems |
ICT | information and communication technologies |
IRA | integrated room automation |
RBC | rule-based control |
MPC | model-based predictive control |
WSN | wireless sensor networks |
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expos. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Lucon, O.; Ürge-Vorsatz, D.; Ahmed, A.Z.; Akhbari, H.; Bertoldi, P.; Cabeza, L.F.; Eyre, N.; Gadgil, A.; Harvey, L.D.D.; Jiang, Y.; et al. Buildings. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ürge-Vorsatz, D.; Eyre, N.; Graham, P.; Harvey, L.D.D.; Hertwich, E.; Jiang, Y.; Kornevall, C.; Majumdar, M.; McMahon, J.E.; Mirasgedis, S.; et al. Energy End-Use: Buildings. In Global Energy Assessment—Toward a Sustain. Future; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 649–760. [Google Scholar]
- United Nations. Sustainable Development Goals Report 2018; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Lamb, W.F.; Creutzig, F.; Callaghan, M.W.; Minx, J.C. Learning about urban climate solutions. Nat. Clim. Chang. 2018, 9, 279–287. [Google Scholar] [CrossRef]
- Anderson, J.E.; Wulfhorst, G.; Lang, W. Energy analysis of the built environment—A review and outlook. Renew. Sustain. Energy Rev. 2015, 44, 149–158. [Google Scholar] [CrossRef]
- Paone, A.; Bacher, J. The impact of building occupant behavior on energy efficiency and methods to influence it: A review of the state of the art. Energies 2018, 11, 953. [Google Scholar] [CrossRef]
- Taveres-Cachat, E.; Grynning, S.; Thomsen, J.; Selkowitz, S. Responsive building envelope concepts in zero emission neighborhoods and smart cities—A roadmap to implementation. Build. Environ. 2019, 149, 446–457. [Google Scholar] [CrossRef]
- Hauge, Å.L.; Thomsen, J.; Berker, T. User evaluations of energy efficient buildings: Literature review and further research. Adv. Build. Energy Res. 2011, 5, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Al Horr, Y.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. Int. J. Sustain. Built Environ. 2016, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant productivity and office indoor environment quality: A review of the literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.S.; Zhang, J.; Sigsgaard, T.; Jantunen, M.; Lioy, P.J.; Samson, R.; Karol, M.H. Current State of the Science: Health Effects and Indoor Environmental Quality. Environ. Health Pers. 2007, 115, 958–964. [Google Scholar] [CrossRef] [Green Version]
- Bluyssen, P.M.; Janssen, S.; Van den Brink, L.H.; De Kluizenaar, Y. Assessment of wellbeing in an indoor office environment. Build. Environ. 2011, 46, 2632–2640. [Google Scholar] [CrossRef]
- Seppänen, O.; Fisk, W.J. Some Quantitative Relations between Indoor Environmental Quality and Work Performance or Health. ASHRAE Res. J. 2006, 12, 957–973. [Google Scholar] [CrossRef] [Green Version]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Ortiz, M.A.; Kurvers, S.R.; Bluyssen, P.M. A review of comfort, health, and energy use: Understanding daily energy use and wellbeing for the development of a new approach to study comfort. Energy Build. 2017, 152, 323–335. [Google Scholar] [CrossRef]
- Dodge, R.; Daly, A.P.; Huyton, J.; Sanders, L.D. The challenge of defining wellbeing. Int. J. Wellbeing 2012, 2, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Rostron, J. Sick building syndrome: A review of causes, consequences and remedies. J. Retail Leis. Prop. 2008, 7, 291–303. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Rashid, M.; Zimring, C. A Review of the Empirical Literature on the Relationships Between Indoor Environment and Stress in Health Care and Office Settings. Environ. Behav. 2008, 40, 151–190. [Google Scholar] [CrossRef]
- O’Brien, W.; Gunay, H.B. The contextual factors contributing to occupants’ adaptive comfort behaviors in offices—A review and proposed modeling framework. Build. Environ. 2014, 77, 77–88. [Google Scholar] [CrossRef]
- Stazi, F.; Naspi, F.; D’Orazio, M. A literature review on driving factors and contextual events influencing occupants’ behaviours in buildings. Build. Environ. 2017, 118, 40–66. [Google Scholar] [CrossRef]
- Hong, T.; Yan, D.; D’Oca, S.; Chen, C. Ten questions concerning occupant behavior in buildings: The big picture. Build. Environ. 2017, 114, 518–530. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Davidson, R.; Bicket, M.; Whitmarsh, L. Social barriers to the adoption of smart homes. Energy Policy 2013, 63, 363–374. [Google Scholar] [CrossRef]
- Rasheed, E.O.; Byrd, H. Can self-evaluation measure the effect of IEQ on productivity? A review of literature. Facilities 2017, 35, 601–621. [Google Scholar] [CrossRef] [Green Version]
- D’Oca, S.; Hong, T.; Langevin, J. The human dimensions of energy use in buildings: A review. Renew. Sustain. Energy Rev. 2018, 81, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Delzendeh, E.; Wu, S.; Lee, A.; Zhou, Y. The impact of occupants’ behaviours on building energy analysis: A research review. Renew. Sustain. Energy Rev. 2017, 80, 1061–1071. [Google Scholar] [CrossRef]
- Keyvanfar, A.; Shafaghat, A.; Abd Majid, M.Z.; Bin Lamit, H.; Warid Hussin, M.; Binti Ali, K.N.; Dhafer Saad, A. User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment. Renew. Sustain. Energy Rev. 2014, 39, 277–295. [Google Scholar] [CrossRef]
- Brager, G.S.; De Dear, R.J. Thermal adaptation in the built environment: A literature review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef]
- Soares, N.; Bastos, J.; Pereira, L.D.; Soares, A.; Amaral, A.R.; Asadi, E.; Rodrigues, E.; Lamas, F.B.; Monteiro, H.; Lopes, M.A.R.; et al. A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment. Renew. Sustain. Energy Rev. 2017, 77, 845–860. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, S.; Shan, K. Design optimization and optimal control of grid-connected and standalone nearly/net zero energy buildings. Appl. Energy 2015, 155, 463–477. [Google Scholar] [CrossRef]
- Zuo, J.; Zhao, Z.Y. Green building research-current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Martínez-Molina, A.; Tort-Ausina, I.; Cho, S.; Vivancos, J.L. Energy efficiency and thermal comfort in historic buildings: A review. Renew. Sustain. Energy Rev. 2016, 61, 70–85. [Google Scholar] [CrossRef]
- Vásquez-Hernández, A.; Restrepo Álvarez, M.F. Evaluation of buildings in real conditions of use: Current situation. J. Build. Eng. 2017, 12, 26–36. [Google Scholar] [CrossRef]
- Raw, G.J.; Littleford, C.; Clery, L. Saving energy with a better indoor environment. Arch. Sci. Rev. 2017, 60, 239–248. [Google Scholar] [CrossRef]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Marjaba, G.E.; Chidiac, S.E. Sustainability and resiliency metrics for buildings—Critical review. Build. Environ. 2016, 101, 116–125. [Google Scholar] [CrossRef]
- Pacheco, R.; Ordóñez, J.; Martínez, G. Energy efficient design of building: A review. Renew. Sustain. Energy Rev. 2012, 16, 3559–3573. [Google Scholar] [CrossRef]
- Sintov, N.D.; Schultz, P.W. Adjustable green defaults can help make smart homes more sustainable. Sustainability 2017, 9, 622. [Google Scholar] [CrossRef]
- Marikyan, D.; Papagiannidis, S.; Alamanos, E. A systematic review of the smart home literature: A user perspective. Technol. Forecast. Soc. Chang. 2019, 138, 139–154. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A. European Smart Cities: The Role of Zero Energy Buildings. Sustain. Cities Soc. 2015, 15, 86–95. [Google Scholar] [CrossRef]
- GhaffarianHoseini, A.; Dahlan, N.D.; Berardi, U.; GhaffarianHoseini, A.; Makaremi, N.; GhaffarianHoseini, M. Sustainable energy performances of green buildings: A review of current theories, implementations and challenges. Renew. Sustain. Energy Rev. 2013, 25, 1–17. [Google Scholar] [CrossRef]
- Stevanović, S. Optimization of passive solar design strategies: A review. Renew. Sustain. Energy Rev. 2013, 25, 177–196. [Google Scholar] [CrossRef]
- Zhao, X.; Zuo, J.; Wu, G.; Huang, C. A bibliometric review of green building research 2000–2016. Arch. Sci. Rev. 2018, 62, 74–88. [Google Scholar] [CrossRef]
- Song, Y.; Wu, S.; Yan, Y.Y. Control strategies for indoor environment quality and energy efficiency-a review. Int. J. Low Carbon Technol. 2013, 10, 305–312. [Google Scholar] [CrossRef]
- Wang, Y.; Kuckelkorn, J.; Liu, Y. A state of art review on methodologies for control strategies in low energy buildings in the period from 2006 to 2016. Energy Build. 2017, 147, 27–40. [Google Scholar] [CrossRef]
- Rockett, P.; Hathway, E.A. Model-predictive control for non-domestic buildings: A critical review and prospects. Build. Res. Inform. 2017, 45, 556–571. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Li, H.; Wang, S.W. Intelligent building research: A review. Autom. Construct. 2005, 14, 143–159. [Google Scholar] [CrossRef]
- Dounis, A.I.; Caraiscos, C. Advanced control systems engineering for energy and comfort management in a building environment—A review. Renew. Sustain. Energy Rev. 2009, 13, 1246–1261. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain. Energy Rev. 2014, 34, 409–429. [Google Scholar] [CrossRef]
- Kolokotsa, D. Artificial intelligence in buildings: A review of the application of fuzzy logic. Adv. Build. Energy Res. 2007, 1, 29–54. [Google Scholar] [CrossRef]
- Singh, A.; Gaur, A.; Kumar, A.; Singh, M.K.; Kapoor, K.; Mahanta, P.; Kumar, A.; Mukhopadhyay, S.C. Sensing Technologies for Monitoring Intelligent Buildings: A Review. IEEE Sens. J. 2018, 18, 4847–4860. [Google Scholar] [CrossRef]
- Loonen, R.C.G.M.; Trčka, M.; Cóstola, D.; Hensen, J.L.M. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, S.D.; Shannigrahi, S.; Ramakrishna, S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol. Energy Mater. Sol. Cells 2017, 159, 26–51. [Google Scholar] [CrossRef]
- Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [Google Scholar] [CrossRef]
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A comprehensive review of solar facades. Opaque solar facades. Renew. Sustain. Energy Rev. 2012, 16, 2820–2832. [Google Scholar] [CrossRef]
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A comprehensive review of solar facades. Transparent and translucent solar facades. Renew. Sustain. Energy Rev. 2012, 16, 2643–2651. [Google Scholar] [CrossRef]
- Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- Fisk, W.J. Review of some effects of climate change on indoor environmental quality and health and associated no-regrets mitigation measures. Build. Environ. 2015, 86, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Gunay, H.B.; O’Brien, W.; Beausoleil-Morrison, I. A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices. Build. Environ. 2013, 70, 31–47. [Google Scholar] [CrossRef]
- Yan, D.; O’Brien, W.; Hong, T.; Feng, X.; Burak Gunay, H.; Tahmasebi, F.; Mahdavi, A. Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build. 2015, 107, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Mirakhorli, A.; Dong, B. Occupancy behavior based model predictive control for building indoor climate—A critical review. Energy Build. 2016, 129, 499–513. [Google Scholar] [CrossRef]
- Foucquier, A.; Robert, S.; Suard, F.; Stéphan, L.; Jay, A. State of the art in building modelling and energy performances prediction: A review. Renew. Sustain. Energy Rev. 2013, 23, 272–288. [Google Scholar] [CrossRef]
- Sakhare, V.V.; Ralegaonkar, R.V. Indoor environmental quality: Review of parameters and assessment models. Arch. Sci. Rev. 2014, 57, 147–154. [Google Scholar] [CrossRef]
- Peretti, C.; Schiavon, S. Indoor environmental quality surveys. A brief literature review. In Indoor Air 2011; Center for the Built Environment: Dallas, TX, USA, 2011. [Google Scholar]
- Heinzerling, D.; Schiavon, S.; Webster, T.; Arens, E. Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Build. Environ. 2013, 70, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.D.; Hosni, M.H.; Jones, B.W.; Gielda, T. Literature Review of the Advances in Thermal Comfort Modeling. ASHRAE Trans. 2003, 109, 908–916. [Google Scholar]
- Djongyang, N.; Tchinda, R.; Njomo, D. Thermal comfort: A review paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [Google Scholar] [CrossRef]
- Park, J.Y.; Nagy, Z. Comprehensive analysis of the relationship between thermal comfort and building control research—A data-driven literature review. Renew. Sustain. Energy Rev. 2018, 82, 2664–2679. [Google Scholar] [CrossRef]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Zhang, H.; Arens, E.; Zhai, Y. A review of the corrective power of personal comfort systems in non-neutral ambient environments. Build. Environ. 2015, 91, 15–41. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Peffer, T.; Pritoni, M.; Meier, A.; Aragon, C.; Perry, D. How people use thermostats in homes: A review. Build. Environ. 2011, 46, 2529–2541. [Google Scholar] [CrossRef] [Green Version]
- De Dear, R.J.; Akimoto, T.; Arens, E.A.; Brager, G.; Candido, C.; Cheong, K.W.D.; Li, B.; Nishihara, N.; Sekhar, S.C.; Tanabe, S.; et al. Progress in thermal comfort research over the last twenty years. Indoor Air 2013, 23, 442–461. [Google Scholar] [CrossRef]
- Karjalainen, S. Thermal comfort and gender: A literature review. Indoor Air 2012, 22, 96–109. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; Kurvers, S.; Van Den Dobbelsteen, A. A review into thermal comfort in buildings. Renew. Sustain. Energy Rev. 2013, 26, 201–215. [Google Scholar] [CrossRef]
- Enescu, D. A review of thermal comfort models and indicators for indoor environments. Renew. Sustain. Energy Rev. 2017, 79, 1353–1379. [Google Scholar] [CrossRef]
- Carlucci, S.; Causone, F.; De Rosa, F.; Pagliano, L. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renew. Sustain. Energy Rev. 2015, 47, 1016–1033. [Google Scholar] [CrossRef] [Green Version]
- Van Den Wymelenberg, K.G. Visual comfort, discomfort glare, and occupant fenestration control: Developing a research agenda. LEUKOS 2014, 10, 207–221. [Google Scholar] [CrossRef]
- Altmonte, S. Daylight for Energy Savings and Psycho-Physiological Well-Being in Sustainable Built Environments. J. Sustain. Dev. 2008, 1, 3–16. [Google Scholar] [CrossRef]
- Todorovic, M.S.; Kim, J.T. Beyond the science and art of the healthy buildings daylighting dynamic control’s performance prediction and validation. Energy Build. 2012, 46, 159–166. [Google Scholar] [CrossRef]
- Aries, M.B.C.; Aarts, M.P.J.; Van Hoof, J. Daylight and health: A review of the evidence and consequences for the built environment. Light. Res. Technol. 2015, 47, 6–27. [Google Scholar] [CrossRef]
- Galasiu, A.D.; Veitch, J.A. Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: A literature review. Energy Build. 2006, 38, 728–742. [Google Scholar] [CrossRef]
- Reinten, J.; Braat-Eggen, P.E.; Hornikx, M.; Kort, H.S.M.; Kohlrausch, A. The indoor sound environment and human task performance: A literature review on the role of room acoustics. Build. Environ. 2017, 123, 315–332. [Google Scholar] [CrossRef]
- Navai, M.; Veitch, J.A. Acoustic Satisfaction in Open-Plan Offices: Review and Recommendations; Research Report; NRC Institute for Research in Construction: Ottawa, ON, Canada, 2006. [Google Scholar]
- Vardaxis, N.G.; Bard, D.; Persson Waye, K. Review of acoustic comfort evaluation in dwellings—Part I: Associations of acoustic field data to subjective responses from building surveys. Build. Acoust. 2018, 25, 151–170. [Google Scholar] [CrossRef]
- Vardaxis, N.G.; Bard, D. Review of acoustic comfort evaluation in dwellings: Part II—impact sound data associated with subjective responses in laboratory tests. Build. Acoust. 2018, 25, 171–192. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J. Achieving better energy-efficient air conditioning—A review of technologies and strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Bornehag, C.G.; Sundell, J.; Bonini, S.; Custovic, A.; Malmberg, P.; Skerfving, S.; Sigsgaard, T.; Verhoeff, A. Dampness in buildings as a risk factor for health effects, EUROEXPO: A multidisciplinary review of the literature (1998–2000) on dampness and mite exposure in buildings and health effects. Indoor Air 2004, 14, 243–257. [Google Scholar] [CrossRef]
- Destaillats, H.; Maddalena, R.L.; Singer, B.C.; Hodgson, A.T.; McKone, T.E. Indoor pollutants emitted by office equipment: A review of reported data and information needs. Atmos. Environ. 2008, 42, 1371–1388. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ma, Z. Supervisory and Optimal Control of Building HVAC Systems: A Review. HVAC Res. 2011, 14, 3–32. [Google Scholar] [CrossRef]
- Lai, C.K. Particle deposition indoors: A review. Indoor Air 2002, 12, 211–214. [Google Scholar] [CrossRef]
- Yu, B.F.; Hu, Z.B.; Liu, M.; Yang, H.L.; Kong, Q.X.; Liu, Y.H. Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 2009, 32, 3–20. [Google Scholar] [CrossRef]
- Mendell, M.J.; Fisk, W.J.; Kreiss, K.; Levin, H.; Alexander, D.; Cain, W.S.; Girman, J.R.; Hines, C.J.; Jensen, P.A.; Milton, D.K.; et al. Improving the health of workers in indoor environments: Priority research needs for a national occupational research agenda. Am. J. Public Health 2002, 92, 1430–1440. [Google Scholar] [CrossRef]
- Persily, A.K.; Emmerich, S.J. Indoor air quality in sustainable, energy efficient buildings. HVAC Res. 2012, 18, 4–20. [Google Scholar] [CrossRef]
- Tham, K.W. Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Prüss-Üstün, A.; Corvalán, C. Preventing Disease Through Healthy Environs; World Health Organization: Genève, Switzerland, 2006. [Google Scholar]
- Redlich, C.A.; Sparer, J.; Cullen, M.R. Sick-building syndrome. Lancet 1997, 349, 1013–1016. [Google Scholar] [CrossRef]
- Bottalico, P.; Astolfi, A. Investigations into vocal doses and parameters pertaining to primary school teachers in classrooms. J. Acoust. Soc. Am. 2012, 131, 2817–2827. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; O’Fallon, L.R.; Dearry, A. Creating Healthy Communities, Healthy Homes, Healthy People: Initiating a Research Agenda on the Built Environment and Public Health. Am. J. Public Health 2003, 93, 1446–1450. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO); Regional Office for Europe. Declaration: fourth Ministerial Conference on Environment and Health, Budapest, Hungary, 23–25 June 2004; WHO Regional Office for Europe: Copenhagen, Denmark, 2004. [Google Scholar]
- Berardi, U. Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings. Sustain. Dev. 2012, 20, 411–424. [Google Scholar] [CrossRef]
- Bluyssen, P.M. Towards new methods and ways to create healthy and comfortable buildings. Build. Environ. 2010, 45, 808–818. [Google Scholar] [CrossRef]
- Cox, C. Health Optimisation Protocol for Energy-Efficient Buildings Pre-Normative and Socio-Economic Res. to Create Healthy and Energy-Efficient Buildings; TNO: Delft, The Netherlands, 2005. [Google Scholar]
- Sarbu, I.; Sebarchievici, C. Aspects of indoor environmental quality assessment in buildings. Energy Build. 2013, 60, 410–419. [Google Scholar] [CrossRef]
- Bronsema, B.; Bjorck, M.; Clausen, G.; Firzner, K.; Flatheim, G.; Follin, T.; Haverinen, U.; Jamriska, M.; Kurnistki, J.; Maroni, M.; et al. Performance Criteria of Buildings for Health and Comfort; CIB General Secretariat: Rotterdam, The Netherlands, 2004; ISBN 90-6363-038-7. [Google Scholar]
- Bluyssen, P.M. The Indoor Environ. Handbook: How to Make Buildings Healthy and Comfortable; Earthscan: London, UK, 2009. [Google Scholar]
- ASHRAE. Thermal Environmental Conditions for Human Occupancy; ANSI/ASHRAE Standard 55-2017; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2017. [Google Scholar]
- ISO 17772-1. Energy Performance of Builds—Indoor Environmental Quality—Part 1: Indoor Environmental Input Parameters for the Design and Assessment of Energy Performance of Builds; ISO: Genève, Switzerland, 2017. [Google Scholar]
- ISO 7730. Ergonomics of the Thermal Environ.—Analytiacl Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Genève, Switzerland, 2005. [Google Scholar]
- CEN. Light and Lighting—Basic Terms and Criteria for Specifying Lighting Requirements; European Standard EN 12665:2011; European Committee for Standardisation: Brussels, Belgium, 2011. [Google Scholar]
- CEN. Dayligh in Buildings; European Standard EN 17037:2018; European Committee for Standardisation: Brussels, Belgium, 2018. [Google Scholar]
- Bellia, L.; Bisegna, F.; Spada, G. Lighting in indoor environments: Visual and non-visual effects of light sources with different spectral power distributions. Build. Environ. 2011, 46, 1984–1992. [Google Scholar] [CrossRef]
- Hraška, J. Chronobiological aspects of green buildings daylighting. Renew. Energy 2014, 73, 109–114. [Google Scholar] [CrossRef]
- Van Bommel, W.J.M. Non-visual biological effect of lighting and the practical meaning for lighting for work. Appl. Ergon. 2006, 37, 461–466. [Google Scholar] [CrossRef]
- Alrubaih, M.S.; Zain, M.F.M.; Alghoul, M.A.; Ibrahim, N.L.N.; Shameri, M.A.; Elayeb, O. Research and development on aspects of daylighting fundamentals. Renew. Sustain. Energy Rev. 2013, 21, 494–505. [Google Scholar] [CrossRef]
- IES. 100 Significant Papers. Available online: http://www.ies.org/edoppts/100papers.cfm (accessed on 28 January 2018).
- IESNA. The IESNA Lighting Handbook, 9th ed.; IESNA: New York, NY, USA, 2000. [Google Scholar]
- U.S. Department of Energy. Energy Efficiency Trends in Residential and Commercial Buildings; United States Department of Energy: Washington, DC, USA, 2008.
- VonNeida, B.; Maniccia, D.; Tweed, A. An analysis of the energy and cost savings potential of occupancy sensors for commercial lighting systems. J. Illum. Eng. Soc. 2000, 30, 11–125. [Google Scholar] [CrossRef]
- WHO. WHO Guildelines for Indoor Air Quality: Selected Polutants; WHO Regional Office for Europe: Bonn, Switzerland, 2010. [Google Scholar]
- CEN. Energy performance of buildings – Ventilation for buildings – Part 3: For non-residential buildings - performance requirements for ventilation and room-conditioning systems (Modules M5-1. M5-4); European Standard EN 16798-3:2017; European Committee for Standardisation: Brussels, Belgium, 2017. [Google Scholar]
- ASHRAE. Ventilation for Acceptable Indoor Air Quality; ANSI/ASHRAE Standard 62.1-2016; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2016. [Google Scholar]
- ASHRAE. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings; ANSI/ASHRAE Standard 62.2-2016; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2016. [Google Scholar]
- CEN. Ventilation for buildings—Design Criteria for the Indoor Environment; European Prestandard CR 1752:1998; European Committee for Standardisation: Brussels, Belgium, 1998. [Google Scholar]
- ASHRAE. Indoor Air Quality Guide; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2009; ISBN 978-1-933742-59-5. [Google Scholar]
- Brown, A.L.; Kang, J.; Gjestland, T. Towards standardization in soundscape preference assessment. Appl. Acoust. 2011, 72, 387–392. [Google Scholar] [CrossRef]
- DIN. Akustik—Begriffe; German National Standard DIN 1320:2009; Deutsches Institut Fur Normung E.V.: Berglin, Germany, 2009. [Google Scholar]
- Genuit, K. Objective Evaluation of Acoustic Quality Based on a Realtive Approach. In Proceedings of the Inter-Noise’96, 25th Anniversary Congress Liverpool, Liverpool, UK, 30 July–2 August 1996; pp. 1061 p1–1061 p6. [Google Scholar]
- Gramez, A.; Boubenider, F. Acoustic comfort evaluation for a conference room: A case study. Appl. Acoust. 2017, 118, 39–49. [Google Scholar] [CrossRef]
- ISO 10140. Acoustics: Building Elements Sound Insulation Measurements. Sound and Vibration Standards. Available online: http://www.acoustic-standards.co.uk/bs-10140.htm (accessed on 8 February 2015).
- ISO 717. Acoustics—Rating of Sound Insulation in Buildings and of Build. Elements; ISO: Genève, Switzerland, 2013. [Google Scholar]
- ISO 3382. Acoustics—Measurement of Room Acoustic Parameters; ISO: Genève, Switzerland, 2012. [Google Scholar]
- ISO 12354. Build. Acoustics—Estimation of Acoustic Performance of Buildings from the Performance of Elements; ISO: Genève, Switzerland, 2017. [Google Scholar]
- World Health Organization (WHO). Constitution of the World Health Organization; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Jamrozik, A.; Ramos, C.; Zhao, J.; Bernau, J.; Clements, N.; Vetting Wolf, T.; Bauer, B. A novel methodology to realistically monitor office occupant reactions and environmental conditions using a living lab. Build. Environ. 2018, 130, 190–199. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Mui, K.W.; Wong, L.T.; Law, L.Y. An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy Build. 2009, 41, 930–936. [Google Scholar] [CrossRef]
- Chiang, C.M.; Chou, P.C.; Lai, C.M.; Li, Y.Y. A methodology to assess the indoor environment in care centers for senior citizens. Build. Environ. 2001, 36, 561–568. [Google Scholar] [CrossRef]
- Zalejska-Jonsson, A.; Wilhelmsson, M. Impact of perceived indoor environment quality on overall satisfaction in Swedish dwellings. Build. Environ. 2013, 63, 134–144. [Google Scholar] [CrossRef]
- Frontczak, M.; Schiavon, S.; Goins, J.; Arens, E.; Zhang, H.; Wargocki, P. Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. Indoor Air 2012, 22, 119–131. [Google Scholar] [CrossRef]
- Wargocki, P.; Frontczak, M.; Schiavon, S.; Goins, J.; Arens, E.; Zhang, H. Satisfaction and self-estimated performance in relation to indoor environmental parameters and building features. In Proceedings of the 10th International Conference on Healthy Builds 2012, Brisbane, Australia, 8–12 July 2012. [Google Scholar]
- Humphreys, M.A. Quantifying occupant comfort: Are combined indices of the indoor environment practicable? Build. Res. Inform. 2005, 33, 317–325. [Google Scholar] [CrossRef]
- Chiang, C.M.; Lai, C.M. A study on the comprehensive indicator of indoor environment assessment for occupants’ health in Taiwan. Build. Environ. 2002, 37, 387–392. [Google Scholar] [CrossRef]
- Wong, L.T.; Mui, K.W.; Hui, P.S. A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Build. Environ. 2008, 43, 1–6. [Google Scholar] [CrossRef]
- Astolfi, A.; Pellerey, F. Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms. J. Acoust. Soc. Am. 2008, 123, 163–173. [Google Scholar] [CrossRef]
- Lai, J.H.K.; Yik, F.W.H. Perception of importance and performance of the indoor environmental quality of high-rise residential buildings. Build. Environ. 2009, 44, 352–360. [Google Scholar] [CrossRef]
- Cao, B.; Ouyang, Q.; Zhu, Y.; Huang, L.; Hu, H.; Deng, G. Development of a multivariate regression model for overall satisfaction in public buildings based on field studies in Beijing and Shanghai. Build. Environ. 2012, 47, 394–399. [Google Scholar] [CrossRef]
- Marino, C.; Nucara, A.; Pietrafesa, M. Proposal of comfort classification indexes suitable for both single environments and whole buildings. Build. Environ. 2012, 57, 58–67. [Google Scholar] [CrossRef]
- Ncube, M.; Riffat, S. Developing an indoor environment quality tool for assessment of mechanically ventilated office buildings in the UK—A preliminary study. Build. Environ. 2012, 53, 26–33. [Google Scholar] [CrossRef]
- Gayathri, L.; Perera, B.A.K.S.; Sumanarathna, D.M.G.A.N.M. Factors Affecting the Indoor Environmental Quality in Sri Lanka: Green vs. Conventional Hotel Buildings. In Proceedings of the 5th World Construction Symposium 2016: Greening Environment, Eco Innovations & Entrepreneurship, Colombo, Sri Lanka, 29–31 July 2016; pp. 210–220. [Google Scholar]
- Leaman, A.; Bordass, B. Productivity in buildings: The “killer” variables. EcoLibrium 2005, 4, 16–20. [Google Scholar] [CrossRef]
- Bakker, L.G.; Hoes-van Oeffelen, E.C.M.; Loonen, R.C.G.M.; Hensen, J.L.M. User satisfaction and interaction with automated dynamic facades: A pilot study. Build. Environ. 2014, 78, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Castaldo, V.L.; Pigliautile, I.; Rosso, F.; Cotana, F.; De Giorgio, F.; Pisello, A.L. How subjective and non-physical parameters affect occupants’ environmental comfort perception. Energy Build. 2018, 178, 107–129. [Google Scholar] [CrossRef]
- Heerwagen, J. Green buildings, organizational success and occupant productivity. Build. Res. Inform. 2000, 28, 353–367. [Google Scholar] [CrossRef]
- Fisk, W.J. Health and Productivity Gains from Better Indoor Environments and their Relationship with Building Energy Efficiency. Annu. Rev. Energy Environ. 2000, 25, 537–566. [Google Scholar] [CrossRef]
- Bluyssen, P.M.; Aries, M.; Van Dommelen, P. Comfort of workers in office buildings: The European HOPE project. Build. Environ. 2011, 46, 280–288. [Google Scholar] [CrossRef]
- Molina, C.; Pickering, A.C.; Valjbjorn, O.; De Bartoli, M. Sick Build Syndrome A practical Guide; Office for Publications of the European Communities: Luxembourg City, Luxembourg, 1989. [Google Scholar]
- Berglund, B.; Lindvall, T. Sensory reactions to “sick buildings”. Environ. Int. 1986, 12, 147–159. [Google Scholar] [CrossRef]
- Crawford, J.O.; Bolas, S.M. Sick building syndrome, work factors and occupational stress. Scand. J. Work Environ. Health 1996, 22, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Preziosi, P.; Czernichow, S.; Gehanno, P.; Hercberg, S. Workplace air-conditioning and health services attendance among French middle-aged women: A prospective cohort study. Int. J. Epidemiol. 2004, 33, 1120–1123. [Google Scholar] [CrossRef]
- Seppänen, O.; Fisk, W.J. A conceptual model to estimate cost effectiveness of the indoor environment improvements. In Proceedings of the Healthy Builds 2003 Conference, Singapore; Healthy Buildings Inc.: Singapore, 2003; pp. 368–374. [Google Scholar]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Wyon, D. Indoor environmental effects on productivity. IAQ 1996, 96, 5–15. [Google Scholar]
- Heat-Shield. Available online: https://www.heat-shield.eu/ (accessed on 2 November 2018).
- Meerbeek, B.W.; Van Loenen, E.J.; Te Kulve, M.; Aarts, M. User Experience of Automated Blinds in Offices. In Proceedings of the Experiencing Light 2012 International Conference on the Effects of Light on Wellbeing, Eindhoven, The Netherlands, 12–13 November 2012; De Kort, Y., Aarts, A.W., Beute, M.J., Ijsselsteijn, F., Lakens, W.A., Smolders, D., An, C.H.J., Van Rijswijk, L., Eds.; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2012; pp. 1–5. [Google Scholar]
- Aries, M.B.C.; Veitch, J.A.; Newsham, G.R. Windows, view, and office characteristics predict physical and psychological discomfort. J. Environ. Psychol. 2010, 30, 533–541. [Google Scholar] [CrossRef]
- Franchi, M.; Carrer, P.; Kotzias, D.; Viegi, G. Towards Healthy Air in Dwellings in Europe—The THADE Report; EFA Central Office: Brussels, Belgium, 2004. [Google Scholar]
- Franchi, M.; Carrer, P.; Kotzias, D.; Rameckers, E.M.A.L.; Seppänen, O.; Van Bronswijk, J.E.M.H.; Viegi, G.; Gilder, J.A.; Valovirta, E. Working towards healthy air in dwellings in Europe. Allergy 2006, 61, 864–868. [Google Scholar] [CrossRef]
- Autrup, H.; Calow, P.; Dekant, W.; Greim, H.; Hanke, W.; Janssen, C.; Jansson, B.; Komulainen, H.; Ladefoged, O.; Linders, J.; et al. Opinion on Risk Assessment on Indoor Air Quality; European Commision: Brussels, Belgium, 2007; ISBN 9789279127564. [Google Scholar]
- World Health Organization (WHO). Preventing Noncommunicable Diseases (NCDs) by Reducing Environmental Risk Factors; World Health Organisation: Geneva, Switzerland, 2017. [Google Scholar]
- Landström, U.; Åkerlund, E.; Kjellberg, A.; Tesarz, M. Exposure levels, tonal components, and noise annoyance in working environments. Environ. Int. 1995, 21, 265–275. [Google Scholar] [CrossRef]
- Jensen, K.L.; Arens, E.; Zagreus, L. Acoustical Quality in Office Workstations, as Assessed by Occupant Surveys. In Proceedings of the Indoor Air 2005, Beijing, China, 4–9 September 2005; University of California: Berkeley, CA, USA, 2005; pp. 2401–2405. [Google Scholar]
- Veitch, J.A.; Charles, K.E.; Farley, K.M.J.; Newsham, G.R. A model of satisfaction with open-plan office conditions: COPE field findings. J. Environ. Psychol. 2007, 27, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Niemann, H.; Bonnefoy, X.; Braubach, M.; Hecht, K.; Maschke, C.; Rodrigues, C.; Robbel, N. Noise-induced annoyance and morbidity results from the pan-European LARES study. Noise Health 2006, 8, 63–79. [Google Scholar] [CrossRef]
- Van Kempen, E.; Van Kamp, I.; Lebret, E.; Lammers, J.; Emmen, H.; Stansfeld, S. Neurobehavioral effects of transportation noise in primary schoolchildren: A cross-sectional study. Environ. Health Glob. Access Sci. Source 2010, 9, 25. [Google Scholar] [CrossRef]
- Baker, N.; Nikolopoulou, M.; Steemers, K. Thermal comfort in urban spaces: Different forms of adaptation Proceedings Rebuild. In Proceedings of the 1999 REBUILD International Conference: The Cities of Tomorrow, Barcelona, Spain, 4–6 October 1999. [Google Scholar]
- Kenny, G.P.; Yardley, J.E.; Martineau, L.; Jay, O. Physical work capacity in older adults: Implications for the aging worker. Am. J. Ind. Med. 2008, 51, 610–625. [Google Scholar] [CrossRef]
- Lorenzoni, I.; Nicholson-Cole, S.; Whitmarsh, L. Barriers perceived to engaging with climate change among the UK public and their policy implications. Glob. Environ. Chang. 2007, 17, 445–459. [Google Scholar] [CrossRef]
- Blanchard, B.; Blyler, J.E. Human-Factors Engineering. In System Engineering Management; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bamberg, S.; Möser, G. Twenty years after Hines, Hungerford, and Tomera: A new meta-analysis of psycho-social determinants of pro-environmental behaviour. J. Environ. Psychol. 2007, 27, 14–25. [Google Scholar] [CrossRef]
- Wohlwill, J.F. Human Adaptation to Levels of Environmental Stimulation. Hum. Ecol. 1974, 2, 127–147. [Google Scholar] [CrossRef]
- Gifford, R. The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation. Am. Psychol. 2011, 66, 290–302. [Google Scholar] [CrossRef]
- Gilman, S. Joint position sense and vibration sense: Anatomical organisation and assessment. J. Neurol. Neurosurg. Psychiatry 2002, 73, 473–477. [Google Scholar] [CrossRef]
- Patapoutian, A.; Peier, A.M.; Story, G.M.; Viswanath, V. Thermotrp channels and beyond: Mechanisms of temperature sensation. Nat. Rev. Neurosci. 2003, 4, 529–539. [Google Scholar] [CrossRef]
- EN. Directive 2006/25/EC of the European Parliament and of the Council of 5 April 2006 on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to Risks Arising from Physical Agents (Artificial Optical Radiation) (19th Individual Direct. 2006. ISBN 9789279122552). Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006L0025-20140101 (accessed on 6 February 2018).
- Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J.; et al. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 2008, 121, 585–591. [Google Scholar] [CrossRef]
- Noonan, B.; Bancroft, R.W.; Dines, J.S.; Bedi, A. Heat- and Cold-induced Injuries in Athletes: Evaluation and Management. J. Am. Acad. Orthop. Surg. 2012, 20, 744–754. [Google Scholar] [CrossRef]
- Toftum, J.; Andersen, R.V.; Jensen, K.L. Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions. Build. Environ. 2009, 44, 2009–2016. [Google Scholar] [CrossRef]
- Gross, H.; Blechinger, F.; Achtner, B. Human Eye. In Handbook of Optical Systems, Volume 4, Survey of Optical Instruments; Herbert, G., Ed.; Wiley: Hoboken, NJ, USA, 2008; pp. 1–88. [Google Scholar]
- Curry, D.G.; Martinsen, G.L.; Hopper, D.G. Capability of the human visual system. Cockpit Disp. X 2003, 5080, 58–69. [Google Scholar] [CrossRef]
- Boff, K.R.; Lincoln, J.E. Eng. Data Compendium. Human Perception and Performance; Wiley and Sons: New York, NY, USA, 1988. [Google Scholar]
- Davis, J.; Hsieh, Y.H.; Lee, H.C. Humans perceive flicker artifacts at 500 Hz. Sci. Rep. 2015, 5, 7861. [Google Scholar] [CrossRef] [Green Version]
- De Valois, R.L.; De Valois, K.K. Spatial Vision; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Ruch, T.C.; Fulton, J.F. Medical Physiology and Biophysics; W.B. Saunders: Philadelphia, PA, USA, 1960. [Google Scholar]
- Lind, B.; Sihlbom, H.; Nordwall, A.; Malchau, H. Normal range of motion of the cervical spine. Arch. Phys. Med. Rehab. 1989, 70, 692–695. [Google Scholar]
- Xie, B. Virtual Auditory Display and Spatial Hearing. In Head-Related Transfer Function and Virtual Auditory Display, 2nd ed.; Ross Publishing, Inc.: Richmond, VA, USA, 2013; pp. 1–42. [Google Scholar]
- Hartmann, W.M. How we localize sound. Phys. Today 1999, 52, 24–29. [Google Scholar] [CrossRef]
- McQueen, C.A.; Bond, J.; Ramos, K.; Lamb, J.; Guengerich, F.P.; Lawrence, D.; Walker, M.; Campen, M.; Schnellmann, R.; Yost, G.S.; et al. Comprehensive Toxicology, Volumes 1-14, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Butcher, K.J. Health Issues. In CIBSE Guide A—Environ.al Design; CIBSE: Norwich, UK, 2006. [Google Scholar]
- Bushdid, C.; Magnasco, M.O.; Vosshall, L.B.; Keller, A.; Mixture, M. 1 Trillion Olfactory Stimuli. Science 2016, 343, 1370–1373. [Google Scholar] [CrossRef]
- Feron, V.; Arts, J.; Kuper, C.; Slootweg, P.; Woutersen, R. Health risks associated with inhaled nasal toxicants. Crit. Rev. Toxicol. 2001, 31, 313–347. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Indoor Air Quality Guidelines: Household Fuel Combustion; World Health Organization: Geneva, Switzerland, 2014; ISBN 978 92 4 154887 8. [Google Scholar]
- World Health Organization (WHO). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016; ISBN 978 92 4 151135 3. [Google Scholar]
- Nakano, S.; Washizu, A. Acceptance of energy efficient homes in large Japanese cities: Understanding the inner process of home choice and residence satisfaction. J. Environ. Manag. 2018, 225, 84–92. [Google Scholar] [CrossRef]
- Altenburg, T.; Assmann, C. Green Industrial Policy: Concept, Policies, Country Experiences; UN Environment; German Development Institute: Bonn, Germany, 2014. [Google Scholar]
- Hafer, M.; Howley, W.; Chang, M.; Ho, K.; Tsau, J.; Razavi, H. Occupant engagement leads to substantial energy savings for plug loads. In Proceedings of the 2017 IEEE Conference on Technologies for Sustainability, SusTech 2017, Phoenix, AZ, USA, 12–14 November 2017. [Google Scholar]
- Kahma, N.; Matschoss, K. The rejection of innovations? Rethinking technology diffusion and the non-use of smart energy services in Finland. Energy Res. Soc. Sci. 2017, 34, 27–36. [Google Scholar] [CrossRef]
- WCED. Report of the World Commision on Environ. and Dev.: Our Common Future; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- United Nations. Paris Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- Climate Action Tracker. Rating Countries. Available online: http://climateactiontracker.org/countries.html (accessed on 29 March 2018).
- Marques, L.M.; Fuinhas, J.A.; Marques, A.C. Augmented energy-growth nexus: Economic, political and social globalization impacts. Energy Procedia 2017, 136, 97–101. [Google Scholar] [CrossRef]
- Shahbaz, M.; Zakaria, M.; Shahzad, S.J.H.; Mahalik, M.K. The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach. Energy Econ. 2018, 71, 282–301. [Google Scholar] [CrossRef] [Green Version]
- Deichmann, U.; Reuter, A.; Vollmer, S.; Zhang, F. Relationship between Energy Intensity and Economic Growth New Evidence from a Multi—Country Multi—Sector Data Set. World Bank Work. Pap. 2018. [Google Scholar] [CrossRef]
- Croner, D.; Frankovic, I. A Structural Decomposition Analysis of Global and National Energy Intensity Trends. Energy J. 2018, 39, 219–231. [Google Scholar] [CrossRef]
- The World Bank. Energy intensity level of primary energy (MJ/$2011 PPP GDP) Data. Sustain. energy for all. Available online: https://data.worldbank.org/indicator/EG.EGY.PRIM.PP.KD?view=chart (accessed on 6 February 2018).
- IEA. Energy Efficiency 2018—Analysis and outlooks to 2040. Market Rep. Ser. 2017, 1–143. [Google Scholar] [CrossRef]
- European Commission. A Roadmap for Moving to a Competitive Low Carbon Economy in 2050; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- EN. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Off. J. Eur. Union 2010, 153, 13–35. [Google Scholar]
- EN. Directive 2012/27/EU of the European Parliament and of the Councilof 25 October 2012 on energy efficiency. Off. J. Eur. Union 2012, 315, 1–56. [Google Scholar]
- European Union. Intended Nationally Determined Contribution of the EU and its Member States; European Union: Brussels, Belgium, 2015. [Google Scholar]
- En. Directive (EU) 2018/844 of the European Parliament an of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, 156, 17. [Google Scholar]
- UN Environment. Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector; UN Environment: Nairobi, Kenya, 2017. [Google Scholar]
- Fekete, H.; Luna, L.; Sterl, S.; Hans, F.; Gonzales, S.; Hohne, N.; Wong, L.; Deng, Y.; Ur, G.U.R.; Berg, T.; et al. Improvement in Warming Outlook as India and China Move Ahead, but Paris Agreement Gap Still Looms Large; Climate Action Tracker: Cologne/Berlin, Germany, 2017. [Google Scholar]
- Eurostat. Energy Balances. Energy Balances in the MS Excel File Format (2018 Edition). Available online: http://ec.europa.eu/eurostat/web/energy/data/energy-balances (accessed on 29 March 2018).
- U.S. Department of Energy. Use of Energy in the United States Explained. U.S. Energy Information Administration. Available online: https://www.eia.gov/energyexplained/index.php?page=us_energy_use (accessed on 30 January 2019).
- National Bureau of Statistics of China. China Statistical Yearbook 2016. Available online: http://www.stats.gov.cn/tjsj/ndsj/2018/indexeh.htm (accessed on 30 January 2019).
- Ministry of Statistics and Programme Implementation Government of India. ENERGY—Statistical Year Book India 2018. Statistical Year Book India 2018. Available online: http://www.mospi.gov.in/statistical-year-book-india/2018/185 (accessed on 30 January 2019).
- United Nations Environment Programme. Why Buildings. Sustain. Buildings and Climate Initiative. 2015. Available online: http://www.unep.org/sbci/AboutSBCI/Background.asp (accessed on 12 February 2015).
- International Energy Agency. Tracking Clean Energy Progress 2017; International Energy Agency: Paris, France, 2017. [Google Scholar]
- International Energy Agency. Energy Efficiency 2017; International Energy Agency: Paris, France, 2017. [Google Scholar]
- European Commission. Energy. EU Building Database. Available online: https://ec.europa.eu/energy/en/eu-buildings-database (accessed on 31 January 2019).
- European Commission. Annex. Accelerating Clean Energy in Buildings to the Communication from the Commision to the European Parliament, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank. Clean Energy For All; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- RIJSBERMAN, F.R.; SWART, R.J. (Eds.) Targets and Indicators of Climatic Change; The Stockholm Environment Institute: Stockholm, Sweden, 1990; ISBN 9188116212. [Google Scholar]
- International Energy Agency. Transition to Sustain. Buildings. Strategies and Opportunities to 2050; OECD/IEA: Paris, France, 2013. [Google Scholar]
- Anda, M.; Temmen, J. Smart metering for residential energy efficiency: The use of community based social marketing for behavioural change and smart grid introduction. Renew. Energy 2014, 67, 119–127. [Google Scholar] [CrossRef]
- Li, C.; Hong, T.; Yan, D. An insight into actual energy use and its drivers in high-performance buildings. Appl. Energy 2014, 131, 394–410. [Google Scholar] [CrossRef] [Green Version]
- Vierra, S. Green Building Standards and Certification Systems|WBDG—Whole Building Design Guide. WHole Building Design Guide. 2016. Available online: https://www.wbdg.org/resources/green-building-standards-and-certification-systems (accessed on 6 February 2019).
- Liang, J.; Qiu, Y.; Hu, M. Mind the energy performance gap: Evidence from green commercial buildings. Resour. Conserv. Recycl. 2019, 141, 364–377. [Google Scholar] [CrossRef]
- Shrubsole, C.; Hamilton, I.G.; Zimmermann, N.; Papachristos, G.; Broyd, T.; Burman, E.; Mumovic, D.; Zhu, Y.; Lin, B.; Davies, M. Bridging the gap: The need for a systems thinking approach in understanding and addressing energy and environmental performance in buildings. Indoor Built Environ. 2018, 28, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Mcelroy, D.J.; Rosenow, J. Policy implications for the performance gap of low-carbon building technologies. Build. Res. Inform. 2018, 47, 611–623. [Google Scholar] [CrossRef]
- Gill, Z.M.; Tierney, M.J.; Pegg, I.M.; Allan, N. Low-energy dwellings: The contribution of behaviors to actual performance. Build. Res. Inform. 2010, 38, 491–508. [Google Scholar] [CrossRef]
- Gerarden, T.; Newell, R.; Stavins, R. Assessing the energy-efficiency ga. J. Econ. Lit. 2017, 55, 1486–1525. [Google Scholar] [CrossRef]
- Borgstein, E.H.; Lamberts, R.; Hensen, J.L.M. Mapping failures in energy and environmental performance of buildings. Energy Build. 2018, 158, 476–485. [Google Scholar] [CrossRef]
- Costa, A.; Keane, M.M.; Torrens, J.I.; Corry, E. Building operation and energy performance: Monitoring, analysis and optimisation toolkit. Appl. Energy 2013, 101, 310–316. [Google Scholar] [CrossRef]
- Baudains, P.; Bishop, S.; Duffour, P.; Marjanovic-Halburd, L.; Psarra, S.; Spataru, C. A systems paradigm for integrated building design. Intel. Build. Int. 2014, 6, 201–214. [Google Scholar] [CrossRef]
- Reed, W.G.; Gordon, E.B. Integrated design and building process: What research and methodologies are needed? Build. Res. Inform. 2000, 28, 325–337. [Google Scholar] [CrossRef]
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Build. Information Modeling for Owners, Managers, Designers, Enginners, and Contractors; John Wiley & Sons, Inc.: New Jersey, NJ, USA, 2008. [Google Scholar]
- Hetherington, R.; Laney, R.; Peak, S.; Oldham, D. Integrated building design, information and simulation modelling: The need for a new hierarchy. In Build. Simulation 2011; IBPSA: Sydney, Australia, 2011. [Google Scholar]
- Ghaffarianhoseini, A.; Tookey, J.; Ghaffarianhoseini, A.; Naismith, N.; Azhar, S.; Efimova, O.; Raahemifar, K. Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renew. Sustain. Energy Rev. 2017, 75, 1046–1053. [Google Scholar] [CrossRef]
- Reizgevicius, M.; Kutut, V.; Cibulskiene, D.; Nazarko, L. Promoting Sustainability through Investment in Building Information Modeling (BIM) Technologies: A Design Company Perspective. Sustainability 2018, 10, 21. [Google Scholar] [CrossRef]
- Hernandez, P.; Kenny, P. From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB). Energy Build. 2010, 42, 815–821. [Google Scholar] [CrossRef]
- Ozkan, A.; Kesik, T.; Yilmaz, A.Z.; O’Brien, W. Development and visualization of time-based building energy performance metrics. Build. Res. Inform. 2019, 47, 493–517. [Google Scholar] [CrossRef]
- Boermans, T.; Hermelink, A.; Schischar, S.; Grözinger, J.; Offermann, M.; Thomsen, K.E.; Jorsen, R.; Aggerholm, S.O. Principles for Nearly Zero-Energy Buildings. Paving the Way for Effective Implementation of Policy Requirements; Buildings Performance Institute Europe: Brussels, Belgium, 2011. [Google Scholar]
- Torcellini, P.; Pless, S.; Deru, M.; Crawley, D. Zero Energy Buildings: A critical Look at the Definition. In ACEEE Summer Study; American Council for and Energy-Efficient Economy: Pacific Grove, CA, USA, 2006. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Develeopment; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Ensure Access to Affordable, Reliable, Sustainable and Modern Energy. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/energy/ (accessed on 26 February 2019).
- Pye, S.; Dobbins, A.; Baffert, C.; Brajković, J.; Grgurev, I.; De Miglio, R.; Deane, P. Energy poverty and vulnerable consumers in the energy sector across the EU: Analysis of policies and measures. Policy Rep. 2015, 2, 91. [Google Scholar] [CrossRef]
- Scarpellini, S.; Alexia Sanz Hernández, M.; Moneva, J.M.; Portillo-Tarragona, P.; Rodríguez, M.E.L. Measurement of spatial socioeconomic impact of energy poverty. Energy Policy 2019, 124, 320–331. [Google Scholar] [CrossRef]
- Schleich, J. Energy efficient technology adoption in low-income households in the European Union—What is the evidence? Energy Policy 2019, 125, 196–206. [Google Scholar] [CrossRef]
- Capeluto, G.; Ochoa, C. Intelligent Envelopes for High-Performance Buildings: Design and Strategy. In Green Energy and Technology; Springer International Publishing: Cham, Germany, 2017; pp. 1–134. [Google Scholar]
- Bilton, M.; Woolf, M.; Djapic, P.; Aunedi, M.; Carmichael, R.; Strbac, G.; Woolf, M.; Djapic, P.; Aunedi, M.; Carmichael, R.; et al. Impact of Energy Efficient Appliances on Network Utilisation; Imperial College London: London, UK, 2014. [Google Scholar]
- Oldewurtel, F.; Parisio, A.; Jones, C.N.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Loonen, R.C.G.M.; Singaravel, S.; Trčka, M.; Cóstola, D.; Hensen, J.L.M. Simulation-based support for product development of innovative building envelope components. Autom. Constr. 2014, 45, 86–95. [Google Scholar] [CrossRef]
- Kramers, A.; Svane, Ö. ICT Applications for Energy Efficiency in Buildings; Centre for Sustainable Communications: Stockholm, Sweden, 2011. [Google Scholar]
- Crawley, D.B.; Hand, J.W.; Kummert, M.; Griffith, B.T. Contrasting the Capabilities of Build. Energy Performance Simulation Programs. Build. Environ. 2008, 43, 661–673. [Google Scholar] [CrossRef]
- Xu, J.; Kim, J.-H.; Hong, H.; Koo, J. A systematic approach for energy efficient building design factors optimization. Energy Build. 2015, 89, 87–96. [Google Scholar] [CrossRef]
- Upadhyay, K.; Ansari, A.A. Intelligent and Adaptive Facade System—The Impact on the Performance and Energy Efficiency of Buildings. J. Civil Eng. Environ. Technol. 2017, 4, 295–300. [Google Scholar]
- Kasinalis, C.; Loonen, R.C.G.M.; Cóstola, D.; Hensen, J.L.M. Framework for assessing the performance potential of seasonally adaptable facades using multi-objective optimization. Energy Build. 2014, 79, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Borg, S.P.; Kelly, N.J. The effect of appliance energy efficiency improvements on domestic electric loads in European households. Energy Build. 2011, 43, 2240–2250. [Google Scholar] [CrossRef]
- Hakim, H.; Martini; Hindarto, D.; Riyanto, I.; Margatama, L. Motion Sensor Application on Building Lighting Installation for Energy Saving and Carbon Reduction Joint Crediting Mechanism. Appl. Syst. Innov. 2018, 1, 23. [Google Scholar] [CrossRef]
- Garg, V.; Bansal, N.K. Smart occupancy sensors to reduce energy consumption. Energy Build. 2000, 32, 81–87. [Google Scholar] [CrossRef]
- De Groote, M.; Lefever, M. Reaching the Untapped Potential Driving Transformational Change in the Construction Value Chain; Building Performance Institute Europe: Brussels, Belgium, 2015. [Google Scholar]
- Lehmann, B.; Gyalistras, D.; Gwerder, M.; Wirth, K.; Carl, S. Intermediate complexity model for Model Predictive Control of Integrated Room Automation. Energy Build. 2013, 58, 250–262. [Google Scholar] [CrossRef]
- Gyalistras, D.; Gwerder, M.; Oldewurtel, F.; Jones, C.N.; Morari, M.; Lehmann, B.; Wirth, K.; Stauch, V. Analysis of Energy Savings Potentials for Integrated Room Automation. In Proceedings of the 10th REHVA World Congr. Clima, Antalya, Turkey, 9–12 May 2010; p. 8. [Google Scholar]
- Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Lehmann, B.; Stauch, V.; Tödtli, J. Potential Assessment of Rule-Based Control for Integrated Room Automation. In Proceedings of the 10th REHVA World Congress, Sustain. Energy Use in Buildings-CLIMA 2010, Antalya, Turkey, 9–12 May 2010; pp. 9–12. [Google Scholar]
- Tamani, N.; Ahvar, S.; Santos, G.; Istasse, B.; Praca, I.; Brun, P.E.; Ghamri, Y.; Crespi, N.; Becue, A. Rule-based model for smart building supervision and management. In Proceedings of the 2018 IEEE Int. Conference on Services Computing, SCC 2018—Part of the 2018 IEEE World Congress on Services, San Francisco, CA, USA, 2–7 July 2018; pp. 9–16. [Google Scholar]
- Mainetti, L.; Mighali, V.; Patrono, L.; Rametta, P. A novel rule-based semantic architecture for IoT building automation systems. In Proceedings of the 2015 23rd Int. Conference on Software, Telecommunications and Computer Networks, SoftCOM 2015, Split, Croatia, 16–18 September 2015; pp. 124–131. [Google Scholar]
- Kolokotsa, D.; Pouliezos, A.; Stavrakakis, G.; Lazos, C. Predictive control techniques for energy and indoor environmental quality management in buildings. Build. Environ. 2009, 44, 1850–1863. [Google Scholar] [CrossRef]
- OptiControl. OptiControl Project—Literature. Available online: http://www.opticontrol.ethz.ch/07E-Literature.html#top (accessed on 2 February 2015).
- Ma, Y. Model Predictive Control for Energy Efficient Buildings; UC Berkeley: Berkeley, CA, USA, 2012. [Google Scholar]
- Široký, J.; Oldewurtel, F.; Cigler, J.; Prívara, S. Experimental analysis of model predictive control for an energy efficient building heating system. Appl. Energy 2011, 88, 3079–3087. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Sturzenegger, D.; Andersson, G.; Morari, M.; Smith, R.S. Towards a standardized building assessment for demand response. In 52nd IEEE Conference on Decision and Control; IEEE: Florence, Italy, 2013; pp. 7083–7088. ISBN 0743-1546. [Google Scholar]
- Tanaskovic, M.; Sturzenegger, D.; Smith, R.; Morari, M. Robust Adaptive Model Predictive Building Climate Control. IFAC Pap. 2017, 50, 1871–1876. [Google Scholar] [CrossRef]
- Karjalainen, S.; Lappalainen, V. Integrated control and user interfaces for a space. Build. Environ. 2011, 46, 938–944. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Sturzenegger, D.; Morari, M. Importance of occupancy information for building climate control. Appl. Energy 2013, 101, 521–532. [Google Scholar] [CrossRef]
- Cho, S.; Zaheer-uddin, M. Predictive control of intermittently operated radiant floor heating systems. Energy Conv. Manag. 2003, 44, 1333–1342. [Google Scholar] [CrossRef]
- Rawi, M.; Al-Anbuky, A. Passive House sensor networks: Human centric thermal comfort concept. In Proceedings of the 2009 5th Int. Conference Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Melbourne, Australia, 7–10 December 2009; pp. 255–260. [Google Scholar]
- Owens, S.; Driffill, L. How to change attitudes and behaviours in the context of energy. Energy Policy 2008, 36, 4412–4418. [Google Scholar] [CrossRef]
- Mills, B.; Schleich, J. Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries. Energy Policy 2012, 49, 616–628. [Google Scholar] [CrossRef]
- Niamir, L.; Filatova, T.; Voinov, A.; Bressers, H. Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes. Energy Policy 2018, 118, 325–345. [Google Scholar] [CrossRef]
- Lee, S.Y.; Brand, J.L. Effects of control over office workspace on perceptions of the work environment and work outcomes. J. Environ. Psychol. 2005, 25, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Boerstra, A.; Beuker, T.; Loomans, M.; Hensen, J. Impact of available and perceived control on comfort and health in European offices. Arch. Sci. Rev. 2013, 56, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Day, J.K.; Gunderson, D.E. Understanding high performance buildings: The link between occupant knowledge of passive design systems, corresponding behaviors, occupant comfort and environmental satisfaction. Build. Environ. 2014, 84, 114–124. [Google Scholar] [CrossRef]
- Lazowski, B.; Parker, P.; Rowlands, I.H. Towards a smart and sustainable residential energy culture: Assessing participant feedback from a long-term smart grid pilot project. Energy Sustain. Soc. 2018, 8, 27. [Google Scholar] [CrossRef]
- Girod, B.; Stucki, T.; Woerter, M. How do policies for efficient energy use in the household sector induce energy-efficiency innovation? An evaluation of European countries. Energy Policy 2017, 103, 223–237. [Google Scholar] [CrossRef]
- Baldini, M.; Trivella, A.; Wente, J.W. The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark. Energy Policy 2018, 120, 503–513. [Google Scholar] [CrossRef]
- Ameli, N.; Brandt, N. Determinants of households’ investment in energy efficiency and renewables: Evidence from the OECD survey on household environmental behaviour and attitudes. Environ. Res. Lett. 2015, 10, 044015. [Google Scholar] [CrossRef]
- Sardianou, E.; Genoudi, P. Which factors affect the willingness of consumers to adopt renewable energies? Renew. Energy 2013, 57, 1–4. [Google Scholar] [CrossRef]
- Dieu-Hang, T.; Grafton, R.Q.; Martínez-Espiñeira, R.; Garcia-Valiñas, M. Household adoption of energy and water-efficient appliances: An analysis of attitudes, labelling and complementary green behaviours in selected OECD countries. J. Environ. Manag. 2017, 197, 140–150. [Google Scholar] [CrossRef]
- Thøgersen, J. Frugal or green? Basic drivers of energy saving in European households. J. Clean. Prod. 2018, 197, 1521–1530. [Google Scholar] [CrossRef]
- Masoso, O.T.; Grobler, L.J. The dark side of occupants’ behaviour on building energy use. Energy Build. 2010, 42, 173–177. [Google Scholar] [CrossRef]
- David, D. On the Adaptation of Build. Controls to the Envelope and the Occupants; École Polytechnique fédérale de Laussane: Laussane, Switzerland, 2010. [Google Scholar]
- Papantoniou, S.; Kolokotsa, D.; Kalaitzakis, K. Building optimization and control algorithms implemented in existing BEMS using a web based energy management and control system. Energy Build. 2015, 98, 44–55. [Google Scholar] [CrossRef]
- Ackerly, K.; Brager, G. Window signalling systems: Control strategies and occupant behaviour. Build. Res. Inform. 2013, 41, 342–360. [Google Scholar] [CrossRef]
- De Dear, R.J.; Brager, G.S. The adaptive model of thermal comfort and energy conservation in the built environment. Int. J. Biometeorol. 2001, 45, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; De Dear, R.J.; Ji, W.; Lin, B.; Ouyang, Q.; Zhu, Y. The Dynamics of Thermal Comfort Expectations. Build. Environ. 2016, 95, 322–329. [Google Scholar] [CrossRef]
- Jensen, K.L.; Toftum, J.; Friis-Hansen, P. A Bayesian Network approach to the evaluation of building design and its consequences for employee performance and operational costs. Build. Environ. 2009, 44, 456–462. [Google Scholar] [CrossRef]
- Romm, J.J.; Browning, W.D. Greening the Building and the Bottom Line. In Proceedings of the Second International Green Buildings Conference and Exposition; Whitter, M., Cohn, T.B., Eds.; Rocky Mountain Institute: Snowmass Village, CO, USA, 1995. [Google Scholar]
- Hanie, O.; Aryan, A.; MohammadReza, L.; Elham, L. Understanding the Importance of Sustainable Buildings in Occupants Environmental Health and Comfort. J. Sustain. Dev. 2010, 3, 194–200. [Google Scholar] [CrossRef]
Thermal Comfort | Visual Comfort | Acoustic Comfort | Indoor Air Quality | |
---|---|---|---|---|
Note | Requirements for lighting and daylighting | Close connection to thermal environment | ||
Parameters | PMV/PPD or operative temperature; Humidity; Air velocity; Draught; Vertical air temperature differences; Radiant temperature asymmetry; Surface temperature of the floor. | Daylight provision; View out; Exposure to sunlight, Illuminance; Luminance; Light uniformity; Glare; Color (color rendering, light source color); | Sound level difference; Sound insulation; Sound absorption; Noise level(s) Frequency; Reverberation time. | Indoor sources of pollution; Outdoor sources of pollution; Ventilation parameters; Airflow patterns and pressure relationships; Air filtration system. |
Influence factors | Clothing; Activity | Light source, Visual task; Use of room | Sources of heat gains; Outdoor conditions and outdoor air ventilation rate |
Study | Building Type | Type of Survey |
---|---|---|
Chiang et al., 2001 [141] | Senior house | QS among occupants of 12 senior houses |
Chiang and Lai, 2002 [146] | General dwelling and office buildings | 12 QS on experts |
Humphreys, 2005 [144] | Offices | 4655 QS among occupants |
Wong et al., 2008 [147] | Offices | 293 QS among occupants |
Astolfi and Pellerey, 2008 [148] | Classrooms | 1006 QS among occupants |
Lai et al., 2009 [149] | Residential buildings | 125 QS among occupants |
Cao et al., 2012 [150] | Public buildings | 500 QS among occupants |
Marino et al., 2012 [151] | Offices | Measured values compared to EN 15251 |
Ncube and Riffat, 2012 [152] | Offices | 68 QS among occupants |
Frontczak et al., 2012 [142] | Offices | 50000 QS among occupants |
Heinzerling et al., 2013 [67] | Offices | 52980 QS among occupants |
Zalejska-Jonsson and Wilhelmsson, 2013 [141] | Residential buildings | 5756 QS among occupants |
Final Energy Consumption | Year | Commercial in Mtoe | Residential in Mtoe | Total in Mtoe | % Share of the Building Sector |
---|---|---|---|---|---|
EU – 28 1 | 2016 | 150 | 285 | 1108 | 39 |
USA 2 | 2017 | 456 | 504 | 2467 | 39 |
China 3 | 2017 | 84 | 379 | 3052 | 15 |
India 4 | 2015 | 7.4 | 52 | 519 | 11.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šujanová, P.; Rychtáriková, M.; Sotto Mayor, T.; Hyder, A. A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review. Energies 2019, 12, 1414. https://doi.org/10.3390/en12081414
Šujanová P, Rychtáriková M, Sotto Mayor T, Hyder A. A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review. Energies. 2019; 12(8):1414. https://doi.org/10.3390/en12081414
Chicago/Turabian StyleŠujanová, Paulína, Monika Rychtáriková, Tiago Sotto Mayor, and Affan Hyder. 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review" Energies 12, no. 8: 1414. https://doi.org/10.3390/en12081414
APA StyleŠujanová, P., Rychtáriková, M., Sotto Mayor, T., & Hyder, A. (2019). A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review. Energies, 12(8), 1414. https://doi.org/10.3390/en12081414