Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan
Abstract
:1. Introduction
2. Data and Models
2.1. GFS Data and Observations
2.2. Mesoscale Model
2.3. CFD Model
2.4. Coupling WRF and OpenFOAM
2.5. Running Mean Correction
3. Uncertainty Quantification
3.1. The Polynomial Chaos Expansion Approach
3.2. Calculation of Coefficient of Polynomials: Stochastic Collocation Method
3.3. Statistics Using Polynomial Chaos Expansion
3.4. Experiment Design
- Uncertainty in the inlet boundary conditionThe wind flow inlet boundary condition, which usually has the form of standard neutral surface layer profile [22], can significantly influence the output of a CFD model. Such a profile can be specified using the wind shear exponent with the wind velocity at a reference level [1],
- Uncertainties in turbulence model parametersWe also quantified the impact of the uncertainty of the empirical parameters in the turbulence model as described in Table 1 on the wind flow forecasting at the target wind farm over complex terrain conditions.
4. Results and Discussion
4.1. The Flow Field under Dynamic Forcing of Topography
4.2. Validation of the Coupled Model for Wind Prediction
4.3. Results of Uncertainty Quantification
4.3.1. Impact of the Uncertainties in the Parameters of Turbulence Model and Inlet Wind Profile Parameter
4.3.2. Statistic Characteristics of the Uncertainty in the Inflow Profile Parameter
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NWP | Numerical weather prediction |
WRF | Weather research and forecasting |
CFD | Computational fluid dynamics |
PCE | Polynomial chaos expansion |
UQ | Uncertainty quantification |
OpenFOAM | Open Source Field Operation and Manipulation |
ME | Mean error |
RMSE | Root mean square error |
CC | Correlation coefficient |
UTC | Coordinated universal time |
STD | Standard deviation |
CDF | Cumulative distribution function |
IQR | Interquartile range |
References
- Storm, B.; Basu, S. The WRF model forecast-derived low-level wind shear climatology over the United States Great Plains. Energies 2010, 3, 258–276. [Google Scholar] [CrossRef]
- Chadee, X.T.; Seegobin, N.R.; Clarke, R.M. Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago. Energies 2017, 10, 931. [Google Scholar] [CrossRef]
- Zajaczkowski, F.J.; Haupt, S.E.; Schmehl, K.J. A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction. J. Wind Eng. Ind. Aerodyn. 2011, 99, 320–329. [Google Scholar] [CrossRef]
- O’Sullivan, J. Modelling Wind Flow over Complex Terrain. Ph.D. Thesis, ResearchSpace@Auckland, Auckland, New Zealand, 2012. [Google Scholar]
- Blocken, B.; van der Hout, A.; Dekker, J.; Weiler, O. CFD simulation of wind flow over natural complex terrain: Case study with validation by field measurements for Ria de Ferrol, Galicia, Spain. J. Wind Eng. Ind. Aerodyn. 2015, 147, 43–57. [Google Scholar] [CrossRef]
- Moreno, P.; Gravdahl, A.R.; Romero, M. Wind flow over complex terrain: Application of linear and CFD models. In Proceedings of the European Wind Energy Conference and Exhibition, Madrid, Spain, 16–19 June 2003. [Google Scholar]
- Wyszogrodzki, A.A.; Miao, S.; Chen, F. Evaluation of the coupling between mesoscale-WRF and LES-EULAG models for simulating fine-scale urban dispersion. Atmos. Res. 2012, 118, 324–345. [Google Scholar] [CrossRef]
- Wang, Z.H.; Bou-Zeid, E.; Smith, J.A. A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Q. J. R. Meteorol. Soc. 2013, 139, 1643–1657. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Chen, B.; Zhang, B.; Wang, S.; Li, S. Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model. Adv. Atmos. Sci. 2013, 30, 1663. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S.; Chen, B. Numerical study of the effects of topography and urbanization on the local atmospheric circulations over the Beijing-Tianjin-Hebei, China. Adv. Meteorol. 2015, 2015, 397070. [Google Scholar] [CrossRef]
- Temel, O.; Bricteux, L.; van Beeck, J. Coupled WRF-OpenFOAM study of wind flow over complex terrain. J. Wind Eng. Ind. Aerodyn. 2018, 174, 152–169. [Google Scholar] [CrossRef]
- García-Sánchez, C.; Philips, D.; Gorlé, C. Quantifying inflow uncertainties for CFD simulations of the flow in downtown Oklahoma City. Build. Environ. 2014, 78, 118–129. [Google Scholar] [CrossRef]
- García-Sánchez, C.; Gorlé, C. Uncertainty quantification for microscale CFD simulations based on input from mesoscale codes. J. Wind Eng. Ind. Aerodyn. 2018, 176, 87–97. [Google Scholar] [CrossRef]
- Che, Y.; Peng, X.; Delle Monache, L.; Kawaguchi, T.; Xiao, F. A wind power forecasting system based on the weather research and forecasting model and Kalman filtering over a wind-farm in Japan. J. Renew. Sustain. Energy 2016, 8, 013302. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Martinez, B. Wind Resource in Complex Terrain with OpenFOAM; Risø DTU, National Laboratory for Sustainable Energy: Roskilde, Denmark, 2011. [Google Scholar]
- Stensrud, D.J.; Skindlov, J.A. Gridpoint predictions of high temperature from a mesoscale model. Weather Forecast. 1996, 11, 103–110. [Google Scholar] [CrossRef]
- Hacker, J.P.; Rife, D.L. A practical approach to sequential estimation of systematic error on near-surface mesoscale grids. Weather Forecast. 2007, 22, 1257–1273. [Google Scholar] [CrossRef]
- Xiu, D. Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2007, 2, 293–309. [Google Scholar]
- Xiu, D.; Karniadakis, G.E. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002, 24, 619–644. [Google Scholar] [CrossRef]
- Trefethen, L.N. Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 2008, 50, 67–87. [Google Scholar] [CrossRef]
- Richards, P.; Hoxey, R. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. In Computational Wind Engineering 1; Elsevier: Amsterdam, The Netherlands, 1993; pp. 145–153. [Google Scholar]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M.; Meyer, J. Empirical correlation between hub height and local wind shear exponent for different sizes of wind turbines. Sustain. Energy Technol. Assess. 2013, 4, 45–51. [Google Scholar] [CrossRef]
- Edeling, W.; Cinnella, P.; Dwight, R.P.; Bijl, H. Bayesian estimates of parameter variability in the k–ε turbulence model. J. Comput. Phys. 2014, 258, 73–94. [Google Scholar] [CrossRef]
Coefficient | ||||||
---|---|---|---|---|---|---|
Standard | 0.4 | 0.09 | 1.00 | 1.30 | 1.44 | 1.92 |
Boundary | U | p | k | Epsilon |
---|---|---|---|---|
inlet_patch | fixedValue | zeroGradient | fixedValue | fixedValue |
outlet_patch | inletOutlet | fixedValue | zeroGradient | zeroGradient |
ground_patch | fixedValue | zeroGradient | kqRWallFunction | epsilonWallFunction |
Parameter | Low Bound | Upper Bound |
---|---|---|
1.248 | 2.88 | |
0.054 | 0.135 | |
0.6 | 1.5 | |
0.78 | 1.95 |
Parameter | No.1 | No.2 | No.3 | No.4 | No.5 | No.6 | No.7 | No.8 | No.9 | No.10 | No.11 | No.12 | No.13 | No.14 | No.15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case1 | 1.211 | 1.277 | 1.323 | 1.368 | 1.338 | 1.222 | 1.289 | 1.282 | 1.021 | 1.171 | 1.140 | 1.076 | 1.162 | 1.114 | 1.093 | |
(7.94) | (7.96) | (8.52) | (8.33) | (8.32) | (7.85) | (8.18) | (7.97) | (8.31) | (7.67) | (7.61) | (7.30) | (7.71) | (7.39) | (7.18) | ||
0.125 | 0.130 | 0.206 | 0.153 | 0.114 | 0.157 | 0.119 | 0.087 | 0.117 | 0.069 | 0.060 | 0.113 | 0.117 | 0.139 | 0.043 | ||
(0.82) | (0.81) | (1.33) | (0.93) | (0.71) | (1.01) | (0.76) | (0.54) | (0.95) | (0.45) | (0.40) | (0.77) | (0.78) | (0.92) | (0.28) | ||
0.178 | 0.189 | 0.181 | 0.175 | 0.156 | 0.191 | 0.154 | 0.144 | 0.168 | 0.127 | 0.168 | 0.127 | 0.173 | 0.178 | 0.147 | ||
(1.17) | (1.18) | (1.17) | (1.07) | (0.97) | (1.23) | (0.98) | (0.90) | (1.37) | (0.83) | (1.12) | (0.86) | (1.15) | (1.18) | (0.97) | ||
0.060 | 0.057 | 0.065 | 0.055 | 0.044 | 0.056 | 0.037 | 0.029 | 0.037 | 0.022 | 0.033 | 0.017 | 0.039 | 0.034 | 0.021 | ||
(0.39) | (0.36) | (0.42) | (0.33) | (0.27) | (0.36) | (0.23) | (0.18) | (0.30) | (0.14) | (0.22) | (0.12) | (0.26) | (0.23) | (0.14) | ||
0.051 | 0.082 | 0.090 | 0.096 | 0.095 | 0.107 | 0.091 | 0.086 | 0.010 | 0.081 | 0.075 | 0.088 | 0.097 | 0.104 | 0.073 | ||
(0.33) | (0.51) | (0.58) | (0.58) | (0.59) | (0.69) | (0.58) | (0.53) | (0.08) | (0.53) | (0.50) | (0.60) | (0.64) | (0.69) | (0.48) | ||
fore | 15.26 | 16.04 | 15.52 | 16.42 | 16.08 | 15.56 | 15.76 | 16.08 | 12.29 | 15.27 | 14.99 | 14.74 | 15.07 | 15.08 | 15.22 | |
Case2 | 0.708 | 0.761 | 0.780 | 0.807 | 0.816 | 0.805 | 0.802 | 0.830 | 0.670 | 0.804 | 0.810 | 0.802 | 0.788 | 0.793 | 0.847 | |
(9.80) | (9.97) | (9.63) | (9.97) | (9.74) | (10.05) | (9.97) | (10.20) | (10.21) | (10.17) | (10.23) | (10.31) | (10.19) | (10.27) | (10.23) | ||
0.135 | 0.139 | 0.126 | 0.142 | 0.132 | 0.160 | 0.158 | 0.171 | 0.239 | 0.148 | 0.188 | 0.180 | 0.190 | 0.208 | 0.160 | ||
(1.87) | (1.82) | (1.56) | (1.75) | (1.58) | (2.00) | (1.96) | (2.10) | (3.64) | (1.87) | (2.37) | (2.31) | (2.46) | (2.69) | (1.93) | ||
0.113 | 0.111 | 0.102 | 0.107 | 0.101 | 0.114 | 0.111 | 0.113 | 0.125 | 0.098 | 0.114 | 0.112 | 0.114 | 0.114 | 0.109 | ||
(1.56) | (1.45) | (1.26) | (1.32) | (1.21) | (1.42) | (1.38) | (1.39) | (1.90) | (1.24) | (1.44) | (1.44) | (1.47) | (1.48) | (1.32) | ||
0.052 | 0.053 | 0.058 | 0.059 | 0.064 | 0.055 | 0.060 | 0.054 | 0.028 | 0.049 | 0.050 | 0.041 | 0.045 | 0.048 | 0.039 | ||
(0.72) | (0.69) | (0.72) | (0.73) | (0.76) | (0.69) | (0.75) | (0.66) | (0.43) | (0.62) | (0.63) | (0.53) | (0.58) | (0.62) | (0.47) | ||
0.072 | 0.073 | 0.067 | 0.075 | 0.071 | 0.078 | 0.078 | 0.081 | 0.090 | 0.069 | 0.081 | 0.080 | 0.078 | 0.083 | 0.080 | ||
(1.00) | (0.96) | (0.83) | (0.93) | (0.85) | (0.97) | (0.97) | (0.99) | (1.37) | (0.87) | (1.02) | (1.03) | (1.01) | (1.08) | (0.97) | ||
fore | 7.222 | 7.634 | 8.099 | 8.093 | 8.378 | 8.008 | 8.044 | 8.141 | 6.565 | 7.905 | 7.921 | 7.777 | 7.735 | 7.719 | 8.278 | |
Case3 | 0.203 | 0.217 | 0.226 | 0.228 | 0.233 | 0.224 | 0.219 | 0.220 | 0.154 | 0.209 | 0.189 | 0.184 | 0.200 | 0.178 | 0.187 | |
(8.26) | (8.48) | (8.68) | (8.59) | (8.85) | (8.92) | (8.80) | (8.84) | (8.48) | (8.96) | (8.77) | (8.96) | (8.88) | (8.52) | (8.90) | ||
0.136 | 0.125 | 0.112 | 0.112 | 0.103 | 0.104 | 0.108 | 0.104 | 0.065 | 0.099 | 0.094 | 0.095 | 0.084 | 0.045 | 0.104 | ||
(5.53) | (4.89) | (4.30) | (4.22) | (3.91) | (4.14) | (4.34) | (4.18) | (3.58) | (4.25) | (4.36) | (4.63) | (3.73) | (2.15) | (4.95) | ||
0.032 | 0.028 | 0.026 | 0.024 | 0.021 | 0.027 | 0.025 | 0.031 | 0.039 | 0.029 | 0.032 | 0.033 | 0.041 | 0.038 | 0.030 | ||
(1.30) | (1.09) | (1.00) | (0.90) | (0.80) | (1.08) | (1.00) | (1.25) | (2.15) | (1.24) | (1.49) | (1.61) | (1.82) | (1.82) | (1.43) | ||
0.019 | 0.015 | 0.012 | 0.010 | 0.006 | 0.004 | 0.007 | 0.006 | 0.021 | 0.008 | 0.006 | 0.008 | 0.022 | 0.010 | 0.011 | ||
(0.77) | (0.59) | (0.46) | (0.38) | (0.23) | (0.16) | (0.28) | (0.24) | (1.16) | (0.34) | (0.28) | (0.39) | (0.98) | (0.48) | (0.52) | ||
0.014 | 0.015 | 0.018 | 0.020 | 0.023 | 0.028 | 0.030 | 0.031 | 0.039 | 0.024 | 0.021 | 0.019 | 0.052 | 0.032 | 0.013 | ||
(0.57) | (0.59) | (0.69) | (0.75) | (0.87) | (1.12) | (1.21) | (1.25) | (2.15) | (1.03) | (0.97) | (0.93) | (2.31) | (1.53) | (0.62) | ||
fore | 2.458 | 2.558 | 2.604 | 2.655 | 2.634 | 2.510 | 2.488 | 2.489 | 1.815 | 2.332 | 2.154 | 2.054 | 2.251 | 2.090 | 2.102 |
Parameter | No.1 | No.2 | No.3 | No.4 | No.5 | No.6 | No.7 | No.8 | No.9 | No.10 | No.11 | No.12 | No.13 | No.14 | No.15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case1 | 1.033 | 0.963 | 1.099 | 0.963 | 1.104 | 0.942 | 1.098 | 0.960 | 1.381 | 0.914 | 1.089 | 1.026 | 1.160 | 1.086 | 0.973 | |
0.472 | 0.342 | 0.451 | 0.351 | 0.446 | 0.412 | 0.390 | 0.368 | 0.372 | 0.451 | 0.487 | 0.490 | 0.542 | 0.511 | 0.621 | ||
1.024 | 0.950 | 1.013 | 0.876 | 0.941 | 0.856 | 0.995 | 0.884 | 1.411 | 0.841 | 0.954 | 0.998 | 0.976 | 0.978 | 0.886 | ||
0.497 | 0.384 | 0.426 | 0.327 | 0.319 | 0.283 | 0.328 | 0.268 | 0.510 | 0.234 | 0.250 | 0.252 | 0.256 | 0.247 | 0.206 | ||
0.380 | 0.389 | 0.394 | 0.361 | 0.370 | 0.317 | 0.373 | 0.318 | 0.503 | 0.283 | 0.344 | 0.328 | 0.329 | 0.323 | 0.270 | ||
fore | 61.6 | 64.4 | 64.5 | 65.7 | 66.4 | 69.9 | 67.4 | 70.5 | 73.6 | 71.6 | 72.5 | 74.7 | 71.2 | 71.6 | 76.2 | |
Case2 | 1.280 | 1.132 | 1.186 | 1.094 | 1.112 | 0.931 | 1.082 | 0.938 | 0.964 | 0.906 | 0.922 | 0.864 | 0.990 | 0.972 | 0.842 | |
0.424 | 0.352 | 0.467 | 0.353 | 0.369 | 0.320 | 0.401 | 0.355 | 0.845 | 0.376 | 0.528 | 0.540 | 0.537 | 0.501 | 0.510 | ||
0.230 | 0.174 | 0.091 | 0.097 | 0.071 | 0.069 | 0.106 | 0.108 | 0.424 | 0.148 | 0.272 | 0.299 | 0.244 | 0.297 | 0.295 | ||
0.482 | 0.429 | 0.339 | 0.374 | 0.330 | 0.297 | 0.283 | 0.244 | 0.123 | 0.218 | 0.119 | 0.112 | 0.122 | 0.117 | 0.109 | ||
0.115 | 0.120 | 0.173 | 0.136 | 0.157 | 0.158 | 0.194 | 0.196 | 0.408 | 0.238 | 0.301 | 0.312 | 0.260 | 0.289 | 0.312 | ||
fore | 276.6 | 276.0 | 281.7 | 277.5 | 281.6 | 278.7 | 280.8 | 278.8 | 284.6 | 279.9 | 282.4 | 282.4 | 283.1 | 282.7 | 284.5 | |
Case3 | 1.090 | 1.007 | 1.206 | 1.029 | 1.165 | 0.820 | 0.994 | 0.757 | 0.431 | 0.701 | 0.635 | 0.511 | 0.725 | 0.572 | 0.544 | |
0.731 | 0.705 | 0.960 | 0.831 | 1.024 | 1.134 | 1.423 | 1.413 | 2.769 | 1.403 | 2.054 | 1.975 | 1.999 | 2.727 | 2.117 | ||
0.443 | 0.400 | 0.542 | 0.435 | 0.516 | 0.563 | 0.696 | 0.677 | 1.301 | 0.605 | 0.925 | 0.842 | 0.907 | 1.191 | 0.988 | ||
0.881 | 0.830 | 0.759 | 0.715 | 0.702 | 0.404 | 0.418 | 0.178 | 0.440 | 0.177 | 0.345 | 0.440 | 0.170 | 0.414 | 0.509 | ||
1.107 | 1.004 | 1.151 | 0.993 | 1.108 | 0.916 | 1.129 | 0.920 | 1.081 | 0.706 | 0.892 | 0.773 | 1.050 | 1.109 | 0.873 | ||
fore | 255.1 | 257.2 | 262.0 | 259.8 | 263.4 | 262.8 | 262.8 | 262.9 | 267.3 | 263.6 | 265.7 | 265.6 | 266.6 | 265.7 | 268.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Che, Y.; Zheng, J.; Xiao, F. Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan. Energies 2019, 12, 1505. https://doi.org/10.3390/en12081505
Jin J, Che Y, Zheng J, Xiao F. Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan. Energies. 2019; 12(8):1505. https://doi.org/10.3390/en12081505
Chicago/Turabian StyleJin, Jonghoon, Yuzhang Che, Jiafeng Zheng, and Feng Xiao. 2019. "Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan" Energies 12, no. 8: 1505. https://doi.org/10.3390/en12081505
APA StyleJin, J., Che, Y., Zheng, J., & Xiao, F. (2019). Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan. Energies, 12(8), 1505. https://doi.org/10.3390/en12081505