Experimental and Numerical Investigations of Plasma Ignition Characteristics in Gas Turbine Combustors
Abstract
:1. Introduction
2. Experiment Setup and Numerical Strategy
2.1. Experiment Setup
2.2. Numerical Strategy
3. Results Analysis and Discussion
3.1. Plasma Jet Flow Characteristics During Discharge
3.2. Ignition Process Analysis in Gas Turbine Combustors
3.3. Effects of Different Factors on Plasma Ignition Performance
4. Conclusions
- (1)
- In contrast with the conventional spark ignitor, the present measured ignitor possesses the obvious plasma jet flow feature during discharge. Based on the effective design geometry, the jet flow length can be larger than 30 mm.
- (2)
- The actual ignition process of a gas turbine combustor is related to the ignition parameters, backflow zone and fuel distributions. Therefore, realizing the complex optimization of different factors is the key to improve combustor ignition ability.
- (3)
- The application of plasma can significantly enhance the ignition performance, not only for time for successful ignition but also for lean ignition limit. Besides, initial energy, active species concentration, jet flow length and discharge frequency are very critical factors affecting the ignition process. With the increase of the above four parameters, the ignition ability can be enhanced to different degrees.
- (4)
- Although the effects of plasma on ignition is analyzed, the detailed physical and chemical process of plasma generation and evolution are not considered in this study due to limitations in the numerical approach and software. This means that many enhancement mechanisms of plasma assisted ignition cannot be clearly understood. Therefore, it is very necessary to develop an effective tool to improve the numerical precision of plasma assisted ignition.
Author Contributions
Funding
Conflicts of Interest
References
- Foust, M.; Thomsen, D.; Stickles, R.; Cooper, C.; Dodds, W. Development of the GE Aviation Low Emissions TAPS Combustor for next Generation Aircraft Engines. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 09–12 January 2012. [Google Scholar]
- Deepika, V.; Chakravarthy, S.R.; Muruganandam, T.M.; Bharathi, N.R. Multi-Swirl Lean Direct Injection Burner for Enhanced Combustion Stability and Low Pollutant Emissions. In Proceedings of the ASME 2017 Gas Turbine India Conference, Bangalore, India, 7–8 December 2017. [Google Scholar]
- Gokulakrishnan, P.; Ramotowski, M.J.; Gaines, G.; Fuller, C.; Joklik, R.; Eskin, L.D.; Klassen, M.S.; Roby, R.J. A Novel Low Nox Lean, Premixed, and Prevaporized Combustion System for Liquid Fuels. J. Eng. Gas Turbines Power 2008, 130, 051501. [Google Scholar] [CrossRef]
- Zhao, D.; Gutmark, E.; Goey, P.D. A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors. Prog. Energy Combust. 2018, 66, 42–82. [Google Scholar] [CrossRef]
- Perpignan, A.A.V.; Rao, A.G.; Roekaerts, D.J.E.M. Flameless combustion and its potential towards gas turbines. Prog. Energy Combust. 2018, 69, 28–62. [Google Scholar] [CrossRef]
- Khidr, K.I.; Eldrainy, Y.A.; EL-Kassaby, M.M. Towards lower gas turbine emissions: Flameless distributed combustion. Renew. Sust. Energy Rev. 2017, 67, 1237–1266. [Google Scholar] [CrossRef]
- Snyder, P.H.; Nalim, M. Pressure Gain Combustion Application to Marine and Industrial Gas Turbines. In Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 11–15 June 2012. [Google Scholar]
- Zhao, N.B.; Wen, X.Y.; Li, S.Y. A Review on Gas Turbine Anomaly Detection for Implementing Health Management. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, Korea, 13–17 June 2016. [Google Scholar]
- Jaravel, T.; Labahn, J.; Sforzo, B.; Seitzman, J.; Ihme, M. Numerical study of the ignition behavior of a post-discharge kernel in a turbulent stratified crossflow. Proc. Combust. Inst. 2019, 37, 5065–5072. [Google Scholar] [CrossRef]
- Jones, W.P.; Tyliszczak, A. Large eddy simulation of spark ignition in a gas turbine combustor. Flow Turbul. Combust. 2010, 85, 711–734. [Google Scholar] [CrossRef]
- Liao, Y.H.; Sun, M.C.; Lai, R.Y. Application of Plasma Discharges to the Ignition of a Jet Diffusion Flame. In Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, Waikoloa, HI, USA, 30 July–3 August 2017. [Google Scholar]
- Qiao, Y.; Mao, R.; Lin, Y. Large Eddy Simulation of the Ignition Performance in a Lean Burn Combustor. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Mastorakos, E. Forced ignition of turbulent spray flames. Proc. Combust. Inst. 2017, 36, 2367–2383. [Google Scholar] [CrossRef] [Green Version]
- Boileau, M.; Staffelbach, G.; Cuenot, B.; Poinsot, T.; Bérat, C. LES of an ignition sequence in a gas turbine engine. Combust. Flame 2008, 154, 2–22. [Google Scholar] [CrossRef]
- Moin, P.; Apte, S.V. Large-eddy simulation of realistic gas turbine combustors. AIAA J. 2006, 44, 698–708. [Google Scholar] [CrossRef]
- Adamovich, I.V.; Choi, I.; Jiang, N.; Kim, J.H.; Keshav, S.; Lempert, W.R.; Samimy MUddi, M. Plasma assisted ignition and high-speed flow control: Non-Thermal and thermal effects. Plasma Sources Sci. T. 2009, 18, 034018. [Google Scholar] [CrossRef]
- Takita, K.; Abe, N.; Masuya, G.; Ju, Y.G. Ignition enhancement by addition of NO and NO2 from a N2/O2 plasma torch in a supersonic flow. Proc. Combust. Inst. 2007, 31, 2489–2496. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Kindysheva, S.V.; Kosarev, I.N.; Starikovskaia, S.M.; Starikovskii, A.Y. Mechanism of ignition by non-equilibrium plasma. Proc. Combust. Inst. 2009, 32, 205–212. [Google Scholar] [CrossRef]
- Kim, W.; Mungal, M.G.; Cappelli, M.A. The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames. Combust. Flame 2010, 157, 374–383. [Google Scholar] [CrossRef]
- Xu, K.G. Plasma sheath behavior and ionic wind effect in electric field modified flames. Combust. Flame 2014, 161, 1678–1686. [Google Scholar] [CrossRef]
- Starikovskii, A.Y.; Anikin, N.B.; Kosarev, I.N.; Mintoussov, E.I.; Nudnova, M.M.; Rakitin, A.E.; Roupassov, D.V.; Starikovskaia, S.M.; Zhukov, V.P. Nanosecond-pulsed discharges for plasma-assisted combustion and aerodynamics. J. Propuls. Power 2008, 24, 1182–1197. [Google Scholar] [CrossRef]
- Starikovskii, A.Y.; Anikin, N.B.; Kosarev, I.N.; Mintoussov, E.I.; Starikovskaia, S.M.; Zhukov, V.P. Plasma-assisted combustion. Pure Appl. Chem. 2006, 78, 1265–1298. [Google Scholar] [CrossRef] [Green Version]
- Matveev, I.; Matveeva, S.; Gutsol, A. Non-Equilibrium Plasma Igniters and Pilots for Aerospace Application. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Lou, G.; Bao, A.; Nishihara, M.; Keshav, S.; Utkin, Y.G.; Rich, J.W.; Lempert, W.R.; Adamovich, I.V. Ignition of premixed hydrocarbon-air flows by repetitively pulsed, nanosecond pulse duration plasma. Proc. Combust. Inst. 2007, 31, 3327–3334. [Google Scholar] [CrossRef]
- Guan, Y.; Zhao, G.; Xiao, X. Design and experiments of plasma jet igniter for aeroengine. Propuls. Power Res. 2013, 2, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Kosarev, I.N.; Kindysheva, S.V.; Momot, R.M.; Plastinin, E.A.; Aleksandrov, N.L.; Starikovskiy, A.Y. Comparative study of nonequilibrium plasma generation and plasma-assisted ignition for C2-hydrocarbons. Combust. Flame 2016, 165, 259–271. [Google Scholar] [CrossRef]
- Zhao, F.; Li, S.; Ren, Y.; Yao, Q.; Yuan, Y. Investigation of mechanisms in plasma-assisted ignition of dispersed coal particle streams. Fuel 2016, 186, 518–524. [Google Scholar] [CrossRef]
- Singleton, D.; Pendleton, S.J.; Gundersen, M.A. The role of non-thermal transient plasma for enhanced flame ignition in C2H4-air. J. Phys. D Appl. Phys. 2010, 44, 022001. [Google Scholar] [CrossRef]
- Mao, X.; Li, G.; Chen, Q.; Zhao, Y. Kinetic effects of nanosecond discharge on ignition delay time. Chin. J. Chem. Eng. 2016, 24, 1719–1727. [Google Scholar] [CrossRef]
- Mao, X.; Rousso, A.; Chen, Q.; Ju, Y.G. Numerical modeling of ignition enhancement of CH4/O2/He mixtures using a hybrid repetitive nanosecond and DC discharge. Proc. Combust. Inst. 2019, 37, 5545–5552. [Google Scholar] [CrossRef]
- Castela, M.; Fiorina, B.; Coussement, A.; Gicquel, O.; Darabiha, N.; Laux, C.O. Modelling the impact of non-equilibrium discharges on reactive mixtures for simulations of plasma-assisted ignition in turbulent flows. Combust. Flame 2016, 166, 133–147. [Google Scholar] [CrossRef]
- Castela, M.; Stepanyan, S.; Fiorina, B.; Coussement, A.; Gicquel, O.; Darabiha, N.; Laux, C.O. A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture. Proc. Combust. Inst. 2017, 36, 4095–4103. [Google Scholar] [CrossRef]
- Casey, T.A.; Han, J.; Belhi, M.; Arias, P.G.; Bisetti, F.; Im, H.G.; Chen, J.Y. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure. Proc. Combust. Inst. 2017, 36, 4155–4163. [Google Scholar] [CrossRef]
- Yang, S.; Nagaraja, S.; Sun, W.; Yang, V. A Detailed Comparison of Thermal and Nanosecond Plasma Assisted Ignition of Hydrogen-Air Mixtures. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Yang, S.; Nagaraja, S.; Sun, W.; Yang, V. Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion. J. Phys. D Appl. Phys. 2017, 50, 433001. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Yamashita, H. Numerical study of the effects of non-equilibrium plasma on the ignition delay of a methane-air mixture using detailed ion chemical kinetics. Combust. Flame 2014, 161, 2064–2072. [Google Scholar] [CrossRef]
- Mariani, A.; Foucher, F. Radio frequency spark plug: An ignition system for modern internal combustion engines. Appl. Energy 2014, 122, 151–161. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Wang, Q.; Hou, L.; Zhang, G. Experimental study of microwave resonance plasma ignition of methane-air mixture in a constant volume cylinder. Combust. Flame 2015, 162, 2561–2568. [Google Scholar] [CrossRef]
- Hwang, J.; Bae, C.; Park, J.; Choe, W.; Cha, J.; Woo, S. Microwave-assisted plasma ignition in a constant volume combustion chamber. Combust. Flame 2016, 167, 86–96. [Google Scholar] [CrossRef]
- Wolk, B.; DeFilippo, A.; Chen, J.Y.; Dibble, R.; Nishiyama, A.; Ikeda, Y. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber. Combust. Flame 2013, 160, 1225–1234. [Google Scholar] [CrossRef]
- Michael, J.B.; Chng, T.L.; Miles, R.B. Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition. Combust. Flame 2013, 160, 796–807. [Google Scholar] [CrossRef]
- Ikeda, Y.; Nishiyama, A.; Wachi, Y.; Kaneko, M. Research and Development of Microwave Plasma Combustion Engine (Part I: Concept of Plasma Combustion and Plasma Generation Technique); sae technical papers, no. 2009-01-1050; Sae International: Warrendale, PA, USA, 2019. [Google Scholar]
- Le, M.K.; Nishiyama, A.; Serizawa, T.; Ikeda, Y. Applications of a multi-point microwave discharge igniter in a multi-cylinder gasoline engine. Proc. Combust. Inst. 2019, 37, 5621–5628. [Google Scholar] [CrossRef]
- Sun, W.; Won, S.H.; Ombrello, T.; Carter, C.; Ju, Y.G. Direct ignition and S-curve transition by in situ nanosecond pulsed discharge in methane/oxygen/helium counter-flow flame. Proc. Combust. Inst. 2013, 34, 847–855. [Google Scholar] [CrossRef]
- Sun, W.T.; Won, S.H.; Ju, Y.G. In situ plasma activated low temperature chemistry and the S-curve transition in DME/oxygen/helium mixture. Combust. Flame 2014, 161, 2054–2063. [Google Scholar] [CrossRef]
- Lefkowitz, J.K.; Guo, P.; Ombrello, T.; Won, S.H.; Stevens, C.A.; Hoke, J.L.; Schauer, F.; Ju, Y.G. Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge. Combust. Flame 2015, 162, 2496–2507. [Google Scholar] [CrossRef]
- Bonebrake, J.M.; Blunck, D.L.; Lefkowitz, J.K.; Ombrello, T.M. The effect of nanosecond pulsed high frequency discharges on the temperature evolution of ignition kernels. Proc. Combust. Inst. 2019, 37, 5561–5568. [Google Scholar] [CrossRef]
- Pancheshnyi, S.V.; Lacoste, D.A.; Bourdon, A.; Laux, C.O. Ignition of propane-air mixtures by a repetitively pulsed nanosecond discharge. IEEE Trans. Plasma Sci. 2006, 34, 2478–2487. [Google Scholar] [CrossRef]
- Ombrello, T.; Ju, Y.G.; Fridman, A. Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma. AIAA J. 2008, 46, 2424–2433. [Google Scholar] [CrossRef]
- Ju, Y.G.; Sun, W.T. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. 2015, 48, 21–83. [Google Scholar] [CrossRef]
- Ju, Y.G.; Sun, W.T. Plasma assisted combustion: Progress, challenges, and opportunities. Combust. Flame 2015, 162, 529–532. [Google Scholar] [CrossRef]
- Starikovskiy, A.; Aleksandrov, N. Plasma-assisted ignition and combustion. Prog. Energy Combust. 2013, 39, 61–110. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.Z. Numerical Simulation and Structural Design of Continuous Plasma Generator. Master’s Thesis, Harbin Engineering University, Harbin, China, 2011. [Google Scholar]
- Li, Y.J. Research on Performance of Flame Ignition and Extinction of can Annular Combustor. PH.D. Thesis, Harbin Engineering University, Harbin, China, 2013. [Google Scholar]
- Zhang, J.G. Numerical Simulation and Experimental Research on Plasma Ignition and Combustion Enhancement. Master’s Thesis, Harbin Engineering University, Harbin, China, 2018. [Google Scholar]
- Badawy, T.; Bao, X.; Xu, H. Impact of spark plug gap on flame kernel propagation and engine performance. Appl. Energy. 2017, 191, 311–327. [Google Scholar] [CrossRef]
- Padala, S.; Nishiyama, A.; Ikeda, Y. Flame size measurements of premixed propane-air mixtures ignited by microwave-enhanced plasma. Proc. Combust. Inst. 2017, 36, 4113–4119. [Google Scholar] [CrossRef]
- Lin, B.; Wu, Y.; Zhu, Y.; Song, F.; Bian, D. Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement. Appl. Energy 2019, 235, 1017–1026. [Google Scholar] [CrossRef]
- Brühl, S.P.; Russell, M.W.; Gómez, B.J.; Grigioni, G.M.; Feugeas, J.N.; Ricard, A. A study by emission spectroscopy of the active species in pulsed DC discharges. J. Phys. D Appl. Phys. 1997, 30, 2917. [Google Scholar] [CrossRef]
- Rao, X.; Hemawan, K.; Wichman, I.; Carter, C.; Grotjohn, T.; Asmussen, J.; Lee, T. Combustion dynamics for energetically enhanced flames using direct microwave energy coupling. Proc. Combust. Inst. 2011, 33, 3233–3240. [Google Scholar] [CrossRef]
- Chen, Z.; Burke, M.P.; Ju, Y.G. On the critical flame radius and minimum ignition energy for spherical flame initiation. Proc. Combust. Inst. 2011, 33, 1219–1226. [Google Scholar] [CrossRef]
- Kim, H.H.; Won, S.H.; Santner, J.; Chen, Z.; Ju, Y.G. Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames. Proc. Combust. Inst. 2013, 34, 929–936. [Google Scholar] [CrossRef]
- Kelley, A.P.; Jomaas, G.; Law, C.K. Critical radius for sustained propagation of spark-ignited spherical flames. Combust. Flame 2009, 156, 1006–1013. [Google Scholar] [CrossRef]
- Lin, B.X.; Wu, Y.; Zhang, Z.B.; Chen, Z. Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures. Combust. Flame 2017, 182, 102–113. [Google Scholar] [CrossRef]
Cases | Initial Kernel Radius (mm) | Initial Jet Flow Length (mm) | Ignition Energy (W) | Active Species | Results |
---|---|---|---|---|---|
A | 4 | 12 | 300 | 0 | failure |
B | 1% (O+OH+CO) | failure | |||
C | 2% O + 1% (OH+CO) | successful | |||
D | 3% O + 1.5%(OH+CO) | successful | |||
E | 4% O + 2%(OH+CO) | successful | |||
F | 400 | 0 | failure | ||
G | 500 | 0 | successful |
Cases | Initial Jet Flow Length (mm) | Results |
---|---|---|
H | 4 | failure |
I | 8 | successful |
J | 12 | successful |
K | 16 | successful |
L | 20 | successful |
Cases | Discharge Frequency (Hz) | Results |
---|---|---|
M | 19.2 | failure |
N | 23.8 | successful |
O | 31.3 | successful |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhao, N.; Zhang, J.; Yang, J.; Li, Z.; Zheng, H. Experimental and Numerical Investigations of Plasma Ignition Characteristics in Gas Turbine Combustors. Energies 2019, 12, 1511. https://doi.org/10.3390/en12081511
Liu S, Zhao N, Zhang J, Yang J, Li Z, Zheng H. Experimental and Numerical Investigations of Plasma Ignition Characteristics in Gas Turbine Combustors. Energies. 2019; 12(8):1511. https://doi.org/10.3390/en12081511
Chicago/Turabian StyleLiu, Shizheng, Ningbo Zhao, Jianguo Zhang, Jialong Yang, Zhiming Li, and Hongtao Zheng. 2019. "Experimental and Numerical Investigations of Plasma Ignition Characteristics in Gas Turbine Combustors" Energies 12, no. 8: 1511. https://doi.org/10.3390/en12081511
APA StyleLiu, S., Zhao, N., Zhang, J., Yang, J., Li, Z., & Zheng, H. (2019). Experimental and Numerical Investigations of Plasma Ignition Characteristics in Gas Turbine Combustors. Energies, 12(8), 1511. https://doi.org/10.3390/en12081511