Aromatics from Beechwood Organosolv Lignin through Thermal and Catalytic Pyrolysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lignin Origin and Characterisation
2.2. Lignin Valorization via Pyrolysis
2.3. Effect of Use of Acids during Delignification on Lignin Pyrolysis
2.4. GCMS Semiquantitative Bio-Oils Analysis
3. Materials and Methods
3.1. Raw Materials
3.2. Bed Material
3.3. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Puri, M.; Abraham, R.E.; Barrow, C.J. Biofuel production: Prospects, challenges and feedstock in Australia. Renew. Sustain. Energy Rev. 2012, 16, 6022–6031. [Google Scholar] [CrossRef]
- Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M.F.; Lidén, G.; Zacchi, G. Bio-ethanol—The fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cheng, K.; Liu, D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 2009, 82, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Studer, M.H.; DeMartini, J.D.; Davis, M.F.; Sykes, R.W.; Davison, B.; Keller, M.; Tuskan, G.A.; Wyman, C.E. Lignin content in natural Populus variants affects sugar release. Proc. Natl. Acad. Sci. USA 2011, 108, 6300–6305. [Google Scholar] [CrossRef]
- Zhang, B.; Shahbazi, A. Recent Developments in Pretreatment Technologies for Production of Lignocellulosic Biofuels. J Pet. Env. Biotechnol. 2011. [Google Scholar] [CrossRef]
- Yang, B.; Wyman, C.E. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefining 2008, 2, 26–40. [Google Scholar] [CrossRef]
- Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 2005, 96, 1959–1966. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, M.; Viikari, L. Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour. Technol. 2012, 121, 8–12. [Google Scholar] [CrossRef]
- Kristensen, J.B.; Thygesen, L.G.; Felby, C.; Jorgensen, H.; Elder, T. Cell wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol. Biofuels 2008. [Google Scholar] [CrossRef] [PubMed]
- Constant, S.; Wienk, H.L.J.; Frissen, A.E.; de Peinder, P.; Boelens, R.; van Es, D.S.; Grisel, R.J.H.; Weckhuysen, B.M.; Huijgen, W.J.J.; Gosselink, R.J.A.; et al. New insights into the structure and composition of technical lignins: A comparative characterisation study. Green Chem. 2016, 18, 2651–2665. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. [Google Scholar] [CrossRef]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chemie Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [Green Version]
- Nowakowski, D.J.; Bridgwater, A.V.; Elliott, D.C.; Meier, D.; de Wild, P. Lignin fast pyrolysis: Results from an international collaboration. J. Anal. Appl. Pyrolysis 2010, 88, 53–72. [Google Scholar] [CrossRef]
- Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sustain. Energy Rev. 2013, 21, 506–523. [Google Scholar] [CrossRef]
- De Wild, P.; Reith, H.; Heeres, E. Biomass pyrolysis for chemicals. Biofuels 2011, 2, 185–208. [Google Scholar] [CrossRef] [Green Version]
- De Wild, P.J.; Huijgen, W.J.J.; Gosselink, R.J.A. Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels Bioprod. Biorefining 2014, 8, 645–657. [Google Scholar] [CrossRef]
- Kalogiannis, K.G.; Stefanidis, S.D.; Michailof, C.M.; Lappas, A.A.; Sjöholm, E. Pyrolysis of lignin with 2DGC quantification of lignin oil: Effect of lignin type, process temperature and ZSM-5 in situ upgrading. J. Anal. Appl. Pyrolysis 2015, 115, 410–418. [Google Scholar] [CrossRef]
- Sharma, R.K.; Bakhshi, N.N. Catalytic upgrading of pyrolysis oil. Energy Fuels 1993, 7, 306–314. [Google Scholar] [CrossRef]
- Huber, G.W.; Corma, A. Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angew. Chemie Int. Ed. 2007, 46, 7184–7201. [Google Scholar] [CrossRef] [Green Version]
- Kalogiannis, K.; Matsakas, L.; Aspden, J.; Lappas, A.; Rova, U.; Christakopoulos, P. Acid Assisted Organosolv Delignification of Beechwood and Pulp Conversion towards High Concentrated Cellulosic Ethanol via High Gravity Enzymatic Hydrolysis and Fermentation. Molecules 2018, 23, 1647. [Google Scholar] [CrossRef]
- Matsakas, L.; Nitsos, C.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol. Biofuels 2018, 11, 160. [Google Scholar] [CrossRef]
- Kalogiannis, K.G.; Stefanidis, S.D.; Lappas, A.A. Catalyst deactivation, ash accumulation and bio-oil deoxygenation during ex situ catalytic fast pyrolysis of biomass in a cascade thermal-catalytic reactor system. Fuel Process. Technol. 2019, 186, 99–109. [Google Scholar] [CrossRef]
- Fogassy, G.; Thegarid, N.; Schuurman, Y.; Mirodatos, C. From biomass to bio-gasoline by FCC co-processing: Effect of feed composition and catalyst structure on product quality. Energy Environ. Sci. 2011, 4. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, J.H.; Park, J.; Kim, J.K.; An, D.; Song, I.K.; Choi, J.W. Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. J. Anal. Appl. Pyrolysis 2015, 114, 273–280. [Google Scholar] [CrossRef]
- Ma, Z.; Troussard, E.; Van Bokhoven, J.A. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl. Catal. A Gen. 2012, 423–424, 130–136. [Google Scholar] [CrossRef]
- Asmadi, M.; Kawamoto, H.; Saka, S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. J. Anal. Appl. Pyrolysis 2011, 92, 88–98. [Google Scholar] [CrossRef]
- Britt, P.F.; Buchanan, A.C.; Malcolm, E.A. Impact of Restricted Mass Transport on Pyrolysis Pathways for Aryl Ether Containing Lignin Model Compounds. Energy Fuels 2000, 14, 1314–1322. [Google Scholar] [CrossRef]
- Ben, H.; Ragauskas, A.J. One step thermal conversion of lignin to the gasoline range liquid products by using zeolites as additives. RSC Adv. 2012, 2, 12892. [Google Scholar] [CrossRef]
- Matsakas, L.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. Lignin-first biomass fractionation using a hybrid organosolv – Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour. Technol. 2019, 273, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Kalogiannis, K.G.; Stefanidis, S.D.; Karakoulia, S.A.; Triantafyllidis, K.S.; Yiannoulakis, H.; Michailof, C.; Lappas, A.A. First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: Deoxygenation mechanisms and catalyst deactivation. Appl. Catal. B Environ. 2018, 238, 346–357. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP) (Revised July 2011); NREL: Golden, CO, USA, 2008. [Google Scholar]
- Kalogiannis, K.G.; Stefanidis, S.D.; Michailof, C.M.; Lappas, A.A. Castor bean cake residues upgrading towards high added value products via fast catalytic pyrolysis. Biomass Bioenergy 2016, 95, 405–415. [Google Scholar] [CrossRef]
Lignins | Solvent, %v/v | Catalyst, %w/w | C, wt.% | H, wt.% | O ***, wt.% | Ash, wt.% | Lignin, wt.% | Cel., Wt.% | Hem., Wt.% |
---|---|---|---|---|---|---|---|---|---|
L1 * | Ethanol, 60 | no | 62.4 | 6.1 | 31.5 | 0.0 | 94.3 | 0 | 1.5 |
L2 * | Ethanol, 60 | H2SO4, 1 | 62.5 | 6.2 | 31.2 | 0.1 | 91.3 | 0 | 0.4 |
L5 | Ethanol, 60 | no | 61.7 | 6.3 | 31.5 | 0.5 | 90.8 | 0.1 | 2.7 |
L6 | Ethanol, 60 | H2SO4, 1 | 62.0 | 6.2 | 31.8 | 0.0 | 86.6 | 0.3 | 1.3 |
L11 | Acetone, 60 | no | 61.3 | 6.1 | 32.4 | 0.2 | 88.8 | 0 | 4.2 |
L12 | Acetone, 60 | H2SO4, 1 | 64.6 | 5.9 | 29.5 | 0.0 | 94.4 | 0 | 0.8 |
L14 | Ethanol, 60 | H3PO4, 5.6 | 63.2 | 6.01 | 30.7 | 0.0 | 90.6 | 2.0 | 1.8 |
L15 | Ethanol, 60 | Oxalic, 1 | 62.4 | 6.2 | 31.2 | 0.2 | 90.7 | 0.4 | 1.8 |
L12enz ** | Acetone, 60 | H2SO4, 1 | 45.0 | 6.2 | 44.1 | 3.7 | 23.5 | 7.2 | 0.9 |
L14enz ** | Ethanol, 60 | H3PO4, 5.6 | 44.8 | 6.1 | 46.1 | 3.0 | 49.0 | 3.7 | 0.9 |
GCMS | AR | PH | AC | EST | ALD | KET | OxyAR | OxyPH |
---|---|---|---|---|---|---|---|---|
L1 + Sand | 0.0% | 15.2% | 0.8% | 0.8% | 6.2% | 2.3% | 3.4% | 17.6% |
L2 + Sand | 0.3% | 12.0% | 1.6% | 1.9% | 7.3% | 2.9% | 3.0% | 22.0% |
L5 + Sand | 1.5% | 14.6% | 6.4% | 24.1% | 4.8% | 1.9% | 1.1% | 21.4% |
L6 + Sand | 1.0% | 24.0% | 3.0% | 2.7% | 4.9% | 2.0% | 2.8% | 16.2% |
L11 + Sand | 0.0% | 24.3% | 2.4% | 0.8% | 5.5% | 1.2% | 1.6% | 14.9% |
L12 + Sand | 4.5% | 6.2% | 2.2% | 0.7% | 5.7% | 1.0% | 1.5% | 29.6% |
L14 + Sand | 0.0% | 4.7% | 7.1% | 1.6% | 4.9% | 2.7% | 0.3% | 22.4% |
L15 + Sand | 0.5% | 7.6% | 5.1% | 1.5% | 5.1% | 2.8% | 5.6% | 24.0% |
L12enz + Sand | 0.6% | 16.5% | 15.4% | 0.9% | 2.0% | 12.0% | 1.8% | 19.2% |
L14enz + Sand | 0.6% | 15.1% | 7.0% | 0.5% | 1.4% | 6.4% | 1.9% | 22.7% |
L1 + ZSM-5 | 3.3% | 12.1% | 3.9% | 0.2% | 3.7% | 2.9% | 0.9% | 13.4% |
L2 + ZSM-5 | 3.0% | 27.3% | 0.6% | 0.7% | 2.0% | 0.7% | 4.4% | 6.6% |
L5 + ZSM-5 | 2.4% | 14.8% | 1.9% | 3.9% | 2.9% | 2.8% | 3.8% | 24.4% |
L6 + ZSM-5 | 1.8% | 26.0% | 2.6% | 3.2% | 3.4% | 1.9% | 3.6% | 20.8% |
L11 + ZSM-5 | 2.6% | 30.9% | 0.0% | 0.3% | 2.2% | 0.4% | 2.6% | 6.5% |
L12 + ZSM-5 | 4.3% | 24.5% | 0.8% | 3.0% | 2.5% | 1.1% | 2.2% | 11.4% |
L14 + ZSM-5 | 0.8% | 4.1% | 8.4% | 2.0% | 3.2% | 1.8% | 3.5% | 28.1% |
L15 + ZSM-5 | 2.9% | 22.3% | 0.2% | 1.0% | 4.8% | 2.6% | 3.6% | 11.7% |
L12enz + ZSM-5 | 3.0% | 16.4% | 14.9% | 0.0% | 1.2% | 8.9% | 1.1% | 16.6% |
L14enz + ZSM-5 | 4.1% | 29.0% | 1.1% | 0.3% | 1.5% | 2.7% | 2.5% | 12.6% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalogiannis, K.G.; Matsakas, L.; Lappas, A.A.; Rova, U.; Christakopoulos, P. Aromatics from Beechwood Organosolv Lignin through Thermal and Catalytic Pyrolysis. Energies 2019, 12, 1606. https://doi.org/10.3390/en12091606
Kalogiannis KG, Matsakas L, Lappas AA, Rova U, Christakopoulos P. Aromatics from Beechwood Organosolv Lignin through Thermal and Catalytic Pyrolysis. Energies. 2019; 12(9):1606. https://doi.org/10.3390/en12091606
Chicago/Turabian StyleKalogiannis, Konstantinos G., Leonidas Matsakas, Angelos A. Lappas, Ulrika Rova, and Paul Christakopoulos. 2019. "Aromatics from Beechwood Organosolv Lignin through Thermal and Catalytic Pyrolysis" Energies 12, no. 9: 1606. https://doi.org/10.3390/en12091606
APA StyleKalogiannis, K. G., Matsakas, L., Lappas, A. A., Rova, U., & Christakopoulos, P. (2019). Aromatics from Beechwood Organosolv Lignin through Thermal and Catalytic Pyrolysis. Energies, 12(9), 1606. https://doi.org/10.3390/en12091606