Evaluation and Projections of Wind Power Resources over China for the Energy Industry Using CMIP5 Models
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area and Dataset
2.2. Wind Speed
2.3. Wind Power Density
3. Results and Discussions
3.1. Wind Speed and Wind Power Density Historical Patterns
3.2. Evaluation of Wind Speed and Model Performance
3.3. Future Wind Power Scenarios
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- The Wind Energy International. 2020. Available online: https://library.wwindea.org/global-statistics/ (accessed on 30 April 2020).
- Sherman, P.; Chen, X.; McElroy, M.B. Wind-generated electricity in China: Decreasing potential, inter-annual variability and association with changing climate. Sci. Rep. 2017, 7, 16294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enevoldsen, P.; Valentine, S.V.; Sovacool, B.K. Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development. Energy Policy 2018, 120, 1–7. [Google Scholar] [CrossRef]
- Chen, W.; Castruccio, S.; Genton, M.G.; Crippa, P. Current and Future Estimates of Wind Energy Potential Over Saudi Arabia. J. Geophys. Res. Atmos. 2018, 123, 6443–6459. [Google Scholar] [CrossRef]
- Abolude, A.; Zhou, W.; Leung, Y. Regional Impact Assessment of Monsoon Variability on Wind Power Availability and Optimization in Asia. Atmosphere 2017, 8, 219. [Google Scholar] [CrossRef] [Green Version]
- Sawadogo, W.; Abiodun, B.J.; Okogbue, E.C. Projected changes in wind energy potential over West Africa under the global warming of 1.5° C and above. Theor. Appl. Climatol. 2019, 1–13. [Google Scholar] [CrossRef]
- Evans, J.P.; Kay, M.; Prasad, A.; Pitman, A. The resilience of Australian wind energy to climate change. Environ. Res. Lett. 2018, 13, 024014. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.L.; Hu, J.W.; Zhang, X. Impacts of climate change on electricity demand in China: An empirical estimation based on panel data. Energy 2019, 170, 880–888. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Y.; Zhao, Z.; Tao, S. Changes in wind speed over China during 1956–2004. Theor. Appl. Climatol. 2010, 99, 421. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Evaluation of global wind power. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhong, S.; Bian, X.; Heilman, W.E. Climatology and trend of wind power resources in China and its surrounding regions: A revisit using Climate Forecast System Reanalysis data. Int. J. Climatol. 2016, 36, 2173–2188. [Google Scholar] [CrossRef]
- Lu, X.; McElroy, M.B.; Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl. Acad. Sci. USA 2009, 106, 10933–10938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, D.J.; Brayshaw, D.J.; Methven, J.; Coker, P.J.; Lenaghan, D. Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain. Renew. Energy 2015, 75, 767–778. [Google Scholar] [CrossRef] [Green Version]
- Wind Power Statistics. 2020. Available online: https://www.thewindpower.net/country_zones_en_9_china.php.Last (accessed on 30 April 2020).
- Chen, L.; Pryor, S.C.; Li, D. Assessing the performance of Intergovernmental Panel on Climate Change AR5 climate models in simulating and projecting wind speeds over China. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Niu, F.; Li, Z.; Li, C.; Lee, K.H.; Wang, M. Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Lin, C.; Yang, K.; Qin, J.; Fu, R. Observed coherent trends of surface and upper-air wind speed over China since 1960. J. Clim. 2013, 26, 2891–2903. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Luo, Y.; Zhao, Z. Maximum wind speed changes over China. Acta Meteorol. Sin. 2013, 27, 63–74. [Google Scholar] [CrossRef]
- Clark, R.T.; Philip, E.; Hazel, E.B.T.; Adam, A.S. Skilful seasonal predictions for the European energy industry. Environ. Res. Lett. 2017, 12, 024002. [Google Scholar] [CrossRef]
- Gao, M.; Ding, Y.; Song, S.; Lu, X.; Chen, X.; McElroy, M.B. Secular decrease of wind power potential in India associated with warming in the Indian Ocean. Sci. Adv. 2018, 4, 5256. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew. Energy 2017, 101, 29–40. [Google Scholar] [CrossRef]
- Breslow, P.B.; Sailor, D.J. Vulnerability of wind power resources to climate change in the continental United States. Renew. Energy 2002, 27, 585–598. [Google Scholar] [CrossRef]
- Rahim, M.; Yoshino, J.; Doi, Y.; Yasuda, T. Effects of global warming on the average wind speed field in Central Japan. J. Sustain. Energy Environ. 2012, 3, 165–171. [Google Scholar]
- Tobin, I.; Vautard, R.; Balog, I.; Bréon, F.M.; Jerez, S.; Ruti, P.M.; Yiou, P. Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Clim. Chang. 2015, 128, 99–112. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Clausen, N.E.; Drews, M.; MacKellar, N.; Kjellström, E. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios. Clim. Dyn. 2012, 38, 189–208. [Google Scholar] [CrossRef]
- Hueging, H.; Haas, R.; Born, K.; Jacob, D.; Pinto, J.G. Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteorol. Climatol. 2013, 52, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.W.; Li, X.Y.; Luo, X.; Chen, X.; Qian, Y.H.; Zhang, Z.H.; Gao, Z.S.; Du, Z.B.; Gao, Y.B.; Chen, Y.G. Projection of Future Global Offshore Wind Energy Resources using CMIP Data. Atmos. Ocean 2019, 57, 134–148. [Google Scholar] [CrossRef]
- De Winter, R.C.; Sterl, A.; Ruessink, B.G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 2013, 118, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Ren, D. Effects of global warming on wind energy availability. J. Renew. Sustain. Energy 2010, 2, 052301. [Google Scholar] [CrossRef] [Green Version]
- Zha, J.; Wu, J.; Zhao, D.; Fan, W. Future projections of the near-surface wind speed over eastern China based on CMIP5 datasets. Clim. Dyn. 2020, 54, 2361–2385. [Google Scholar] [CrossRef]
- Peters, G.P.; Andrew, R.M.; Boden, T.; Canadell, J.G.; Ciais, P.; Le Quéré, C.; Marland, G.; Raupach, M.R.; Wilson, C. The challenge to keep global warming below 2 C. Nat. Clim. Chang. 2012, 3, 4. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Bechtold, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Available online: https://portal.enes.org/data/enes-model-data/cmip5 (accessed on 30 April 2020).
- Available online: https://pcmdi.llnl.gov/mips/cmip5/data-portal.html (accessed on 30 April 2020).
- Jones, P.W. First-and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Weather Rev. 1999, 127, 2204–2210. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Zhou, W. Projections of West African summer monsoon rainfall extremes from two CORDEX models. Clim. Dyn. 2019, 52, 2017–2028. [Google Scholar] [CrossRef]
- Abolude, A.T.; Zhou, W. A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties. Energies 2019, 12, 83. [Google Scholar] [CrossRef] [Green Version]
- Frank, C.W.; Pospichal, B.; Wahl, S.; Keller, J.D.; Hense, A.; Crewell, S. The added value of high resolution regional reanalyses for wind power applications. Renew. Energy 2020, 148, 1094–1109. [Google Scholar] [CrossRef]
- Kikumoto, R.H.; Ooka, H.; Sugawara, J. Lim Observational study of power law approximation of wind profiles within an urban boundary layer for various wind conditions. J. Wind Eng. Ind. Aerodyn. 2017, 164, 13–21. [Google Scholar] [CrossRef]
- Albani, A.; Ibrahim, M.Z. Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia. Energies 2017, 10, 307. [Google Scholar] [CrossRef] [Green Version]
- Emeksiz, C.; Cetin, T. In case study: Investigation of tower shadow disturbance and wind shear variations effects on energy production, wind speed and power characteristics. Sustain. Energy Technol. Assess. 2019, 35, 148–159. [Google Scholar] [CrossRef]
- Liao, S.; Liu, K.; Li, Z. Estimation of grid based spatial distribution of wind energy resource in China. Geo Inf. Sci. 2008, 10, 551–556. [Google Scholar]
- Wang, Z.; Ding, Y.; He, J.; Yu, J. An updating analysis of the climate change in China in recent 50 years. Acta Meteorol. Sin. 2004, 62, 228–236. (In Chinese) [Google Scholar]
- Gastineau, G.; Soden, B.J. Model projected changes of extreme wind events in response to global warming. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
Model Name | Country/Affiliation | Horizontal Resolution (°lat × °lon) |
---|---|---|
BCC_CSM 1.1(m) | Beijing Climate Center, China | 2.79 × 2.81 |
BNU-ESM | College of Global Change and Earth System Science, Beijing Normal University China | 2.79 × 2.81 |
CanESM2 | Canadian Centre for Climate Modelling and Analysis, Canada | 2.79 × 2.81 |
CMCC-CMS | Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy | 3.71 × 3.75 |
CNRM-CM5 | Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique, France | 1.40 × 1.41 |
IPSL-CM5A-LR | Institut Pierre-Simon Laplace, France | 1.89 × 3.75 |
MIROC-ESM-CHEM | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan | 2.79 × 2.81 |
MPI-ESM-MR | Max Planck Institute for Meteorology, Germany | 1.87 × 1.88 |
MPI-ESM-LR | Max Planck Institute for Meteorology, Germany | 1.87 × 1.88 |
MRI-CGCM3 | Meteorological Research Institute, Japan | 1.12 × 1.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abolude, A.T.; Zhou, W.; Akinsanola, A.A. Evaluation and Projections of Wind Power Resources over China for the Energy Industry Using CMIP5 Models. Energies 2020, 13, 2417. https://doi.org/10.3390/en13102417
Abolude AT, Zhou W, Akinsanola AA. Evaluation and Projections of Wind Power Resources over China for the Energy Industry Using CMIP5 Models. Energies. 2020; 13(10):2417. https://doi.org/10.3390/en13102417
Chicago/Turabian StyleAbolude, Akintayo T., Wen Zhou, and Akintomide Afolayan Akinsanola. 2020. "Evaluation and Projections of Wind Power Resources over China for the Energy Industry Using CMIP5 Models" Energies 13, no. 10: 2417. https://doi.org/10.3390/en13102417
APA StyleAbolude, A. T., Zhou, W., & Akinsanola, A. A. (2020). Evaluation and Projections of Wind Power Resources over China for the Energy Industry Using CMIP5 Models. Energies, 13(10), 2417. https://doi.org/10.3390/en13102417