Anti-Reflective Coating Materials: A Holistic Review from PV Perspective
Abstract
:1. Introduction
- Only commonly used ARC materials are reviewed.
- Analysis of the stability, durability, and environmental aspects of ARCs.
- AR coating’s influence on the performance of the solar cells.
- AR coating’s compatibility with solar cells and ageing effect.
- Impact of multifunctional coatings, Carbon Nanotube (CNT) coatings on solar cells.
- Environmental influence on the performance of bio-inspired coatings.
- Basic concepts of antireflection and strategies to achieve the same.
- Antireflective structures and surface analysis.
- Insight about state-of-art fabrication techniques used for various ARCs.
- A detailed review of antireflection coatings on the basis of various materials used covering the structure, fabrication methods, performance, features, and research potential.
- Coatings on PV cells and their influence on PCE.
- Novel light trapping techniques dealing with plasmonics, spectral modification, and innovative light-trapping structures approaching the Yablonovitch limit
- The ageing effect, the current status of AR technologies, best prospective coatings, challenges, and prospects.
2. Framework
3. Theory of Antireflection
3.1. Methodology to Achieve Antireflection
3.2. Requirements for Perfect Antireflection Coatings
4. Antireflection Coating Structures and Surfaces
4.1. Antireflection Coating Structures
4.1.1. Single-Layer Coating (SLARC)
4.1.2. Double Layer Coating (DLARC)
4.1.3. Multi-Layer Coating
4.1.4. Gradient Refractive Index (GRIN) Coating
4.2. Antireflection Coating Surfaces
4.2.1. Porous Layers
4.2.2. Biomimetic Photonic Nanostructures
4.2.3. Textured Surfaces
5. Fabrication Techniques for Antireflection Coatings
5.1. Conventional Techniques: Bottom-Up Approach
5.1.1. Sol-Gel Method
5.1.2. Thermal Evaporation
5.1.3. Sputtering
5.1.4. Glancing Angle Deposition (GLAD)
5.1.5. Chemical Vapor Deposition (CVD)
5.2. Conventional Techniques—Top-Down Approach
Etching
5.3. Unconventional Fabrication Techniques
5.3.1. Lithography
5.3.2. Micro Replication Technique
5.3.3. Miscellaneous Techniques
6. Antireflection Coating Materials
6.1. Silicon-Based
6.1.1. Silicon and Silicon Dioxide (Silica)
6.1.2. Silicon-Based Nanomaterials
6.2. Metal-Based
6.2.1. Metal
6.2.2. Metal Oxides
6.2.3. Metal Fluorides
6.3. Polymer-Based
6.3.1. Polystyrene (PS)
6.3.2. Poly (Methyl Methacrylate) (PMMA)
6.3.3. Poly (Dimethylsiloxane) (PDMS)
6.3.4. Poly (Ethylene Terephthalate) (PET)
6.3.5. Other Polymers
6.4. Composites
6.5. Other Advanced Materials
7. Antireflection Coatings on PV Cell
7.1. Monocrystalline Silicon Solar Cells
7.2. Multi-Crystalline Silicon Solar Cells
7.3. Thin-Film Solar Cells
7.4. Multi-Junction Solar Cells
7.5. Gallium Arsenide Based Solar Cells (GaAs)
7.6. Copper Indium Gallium Selenide Solar Cells (CIGS)
7.7. Dye-Sensitized Solar Cell (DSSC)
7.8. Organic Solar Cells (OSCs)
7.9. Perovskite Solar Cells (PSCs)
7.10. Heterojunction and Hybrid Solar Cells
7.11. Other Types of Solar Cell
8. Advanced Light-Trapping Techniques
8.1. Plasmonic Structures
8.2. Spectral Modification
8.3. Potential Light Trapping Structures
9. Effect of Ageing and Environmental Exposure in ARCs and PV Devices
10. Discussion
11. Challenges, Prospects, and Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
ARC | Antireflection coatings | SiO2 | Silica or Silicon dioxide |
PV | Photovoltaics | SiNWs | Silicon Nanowires |
PCE | Power conversion efficiency | PSi | Porous Silicon |
GRIN | Gradient refractive index | TiO2 | Titanium Oxide |
SWS | Subwavelength structure | ZnO | Zinc oxide |
RI | Refractive index | MgF2 | Magnesium fluoride |
ns | Index of refraction of the substrate | ITO | Indium Tin oxide |
λ | Wavelength of the light | FTO | Fluorine doped tin oxide |
AGC | Antiglare coatings | Ta2O5 | Tantalum Pentoxide |
SLARC | Single layer antireflection coating | PS | Polystyrene |
DLARC | Double layer antireflection coating | PMMA | Poly (methyl methacrylate) |
QLARC | Quadruple-layer ARC | PDMS | Polydimethylsiloxane |
CBD | Chemical bath deposition | PET | Polyethylene terephthalate |
CVD | Chemical vapor deposition | CNT | Carbon nano-tubes |
PECVD | Plasma-enhanced chemical vapor deposition | SWCNT | Single-walled carbon nanotube |
RF-PECVD | Radio frequency Plasma-enhanced chemical vapor deposition | MWCNT | Multi-walled carbon nanotube |
APCVD | Atmospheric pressure chemical vapor deposition | c-Si | Crystalline Silicon |
NIL | Nanoimprint Lithography | CPV | Concentrated Photovoltaics |
FIBL | Focused ion-beam Lithography | DSSC | dye-sensitized solar cells |
RIE | Reactive ion etching | GaAs | Gallium Arsenide |
LPD | Liquid phase deposition | CIGS | Copper indium gallium selenide |
WCA | Water contact angle | PSC | Perovskite solar cells |
References
- Dong, C.; Lu, H.; Yu, K.; Shen, K.-S.; Zhang, J.; Xia, S.-Q.; Xiong, Z.-G.; Liu, X.-Y.; Zhang, B.; Wang, Z.-J.; et al. Low emissivity double sides antireflection coatings for silicon wafer at infrared region. J. Alloy Compd. 2018, 742, 729–735. [Google Scholar] [CrossRef]
- Leon, J.J.D.; Hiszpanski, A.M.; Bond, T.C.; Kuntz, J.D. Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures. Adv. Opt. Mater. 2017, 5, 1700080. [Google Scholar] [CrossRef]
- Leem, J.W.; Yu, J.S. Artificial inverted compound eye structured polymer films with light-harvesting and self-cleaning functions for encapsulated III–V solar cell applications. RSC Adv. 2015, 5, 60804–60813. [Google Scholar] [CrossRef] [Green Version]
- Raut, H.K.; Dinachali, S.S.; He, A.Y.; Ganesh, V.A.; Saifullah, M.S.M.; Law, J.; Ramakrishna, S. Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties. Energy Environ. Sci. 2013, 6, 1929. [Google Scholar] [CrossRef]
- Kim, S.; Jung, U.T.; Kim, S.-K.; Lee, J.-H.; Choi, H.S.; Kim, C.-S.; Jeong, M.Y. Nanostructured Multifunctional Surface with Antireflective and Antimicrobial Characteristics. ACS Appl. Mater. Interfaces 2015, 7, 326–331. [Google Scholar] [CrossRef]
- Peng, Y.-J.; Huang, H.-X.; Xie, H. Rapid fabrication of antireflective pyramid structure on polystyrene film used as protective layer of solar cell. Sol. Energy Mater. Sol. Cells 2017, 171, 98–105. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, D.; Lei, T.; Zhao, B.; Song, K.; Hu, W.; Wang, J.-Y.; Pei, J.; Wang, Y. Integration of antireflection and light diffraction in nature: A strategy for light trapping. J. Mater. Chem. A 2013, 1, 10607. [Google Scholar] [CrossRef]
- Kuo, S.-Y.; Hsieh, M.-Y.; Han, H.-V.; Lai, F.-I.; Chuang, T.-Y.; Yu, P.; Lin, C.-C.; Kuo, H.-C. Flexible-textured polydimethylsiloxane antireflection structure for enhancing omnidirectional photovoltaic performance of Cu(In,Ga)Se2 solar cells. Opt. Express 2014, 22, 2860. [Google Scholar] [CrossRef]
- Bernhard, C.G.; Miller, W.H. A Corneal Nipple Pattern in Insect Compound Eyes. Acta Physiol. Scand. 1962, 56, 385–386. [Google Scholar] [CrossRef]
- Stavenga, D.G.; Foletti, S.; Palasantzas, G.; Arikawa, K. Light on the moth-eye corneal nipple array of butterflies. Proc. R. Soc. B Biol. Sci. 2006, 273, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R.H.; Gomard, G.; Holscher, H. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nat. Commun. 2015, 6, 6909. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Motoyama, M.; Kosaku, A.; Miyamoto, K. Antireflective Nanoprotuberance Array in the Transparent Wing of a Hawkmoth, Cephonodes hylas. Zool. Sci. 1997, 14, 737–741. [Google Scholar] [CrossRef]
- Morikawa, J.; Ryu, M.; Seniutinas, G.; Balcytis, A.; Maximova, K.; Wang, X.; Zamengo, M.; Ivanova, E.P.; Juodkazis, S. Nanostructured Antireflective and Thermoisolative Cicada Wings. Langmuir 2016, 32, 4698–4703. [Google Scholar] [CrossRef] [PubMed]
- Bagge, L.E.; Osborn, K.J.; Johnsen, S. Nanostructures and Monolayers of Spheres Reduce Surface Reflections in Hyperiid Amphipods. Curr. Biol. 2016, 26, 3071–3076. [Google Scholar] [CrossRef] [Green Version]
- Cronin, T.W. Camouflage: Being Invisible in the Open Ocean. Curr. Biol. 2016, 26, R1179–R1181. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; He, J.; Shang, W.; Deng, T.; Gu, J.; Su, H.; Liu, Q.; Zhang, W.; Zhang, D. Optical Functional Materials Inspired by Biology. Adv. Opt. Mater. 2015, 4, 195–224. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, W.; Su, H.; Fan, T.; Zhu, S.; Liu, Q.; Zhang, D. Morphology Genetic Materials Templated from Natural Species. Adv. Mater. 2014, 27, 464–478. [Google Scholar] [CrossRef]
- Leem, J.W.; Kim, S.; Lee, S.H.; Rogers, J.A.; Kim, E.; Yu, J.S. Efficiency Enhancement of Organic Solar Cells Using Hydrophobic Antireflective Inverted Moth-Eye Nanopatterned PDMS Films. Adv. Energy Mater. 2014, 4, 1301315. [Google Scholar] [CrossRef]
- Woo Leem, J.; Guan, X.-Y.; Choi, M.; Su Yu, J. Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications. Sol. Energy Mater. Sol. Cells 2015, 134, 45–53. [Google Scholar] [CrossRef]
- Ghymn, Y.H.; Jung, K.; Shin, M.; Ko, H. A luminescent down-shifting and moth-eyed anti-reflective film for highly efficient photovoltaic devices. Nanoscale 2015, 7, 18642–18650. [Google Scholar] [CrossRef]
- Oh, Y.-J.; Kim, J.-J.; Jeong, K.-H. Biologically Inspired Biophotonic Surfaces with Self-Antireflection. Small 2014, 10, 2558–2563. [Google Scholar] [CrossRef]
- Ji, S.; Park, J.; Lim, H. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: Flat antireflection and color tuning. Nanoscale 2012, 4, 4603. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, K.-Y.A.; Yang, T.-W.; Chen, Y.-C.; Yang, H. Self-assembled hemispherical nanowell arrays for superhydrophobic antireflection coatings. J. Colloid Interface Sci. 2017, 490, 174–180. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, I.; Ham, J.; Gim, S.; Lee, J.-L. Simple and scalable growth of AgCl nanorods by plasma-assisted strain relaxation on flexible polymer substrates. Nat. Commun. 2017, 8, 15650. [Google Scholar] [CrossRef] [Green Version]
- Lai, F.-I.; Yang, J.-F.; Liao, W.-X.; Kuo, S.-Y. Enhanced omnidirectional and weatherability of Cu2ZnSnSe4 solar cells with ZnO functional nanorod arrays. Sci. Rep. 2017, 7, 14927. [Google Scholar] [CrossRef] [Green Version]
- Buencuerpo, J.; Llorens, J.M.; Dotor, M.L.; Ripalda, J.M. Broadband antireflective nano-cones for tandem solar cells. Opt. Express 2015, 23, A322. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Yu, D.; Wang, Y.; Yin, M.; Wang, H.; Song, Y.; Zhu, X.; Chang, P.; Chen, X.; et al. Wafer-Scale Highly Ordered Anodic Aluminum Oxide by Soft Nanoimprinting Lithography for Optoelectronics Light Management. Adv. Mater. Interfaces 2017, 4, 1601116. [Google Scholar] [CrossRef]
- Benito, N.; Recio-Sanchez, G.; Escobar-Galindo, R.; Palacio, C. Formation of antireflection Zn/ZnO core–shell nano-pyramidal arrays by O2+ ion bombardment of Zn surfaces. Nanoscale 2017, 9, 14201–14207. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Chattopadhyay, S.; Jen, Y.-J.; Peng, C.-Y.; Liu, T.-A.; Hsu, Y.-K.; Pan, C.-L.; Lo, H.-C.; Hsu, C.-H.; Chang, Y.-H.; et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770–774. [Google Scholar] [CrossRef]
- IPA Adriatic Cross-Border Cooperation. Photovoltaic Systems; REA Kvarner Ltd.: Rijeka, Croatia, 2012. [Google Scholar]
- International Technology Roadmap for Photovoltaic (ITRPV), ITRPV 2019 Reports. Available online: https://itrpv.vdma.org/ (accessed on 17 March 2020).
- Klimm, E.; Lorenz, T.; Weiss, K. Can anti-soiling coating on solar glass influence the degree of performance loss over time of PV modules drastically? In Proceedings of the 28th European PV Solar Energy Conference, Paris, France, 30 September–4 October 2013. [Google Scholar]
- Midtdal, K.; Jelle, B.P. Self-cleaning glazing products: A state-of-the-art review and future research pathways. Sol. Energy Mater. Sol. Cells 2013, 109, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Sarkın, A.S.; Ekren, N.; Saglam, S. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 2020, 199, 63–73. [Google Scholar] [CrossRef]
- Mozumder, M.S.; Mourad, A.-H.I.; Pervez, H.; Surkatti, R. Recent developments in multifunctional coatings for solar panel applications: A review. Sol. Energy Mater. Sol. Cells 2019, 189, 75–102. [Google Scholar] [CrossRef]
- Han, Z.; Jiao, Z.; Niu, S.; Ren, L. Ascendant Bioinspired Antireflective Materials: Opportunities and Challenges Coexist. Prog. Mater. Sci. 2019, 103, 1–68. [Google Scholar] [CrossRef]
- Hanaei, H.; Assadi, M.K.; Saidur, R. Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review. Renew. Sustain. Energy Rev. 2016, 59, 620–635. [Google Scholar] [CrossRef]
- Han, Z.W.; Wang, Z.; Feng, X.M.; Li, B.; Mu, Z.Z.; Zhang, J.Q.; Niu, S.C.; Ren, L.Q. Antireflective surface inspired from biology: A review. Biosurface Biotribol. 2016, 2, 137–150. [Google Scholar] [CrossRef]
- Mehmood, U.; Al-Sulaiman, F.A.; Yilbas, B.S.; Salhi, B.; Ahmed, S.H.A.; Hossain, M.K. Superhydrophobic surfaces with antireflection properties for solar applications: A critical review. Sol. Energy Mater. Sol. Cells 2016, 157, 604–623. [Google Scholar] [CrossRef]
- Yao, L.; He, J. Recent progress in antireflection and self-cleaning technology—From surface engineering to functional surfaces. Prog. Mater. Sci. 2014, 61, 94–143. [Google Scholar] [CrossRef]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Huang, Y.F.; Jen, Y.J.; Ganguly, A.; Chen, K.H.; Chen, L.C. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep. 2010, 69, 1–35. [Google Scholar] [CrossRef]
- Rayleigh, L. On Reflection of Vibrations at the Confines of two Media between which the Transition is Gradual. Proc. Lond. Math. Soc. 1879, 1, 51–56. [Google Scholar] [CrossRef]
- Fink, Y. A Dielectric Omnidirectional Reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [Green Version]
- Dobrowolski, J.A.; Piotrowski, S.H.C. Refractive index as a variable in the numerical design of optical thin film systems. Appl. Opt. 1982, 21, 1502. [Google Scholar] [CrossRef]
- Cox, J.T.; Hass, G. Antireflection coatings for optical and infrared materials. In Physics of Thin Films; Academic Press: New York, NY, USA, 1968; Volume 2, p. 239. [Google Scholar]
- San Vicente, G.; Morales, A.; German, N.; Suarez, S.; Sanchez, B. SiO2/TiO2 Antireflective Coatings with Photocatalytic Properties Prepared by Sol–Gel for Solar Glass Covers. J. Sol. Energy Eng. 2012, 134, 041011. [Google Scholar] [CrossRef]
- Bouhafs, D. Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells. Sol. Energy Mater. Sol. Cells 1998, 52, 79–93. [Google Scholar] [CrossRef]
- Jacobsson, R. Progress in Optics; Wolf, E., Ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1966; Volume 5, p. 247. [Google Scholar]
- Sheldon, B.; Haggerty, J.S.; Emslie, A.G. Exact computation of the reflectance of a surface layer of arbitrary refractive-index profile and an approximate solution of the inverse problem. J. Opt. Soc. Am. 1982, 72, 1049. [Google Scholar] [CrossRef]
- Southwell, W.H. Gradient-index antireflection coatings. Opt. Lett. 1983, 8, 584. [Google Scholar] [CrossRef]
- Spiller, E.; Haller, I.; Feder, R.; Baglin, J.E.E.; Hammer, W.N. Graded-index AR surfaces produced by ion implantation on plastic materials. Appl. Opt. 1980, 19, 3022. [Google Scholar] [CrossRef]
- Yeh, P.; Sari, S. Optical properties of stratified media with exponentially graded refractive index. Appl. Opt. 1983, 22, 4142. [Google Scholar] [CrossRef]
- Verly, P.G.; Dobrowolski, J.A.; Willey, R.R. Fourier-transform method for the design of wideband antireflection coatings. Appl. Opt. 1992, 31, 3836. [Google Scholar] [CrossRef] [Green Version]
- Grann, E.B.; Moharam, M.G.; Pommet, D.A. Optimal design for antireflective tapered two-dimensional subwavelength grating structures. J. Opt. Soc. Am. A 1995, 12, 333. [Google Scholar] [CrossRef]
- Zhou, W.; Tao, M.; Chen, L.; Yang, H. Microstructured surface design for omnidirectional antireflection coatings on solar cells. J. Appl. Phys. 2007, 102, 103105. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.-Q.; Schubert, M.F.; Kim, J.K.; Schubert, E.F.; Chen, M.; Lin, S.-Y.; Liu, W.; Smart, J.A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 2007, 1, 176–179. [Google Scholar] [CrossRef]
- Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholz, J.; Blasi, B.; Heinzel, A.; Sporn, D.; Doll, W.; Wittwer, V. Subwavelength-structured antireflective surfaces on glass. Thin Solid Film 1999, 351, 73–78. [Google Scholar] [CrossRef]
- Bernhard, C.G. Structural and functional adaptation in a visual system. Endeavour 1967, 26, 79–84. [Google Scholar]
- Clapham, P.B.; Hutley, M.C. Reduction of Lens Reflexion by the “Moth Eye” Principle. Nature 1973, 244, 281–282. [Google Scholar] [CrossRef]
- Nicoll, F.H. A New Chemical Method of Reducing the Reflectance of Glass. RCA Rev. 1942, 6, 287. [Google Scholar]
- Nicoll, F.H.; Williams, F.E. Properties of Low Reflection Films Produced by the Action of Hydrofluoric Acid Vapor. J. Opt. Soc. Am. 1943, 33, 434. [Google Scholar] [CrossRef]
- Monaco, S.F. Reflectance of an Inhomogeneous Thin Film. J. Opt. Soc. Am. 1961, 51, 280. [Google Scholar] [CrossRef]
- Minot, M.J. The angluar reflectance of single-layer gradient refractive-index films. J. Opt. Soc. Am. 1977, 67, 1046. [Google Scholar] [CrossRef]
- Walheim, S.; Walheim, S.; Schaffer, E.; Mlynek, J.; Steiner, U. Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings. Science 1999, 283, 520–522. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.R.; Hegedus, Z.; Watts, R.A. Solar-absorber antireflector on the eye of an Eocene fly (45 Ma). Proc. R. Soc. B Biol. Sci. 1998, 265, 811–815. [Google Scholar] [CrossRef] [Green Version]
- Craighead, H.G.; Howard, R.E.; Sweeney, J.E.; Tennant, D.M. Textured surfaces: Optical storage and other applications. J. Vac. Sci. Technol. 1982, 20, 316–319. [Google Scholar] [CrossRef]
- Gittleman, J.I.; Sichel, E.K.; Lehmann, H.W.; Widmer, R. Textured silicon: A selective absorber for solar thermal conversion. Appl. Phys. Lett. 1979, 35, 742–744. [Google Scholar] [CrossRef]
- Craighead, H.G.; Howard, R.E.; Tennant, D.M. Textured thin-film Si solar selective absorbers using reactive ion etching. Appl. Phys. Lett. 1980, 37, 653–655. [Google Scholar] [CrossRef]
- Craighead, H.G.; Howard, R.E.; Tennant, D.M. Selectively emissive refractory metal surfaces. Appl. Phys. Lett. 1981, 38, 74–76. [Google Scholar] [CrossRef]
- Horwitz, C.M. A new vacuum-etched high-transmittance (antireflection) film. Appl. Phys. Lett. 1980, 36, 727–729. [Google Scholar] [CrossRef]
- Deinega, A.; Valuev, I.; Potapkin, B.; Lozovik, Y. Minimizing light reflection from dielectric textured surfaces. J. Opt. Soc. Am. A 2011, 28, 770. [Google Scholar] [CrossRef] [Green Version]
- Sopori, B.L.; Pryor, R.A. Design of antireflection coatings for textured silicon solar cells. Sol. Cells 1983, 8, 249–261. [Google Scholar] [CrossRef]
- Rao, B.G.; Mukherjee, D.; Reddy, B.M. Chapter 1—Novel approaches for preparation of nanoparticles. In Nanostructures for Novel Therapy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–36. [Google Scholar] [CrossRef]
- Adachi, H.; Wasa, K. Thin Films and Nanomaterials. Handb. Sputtering Technol. 2012, 3–39. [Google Scholar]
- Levy, F. Film Growth and Epitaxy: Methods. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Zaier, A.; Meftah, A.; Jaber, A.Y.; Abdelaziz, A.A.; Aida, M.S. Annealing effects on the structural, electrical and optical properties of ZnO thin films prepared by thermal evaporation technique. J. King Saud Univ. Sci. 2015, 27, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yao, N.; Hu, X. Single material TiO2 double layers antireflection coating with photocatalytic property prepared by magnetron sputtering technique. Vacuum 2014, 108, 20–26. [Google Scholar] [CrossRef]
- Hawkeye, M.M.; Brett, M.J. Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2007, 25, 1317. [Google Scholar] [CrossRef]
- Kiema, G.K.; Colgan, M.J.; Brett, M.J. Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers. Sol. Energy Mater. Sol. Cells 2005, 85, 321–331. [Google Scholar] [CrossRef]
- Kennedy, S.R.; Brett, M.J. Porous broadband antireflection coating by glancing angle deposition. Appl. Opt. 2003, 42, 4573. [Google Scholar] [CrossRef]
- Martinu, L.; Poitras, D. Plasma deposition of optical films and coatings: A review. J. Vac. Sci. Technol. A 2000, 18, 2619–2645. [Google Scholar] [CrossRef]
- Remache, L.; Fourmond, E.; Mahdjoub, A.; Dupuis, J.; Lemiti, M. Design of porous silicon/PECVD SiOx antireflection coatings for silicon solar cells. Mater. Sci. Eng. B 2011, 176, 45–48. [Google Scholar] [CrossRef]
- Neuman, G.A. Anti-reflective coatings by APCVD using graded index layers. J. Non Cryst. Solids 1997, 218, 92–99. [Google Scholar] [CrossRef]
- Dorey, R. Chapter 5—Patterning: How to go from a coating to a shape. In Ceramic Thick Films for MEMS and Microdevices; Elsevier: Amsterdam, The Netherlands, 2012; pp. 113–143. [Google Scholar]
- Koynov, S.; Brandt, M.S.; Stutzmann, M. Black nonreflecting silicon surfaces for solar cells. Appl. Phys. Lett. 2006, 88, 203107. [Google Scholar] [CrossRef]
- Papet, P.; Nichiporuk, O.; Kaminski, A.; Rozier, Y.; Kraiem, J.; Lelievre, J.-F.; Chaumartin, A.; Fave, A.; Lemiti, M. Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol. Energy Mater. Sol. Cells 2006, 90, 2319–2328. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, A.; Green, M.A. 2nd World Conference on Photovoltaic Solar Energy Conversion. In Proceedings of the International Conference, Vienna, Austria, 6–10 July 1998. [Google Scholar]
- Shultz, O.; Emanuel, G.; Glunz, S.W.; Willeke, G.P. Texturing of multicrystalline silicon with acidic wet chemical etching and plasma etching. In Proceedings of the 3rd World Conference on Photovoltaic Solar Energy Conversion, Osaka, Japan, 12–18 May 2003; pp. 1360–1363. [Google Scholar]
- Acikgoz, C.; Hempenius, M.A.; Huskens, J.; Vancso, G.J. Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur. Polym. J. 2011, 47, 2033–2052. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Hu, M.; Guo, Q.; Cai, X.; Xu, X.; Yang, J. Solvent-transfer assisted photolithography of high-density and high-aspect-ratio superhydrophobic micropillar arrays. J. Micromech. Microeng. 2015, 25, 025005. [Google Scholar] [CrossRef]
- Kooy, N.; Mohamed, K.; Pin, L.; Guan, O. A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 2014, 9, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, K.-S.; Shin, J.-H.; Yoon, W.-Y.; Lee, H. Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography. Sol. Energy Mater. Sol. Cells 2011, 95, 288–291. [Google Scholar] [CrossRef]
- Lim, J.H.; Leem, J.W.; Yu, J.S. Solar power generation enhancement of dye-sensitized solar cells using hydrophobic and antireflective polymers with nanoholes. RSC Adv. 2015, 5, 61284–61289. [Google Scholar] [CrossRef] [Green Version]
- Ibn-Elhaj, M.; Schadt, M. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies. Nature 2001, 410, 796–799. [Google Scholar] [CrossRef]
- Maier, T.; Bach, D.; Mullner, P.; Hainberger, R.; Bruckl, H. Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching. Opt. Express 2013, 21, 20254. [Google Scholar] [CrossRef]
- Ji, S.; Song, K.; Nguyen, T.B.; Kim, N.; Lim, H. Optimal Moth Eye Nanostructure Array on Transparent Glass Towards Broadband Antireflection. Acs Appl. Mater. Interfaces 2013, 5, 10731–10737. [Google Scholar] [CrossRef]
- Park, K.-C.; Choi, H.J.; Chang, C.-H.; Cohen, R.E.; McKinley, G.H.; Barbastathis, G. Nanotextured Silica Surfaces with Robust Superhydrophobicity and Omnidirectional Broadband Supertransmissivity. ACS Nano 2012, 6, 3789–3799. [Google Scholar] [CrossRef]
- Mahadik, D.B.; Lakshmi, R.V.; Barshilia, H.C. High performance single layer nano-porous antireflection coatings on glass by sol–gel process for solar energy applications. Sol. Energy Mater. Sol. Cells 2015, 140, 61–68. [Google Scholar] [CrossRef]
- Nagel, H.; Metz, A.; Hezel, R. Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition – a novel antireflection coating technology for photovoltaic modules. Sol. Energy Mater. Sol. Cells 2001, 65, 71–77. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, A.; Altermatt, P.; Green, M.A. Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl. Phys. Lett. 1995, 66, 3636–3638. [Google Scholar] [CrossRef]
- Strehlke, S.; Bastide, S.; Guillet, J.; Levy-Clement, C. Design of porous silicon antireflection coatings for silicon solar cells. Mater. Sci. Eng. B 2000, 69–70, 81–86. [Google Scholar] [CrossRef]
- Lipinski, M.; Panek, P.; Bełtowska, E.; Czternastek, H. Reduction of surface reflectivity by using double porous silicon layers. Mater. Sci. Eng. B 2003, 101, 297–299. [Google Scholar] [CrossRef]
- Wang, N.; Fang, J.; Zhang, X.; Wang, G.; Wang, L.; Liu, C.; Zhao, H.; Chen, Z.; Chen, X.L.; Sun, J.; et al. Combined SiO 2 antireflective coatings with MOCVD-ZnO:B to improve light absorption in thin-film solar cells. Sol. Energy Mater. Sol. Cells 2014, 130, 420–425. [Google Scholar] [CrossRef]
- Cao, H.; Bai, Y.; Qiao, L. Antireflection effect of SiO2 thin film on the pyramidal textured surface of monocrystalline silicon. Opt. Int. J. Light Electron Opt. 2015, 126, 2643–2645. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Liu, Y.; Tang, M.Y.; Wang, J.H.; Su, X.P. Super-durable closed-surface antireflection thin film by silica nanocomposites. Sol. Energy Mater. Sol. Cells 2017, 170, 143–148. [Google Scholar] [CrossRef]
- Agustin-Saenz, C.; Sanchez-Garcia, J.A.; Machado, M.; Brizuela, M.; Zubillaga, O.; Tercjak, A. Broadband antireflective coating stack based on mesoporous silica by acid-catalyzed sol-gel method for concentrated photovoltaic application. Sol. Energy Mater. Sol. Cells 2018, 186, 154–164. [Google Scholar] [CrossRef]
- Liu, H.-C.; Wang, G.-J. Fabrication of high anti-reflection nanowires on silicon using two-stage metal-assisted etching. J. Renew. Sustain. Energy 2013, 5, 053115. [Google Scholar] [CrossRef]
- Li, X. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 2012, 16, 71–81. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Guo, Z.; Jee, S.-W.; Um, H.-D.; Park, K.-T.; Hyun, M.S.; Yang, J.M.; Lee, J.-H. A waferscale Si wire solar cell using radial and bulk p–n junctions. Nanotechnology 2010, 21, 445303. [Google Scholar] [CrossRef]
- Li, S.; Ma, W.; Chen, X.; Xie, K.; Li, Y.; He, X.; Yang, X.; Lei, Y. Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl. Surf. Sci. 2016, 369, 232–240. [Google Scholar] [CrossRef]
- Nielsen, K.H.; Orzol, D.K.; Koynov, S.; Carney, S.; Hultstein, E.; Wondraczek, L. Large area, low cost anti-reflective coating for solar glasses. Sol. Energy Mater. Sol. Cells 2014, 128, 283–288. [Google Scholar] [CrossRef]
- Van de Groep, J.; Spinelli, P.; Polman, A. Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating. Nano Lett. 2015, 15, 4223–4228. [Google Scholar] [CrossRef] [PubMed]
- Sobahan, K.M.A.; Park, Y.J.; Kim, J.J.; Hwangbo, C.K. Nanostructured porous SiO2 films for antireflection coatings. Opt. Commun. 2011, 284, 873–876. [Google Scholar] [CrossRef]
- Jia, G.; Ji, Z.; Wang, H.; Chen, R. Preparation and properties of five-layer graded-refractive-index antireflection coating nanostructured by solid and hollow silica particles. Thin Solid Film 2017, 642, 174–181. [Google Scholar] [CrossRef]
- Zhi, J.; Zhang, L.-Z. Durable superhydrophobic surface with highly antireflective and self-cleaning properties for the glass covers of solar cells. Appl. Surf. Sci. 2018, 454, 239–248. [Google Scholar] [CrossRef]
- Chi, F.; Liu, D.; Wu, H.; Lei, J. Mechanically robust and self-cleaning antireflection coatings from nanoscale binding of hydrophobic silica nanoparticles. Sol. Energy Mater. Sol. Cells 2019, 200, 109939. [Google Scholar] [CrossRef]
- Liang, Z.; Li, W.; Dong, B.; Sun, Y.; Tang, H.; Zhao, L.; Wang, S. Double-function SiO2-DMS coating with antireflection and superhydrophobic surface. Chem. Phys. Lett. 2019, 716, 211–214. [Google Scholar] [CrossRef]
- Luo, Q.; Deng, X.; Zhang, C.; Yu, M.; Zhou, X.; Wang, Z.; Chen, X.; Huang, S. Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings. Sol. Energy 2018, 169, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Han, S.; Li, A.; Wang, Y.; Shan, Y.; Huang, F. Novel-type nanostructured SiO2 antireflection coatings and their application in Cu(In,Ga)Se2 solar cells. Mater. Chem. Phys. 2015, 165, 97–102. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Z.; Li, F.; Liu, D.; Wang, P.; He, D. Broadband antireflection of silicon nanorod arrays prepared by plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 2011, 258, 1058–1061. [Google Scholar] [CrossRef]
- Duttagupta, S.; Ma, F.; Hoex, B.; Mueller, T.; Aberle, A.G. Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling. Energy Procedia 2012, 15, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.; Bhattacharya, S.; Saxena, A.K.; Reddy, S.R.; Bhogra, R.K. Performance enhancement of mc-Si solar cells due to synergetic effect of plasma texturization and SiNx:H AR coating. Sol. Energy Mater. Sol. Cells 2010, 94, 1329–1332. [Google Scholar] [CrossRef]
- Yoshioka, K.; Minami, Y.; Shudo, K.; Dao, T.D.; Nagao, T.; Kitajima, M.; Takeda, J.; Katayama, I. Terahertz-Field-Induced Nonlinear Electron Delocalization in Au Nanostructures. Nano Lett. 2015, 15, 1036–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Zuani, S.; Rommel, M.; Gompf, B.; Berrier, A.; Weis, J.; Dressel, M. Suppressed Percolation in Nearly Closed Gold Films. ACS Photonics 2016, 3, 1109–1115. [Google Scholar] [CrossRef]
- Fan, P.; Bai, B.; Jin, G.; Zhang, H.; Zhong, M. Patternable fabrication of hyper-hierarchical metal surface structures for ultrabroadband antireflection and self-cleaning. Appl. Surf. Sci. 2018, 457, 991–999. [Google Scholar] [CrossRef]
- Teperik, T.V.; García de Abajo, F.J.; Borisov, A.G.; Abdelsalam, M.; Bartlett, P.N.; Sugawara, Y.; Baumberg, J.J. Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2008, 2, 299–301. [Google Scholar] [CrossRef] [Green Version]
- Raza, S.; Stenger, N.; Pors, A.; Holmgaard, T.; Kadkhodazadeh, S.; Wagner, J.B.; Pedersen, K.; Wubs, M.; Bozhevolnyi, S.I.; Mortensen, N.A. Extremely confined gap surface-plasmon modes excited by electrons. Nat. Commun. 2014, 5, 4125. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Wu, Q.Y.S.; Teng, J.H. Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh. Laser Photonics Rev. 2014, 8, 941–945. [Google Scholar] [CrossRef]
- Xu, S.-T.; Hu, F.-T.; Chen, M.; Fan, F.; Chang, S.-J. Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric-Metal Grating. Ann. Der Phys. 2017, 529, 1700151. [Google Scholar] [CrossRef]
- Toma, M.; Loget, G.; Corn, R.M. Fabrication of Broadband Antireflective Plasmonic Gold Nanocone Arrays on Flexible Polymer Films. Nano Lett. 2013, 13, 6164–6169. [Google Scholar] [CrossRef] [PubMed]
- Kern, W.; Tracy, E. Titanium dioxide antireflection coating for silicon solar cells by spray deposition. RCA Rev. 1980, 41, 133–180. [Google Scholar]
- Shinde, P.; Sadale, S.; Patil, P.; Bhosale, P.; Bruger, A.; Neumann-spallart, M.; Bhosale, C. Properties of spray deposited titanium dioxide thin films and their application in photoelectrocatalysis. Sol. Energy Mater. Sol. Cells 2008, 92, 283–290. [Google Scholar] [CrossRef]
- Zallen, R.; Moret, M.P. The optical absorption edge of brookite TiO2. Solid State Commun. 2006, 137, 154–157. [Google Scholar] [CrossRef]
- Richards, B.S.; Cotter, J.E.; Honsberg, C.B.; Wenham, S.R. Novel uses of TiO2 in crystalline silicon solar cells. In Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, AK, USA, 15–22 September 2000; pp. 375–378. [Google Scholar]
- Pore, V.; Rahtu, A.; Leskela, M.; Ritala, M.; Sajavaara, T.; Keinonen, J. Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water. Chem. Vap. Depos. 2004, 10, 143–148. [Google Scholar] [CrossRef]
- Yamauchi, S.; Saiki, S.; Ishibashi, K.; Nakagawa, A.; Hatakeyama, S. Low Pressure Chemical Vapor Deposition of Nb and F Co-Doped TiO2 Layer. J. Cryst. Process Technol. 2014, 4, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Kafizas, A.; Noor, N.; Carmichael, P.; Scanlon, D.O.; Carmalt, C.J.; Parkin, I.P. Combinatorial Atmospheric Pressure Chemical Vapor Deposition of F:TiO2; the Relationship between Photocatalysis and Transparent Conducting Oxide Properties. Adv. Funct. Mater. 2013, 24, 1758–1771. [Google Scholar] [CrossRef]
- Dan, Y.; Seo, K.; Takei, K.; Meza, J.H.; Javey, A.; Crozier, K.B. Dramatic Reduction of Surface Recombination by in Situ Surface Passivation of Silicon Nanowires. Nano Lett. 2011, 11, 2527–2532. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulou, T.; Todorova, N.; Vaimakis, T.; Ladas, S.; Trapalis, C. Study of Fluorine-Doped TiO2 Sol-Gel Thin Coatings. J. Sol. Energy Eng. 2008, 130, 041007. [Google Scholar] [CrossRef]
- Leyland, N.S.; Podporska-Carroll, J.; Browne, J.; Hinder, S.J.; Quilty, B.; Pillai, S.C. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci. Rep. 2016, 6, 24770. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Haneda, H.; Hishita, S.; Ohashi, N.; Labhsetwar, N.K. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluor. Chem. 2005, 126, 69–77. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Y.-L.; Fan, R.-Q.; Li, L.; Wei, L.-G. Mechanism of performance enhancement via fluorine doped titanium dioxide nanoparticles in dye sensitized solar cells. J. Fluor. Chem. 2015, 176, 71–77. [Google Scholar] [CrossRef]
- Ren, G.; Gao, Y.; Liu, X.; Xing, A.; Liu, H.; Yin, J. Synthesis of high-activity F-doped TiO2 photocatalyst via a simple one-step hydrothermal process. Reaction Kinetics. Mech. Catal. 2010, 100, 487–497. [Google Scholar]
- Ho, W.; Yu, J.C.; Lee, S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun. 2006, 100, 1115. [Google Scholar] [CrossRef] [PubMed]
- Maki, H.; Okumura, Y.; Ikuta, H.; Mizuhata, M. Ionic Equilibria for Synthesis of TiO2 Thin Films by the Liquid-Phase Deposition. J. Phys. Chem. C 2014, 118, 11964–11974. [Google Scholar] [CrossRef]
- Hocine, D.; Belkaid, M.S.; Pasquinelli, M.; Escoubas, L.; Simon, J.J.; Riviere, G.A.; Moussi, A. Improved efficiency of multicrystalline silicon solar cells by TiO2 antireflection coatings derived by APCVD process. Mater. Sci. Semicond. Process. 2013, 16, 113–117. [Google Scholar] [CrossRef]
- Yu, J.; Chary, S.; Das, S.; Tamelier, J.; Pesika, N.S.; Turner, K.L.; Israelachvili, J.N. Gecko-Inspired Dry Adhesive for Robotic Applications. Adv. Funct. Mater. 2011, 21, 3010–3018. [Google Scholar] [CrossRef]
- Prabhu, S.; Cindrella, L.; Joong Kwon, O.; Mohanraju, K. Superhydrophilic and self-cleaning rGO-TiO2 composite coatings for indoor and outdoor photovoltaic applications. Sol. Energy Mater. Sol. Cells 2017, 169, 304–312. [Google Scholar] [CrossRef]
- Adak, D.; Ghosh, S.; Chakraborty, P.; Srivatsa, K.M.K.; Mondal, A.; Saha, H.; Mukherjee, R.; Bhattacharyya, R. Non lithographic block copolymer directed self-assembled and plasma treated self-cleaning transparent coating for photovoltaic modules and other solar energy devices. Sol. Energy Mater. Sol. Cells 2018, 188, 127–139. [Google Scholar] [CrossRef]
- Haider, A.J.; Najim, A.A.; Muhi, M.A.H. TiO2/Ni composite as antireflection coating for solar cell application. Opt. Commun. 2016, 370, 263–266. [Google Scholar] [CrossRef]
- Huang, J.-J.; Lin, C.-C.; Wuu, D.-S. Antireflection and passivation property of titanium oxide thin film on silicon nanowire by liquid phase deposition. Surf. Coat. Technol. 2017, 320, 252–258. [Google Scholar] [CrossRef]
- Visniakov, J.; Janulevicius, A.; Maneikis, A.; Matulaitiene, I.; Selskis, A.; Stanionyte, S.; Suchodolskis, A. Antireflection TiO 2 coatings on textured surface grown by HiPIMS. Thin Solid Film 2017, 628, 190–195. [Google Scholar] [CrossRef]
- Richards, B.S. Single-material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells 2003, 79, 369–390. [Google Scholar] [CrossRef]
- Kim, S.; Koh, J.H.; Yang, X.; Chi, W.S.; Park, C.; Leem, J.W.; Kim, B.; Seo, S.; Kim, Y.; Yu, J.S.; et al. Enhanced Device Efficiency of Bilayered Inverted Organic Solar Cells Based on Photocurable P3HTs with a Light-Harvesting ZnO Nanorod Array. Adv. Energy Mater. 2013, 4, 1301338. [Google Scholar] [CrossRef]
- Hsueh, H.-T.; Chen, Y.-H.; Lin, Y.-D.; Lai, K.-C.; Chen, J.-W.; Wu, C.-L. Integration of flower-like ZnO nanostructures with crystalline-Si interdigitated back contact photovoltaic cell as a self-powered humidity sensor. Appl. Phys. Lett. 2013, 103, 213109. [Google Scholar] [CrossRef]
- Lee, J.W.; Ye, B.U.; Kim, D.; Kim, J.K.; Heo, J.; Jeong, H.Y.; Kim, M.H.; Choi, W.J.; Baik, J.M. ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces. ACS Appl. Mater. Interfaces 2014, 6, 1375–1379. [Google Scholar] [CrossRef]
- Dalvand, R.; Mahmud, S.; Rouhi, J.; Raymond Ooi, C.H. Well-aligned ZnO nanoneedle arrays grown on polycarbonate substrates via electric field-assisted chemical method. Mater. Lett. 2015, 146, 65–68. [Google Scholar] [CrossRef]
- Leem, J.W.; Kim, S.; Park, C.; Kim, E.; Yu, J.S. Strong Photocurrent Enhancements in Plasmonic Organic Photovoltaics by Biomimetic Nanoarchitectures with Efficient Light Harvesting. ACS Appl. Mater. Interfaces 2015, 7, 6706–6715. [Google Scholar] [CrossRef]
- Dogar, S.; Khan, W.; Kim, S.-D. Ultraviolet photoresponse of ZnO nanostructured AlGaN/GaN HEMTs. Mater. Sci. Semicond. Process. 2016, 44, 71–77. [Google Scholar] [CrossRef]
- So, H.; Senesky, D.G. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors. Appl. Surf. Sci. 2016, 387, 280–284. [Google Scholar] [CrossRef]
- Agarwal, D.C.; Chauhan, R.S.; Avasthi, D.K.; Sulania, I.; Kabiraj, D.; Thakur, P.; Chae, K.H.; Chawla, A.; Chandra, R.; Ogale, S.B.; et al. VLS-like growth and characterizations of dense ZnO nanorods grown by e-beam process. J. Phys. D Appl. Phys. 2009, 42, 035310. [Google Scholar] [CrossRef]
- Poornajar, M.; Marashi, P.; Haghshenas Fatmehsari, D.; Kolahdouz Esfahani, M. Synthesis of ZnO nanorods via chemical bath deposition method: The effects of physicochemical factors. Ceram. Int. 2016, 42, 173–184. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Chen, M.; Yu, X.; Chang, Y.; Chen, A.; Zhu, H.; Tang, Z. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition. Phys. Lett. A 2016, 380, 3993–3997. [Google Scholar] [CrossRef]
- Yin, Y.T.; Que, W.X.; Kam, C.H. ZnO nanorods on ZnO seed layer derived by sol–gel process. J. Sol Gel Sci. Technol. 2009, 53, 605–612. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, J.; Zhai, H.; Yang, X.; Yang, L.; Liu, Y.; Lang, J.; Gao, M. Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method. J. Alloy Compd. 2010, 489, 51–55. [Google Scholar] [CrossRef]
- Nowak, R.-E.; Vehse, M.; Sergeev, O.; Voss, T.; Seyfried, M.; von Maydell, K.; Agert, C. ZnO Nanorods with Broadband Antireflective Properties for Improved Light Management in Silicon Thin-Film Solar Cells. Adv. Opt. Mater. 2013, 2, 94–99. [Google Scholar] [CrossRef]
- Chung, R.-J.; Lin, Z.-C.; Lin, C.-A.; Lai, K.-Y. Study of an antireflection surface constructed of controlled ZnO nanostructures. Thin Solid Film 2014, 570, 504–509. [Google Scholar] [CrossRef]
- Makableh, Y.F.; Vasan, R.; Sarker, J.C.; Nusir, A.I.; Seal, S.; Manasreh, M.O. Enhancement of GaAs solar cell performance by using a ZnO sol–gel anti-reflection coating. Sol. Energy Mater. Sol. Cells 2014, 123, 178–182. [Google Scholar] [CrossRef]
- Qu, Y.; Huang, X.; Li, Y.; Lin, G.; Guo, B.; Song, D.; Cheng, Q. Chemical bath deposition produced ZnO nanorod arrays as an antireflective layer in the polycrystalline Si solar cells. J. Alloy Compd. 2017, 698, 719–724. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, B.; He, G.; Yang, W.; He, Q.; Li, L. High efficiency enhancement of multi-crystalline silicon solar cells with syringe-shaped ZnO nanorod antireflection layers. Thin Solid Film 2018, 653, 151–157. [Google Scholar] [CrossRef]
- Fernandez, S.; Gandia, J.J. Texture optimization process of ZnO:Al thin films using NH4Cl aqueous solution for applications as antireflective coating in thin film solar cells. Thin Solid Film 2012, 520, 4698–4702. [Google Scholar] [CrossRef]
- Yun, J.-H.; Lee, E.; Park, H.-H.; Kim, D.-W.; Anderson, W.A.; Kim, J.; Litchinitser, N.M.; Zeng, J.; Yi, J.; Kumar, M.M.D.; et al. Incident light adjustable solar cell by periodic nanolens architecture. Sci. Rep. 2014, 4, 6879. [Google Scholar] [CrossRef] [Green Version]
- Ham, J.; Park, J.Y.; Dong, W.J.; Jung, G.H.; Yu, H.K.; Lee, J.-L. Antireflective indium-tin-oxide nanobranches for efficient organic solar cells. Appl. Phys. Lett. 2016, 108, 073903. [Google Scholar] [CrossRef]
- Tien, W.C.; Chu, A.K. Double-layer ITO antireflection electrodes fabricated at low temperature. Sol. Energy Mater. Sol. Cells 2012, 100, 258–262. [Google Scholar] [CrossRef]
- Rubio, F.; Denis, J.; Albella, J.M.; Martinez-Duart, J.M. Sputtered Ta2O5 antireflection coatings for silicon solar cells. Thin Solid Film 1982, 90, 405–408. [Google Scholar] [CrossRef]
- Rubio, F.; Dennis, J.; Albella, J.M.; Martinez-Duart, J.M. Reactive sputtered Ta2O5 antireflection coatings. Sol. Cells 1983, 8, 263–268. [Google Scholar] [CrossRef]
- Fujihara, S.; Tada, M.; Kimura, T. Controlling Factors for the Conversion of Trifluoroacetate Sols into Thin Metal Fluoride Coatings. J. Sol Gel Sci. Technol. 2000, 19, 311–314. [Google Scholar] [CrossRef]
- Bass, J.D.; Boissiere, C.; Nicole, L.; Grosso, D.; Sanchez, C. Thermally Induced Porosity in CSD MgF2-Based Optical Coatings: An Easy Method to Tune the Refractive Index. Chem. Mater. 2008, 20, 5550–5556. [Google Scholar] [CrossRef]
- Noack, J.; Emmerling, F.; Kirmse, H.; Kemnitz, E. Sols of nanosized magnesium fluoride: Formation and stabilisation of nanoparticles. J. Mater. Chem. 2011, 21, 15015. [Google Scholar] [CrossRef]
- Sevonkaev, I.; Matijevic, E. Formation of Magnesium Fluoride Particles of Different Morphologies. Langmuir 2009, 25, 10534–10539. [Google Scholar] [CrossRef] [PubMed]
- Nandiyanto, A.B.D.; Ogi, T.; Okuyama, K. Control of the Shell Structural Properties and Cavity Diameter of Hollow Magnesium Fluoride Particles. ACS Appl. Mater. Interfaces 2014, 6, 4418–4427. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, Y.; Qi, Y.; Guo, C.; Hu, C. Synthesis and characterization of MgF2 and KMgF3 nanorods. J. Solid State Chem. 2004, 177, 2205–2209. [Google Scholar] [CrossRef]
- Chandra Sekhar Reddy, K.; Karthik, D.; Bhanupriya, D.; Ganesh, K.; Ramakrishna, M.; Sakthivel, S. Broad band antireflective coatings using novel in-situ synthesis of hollow MgF2 nanoparticles. Sol. Energy Mater. Sol. Cells 2018, 176, 259–265. [Google Scholar] [CrossRef]
- Karthik, D.; Pendse, S.; Sakthivel, S.; Ramasamy, E.; Joshi, S.V. High performance broad band antireflective coatings using a facile synthesis of ink-bottle mesoporous MgF2 nanoparticles for solar applications. Sol. Energy Mater. Sol. Cells 2017, 159, 204–211. [Google Scholar] [CrossRef]
- Pendse, S.; Chandra Sekhar Reddy, K.; Narendra, C.; Murugan, K.; Sakthivel, S. Dual-functional broadband antireflective and hydrophobic films for solar and optical applications. Sol. Energy 2018, 163, 425–433. [Google Scholar] [CrossRef]
- Shin, B.-K.; Lee, T.-I.; Xiong, J.; Hwang, C.; Noh, G.; Cho, J.-H.; Myoung, J.-M. Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 2650–2654. [Google Scholar] [CrossRef]
- Scholtz, L.; Sutta, P.; Calta, P.; Novak, P.; Solanska, M.; Mullerova, J. Investigation of barium titanate thin films as simple antireflection coatings for solar cells. Appl. Surf. Sci. 2018, 461, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Huang, Z.-S.; Yang, H. Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates. ACS Appl. Mater. Interfaces 2015, 7, 25495–25505. [Google Scholar] [CrossRef]
- Kwon, Y.W.; Park, J.; Kim, T.; Kang, S.H.; Kim, H.; Shin, J.; Jeon, S.; Hong, S.W. Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures. ACS Nano 2016, 10, 4609–4617. [Google Scholar] [CrossRef]
- Dudem, B.; Heo, J.H.; Leem, J.W.; Yu, J.S.; Im, S.H. CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers. J. Mater. Chem. A 2016, 4, 7573–7579. [Google Scholar] [CrossRef]
- Choi, K.; Park, S.H.; Song, Y.M.; Lee, Y.T.; Hwangbo, C.K.; Yang, H.; Lee, H.S. Nano-tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film. Adv. Mater. 2010, 22, 3713–3718. [Google Scholar] [CrossRef] [PubMed]
- Leem, J.W.; Dudem, B.; Yu, J.S. Thermal-tolerant polymers with antireflective and hydrophobic grooved subwavelength grating surfaces for high-performance optics. RSC Adv. 2016, 6, 79755–79762. [Google Scholar] [CrossRef]
- Kumar, A.; Yerva, S.V.; Barshilia, H.C. Broadband and wide angle anti-reflective nanoporous surface on poly (ethylene terephthalate) substrate using a single step plasma etching for applications in flexible electronics. Sol. Energy Mater. Sol. Cells 2016, 155, 184–193. [Google Scholar] [CrossRef]
- Jun, J.; Lee, J.-H.; Choi, H.-J.; Moon, S.; Kim, I.-D.; Lee, H. Fabrication of optically-functionalized colorless polyimide patterns with high durability. Appl. Surf. Sci. 2017, 423, 881–886. [Google Scholar] [CrossRef]
- Xie, H.; Huang, H.-X.; Peng, Y.-J. Rapid fabrication of bio-inspired nanostructure with hydrophobicity and antireflectivity on polystyrene surface replicating from cicada wings. Nanoscale 2017, 9, 11951–11958. [Google Scholar] [CrossRef]
- Chou, Y.-Y.; Lee, K.-T.; Lee, Y.-C. Fabrication of hierarchical anti-reflective structures using polystyrene sphere lithography on an as-cut p-Si substrate. Appl. Surf. Sci. 2016, 377, 81–85. [Google Scholar] [CrossRef]
- Thiyagu, S.; Devi, B.P.; Pei, Z. Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res. 2011, 4, 1136–1143. [Google Scholar] [CrossRef]
- Zhang, Y.; Xuan, Y. Preparation of structured surfaces for full-spectrum photon management in photovoltaic-thermoelectric systems. Sol. Energy Mater. Sol. Cells 2017, 169, 47–55. [Google Scholar] [CrossRef]
- Ye, X.; Huang, J.; Zeng, Y.; Sun, L.-X.; Geng, F.; Liu, H.-J.; Wang, F.-R.; Jiang, X.-D.; Wu, W.-D.; Zheng, W.-G. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach. Nanomaterials 2017, 7, 291. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cai, B.; Zhu, Y. Fabrication of anti-reflective micro-structure at terahertz frequency by using Chinese acupuncture needles. Opt. Lett. 2015, 40, 2917. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Chang, W.-L.; Huang, C.K.; Sun, K.W. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. Opt. Express 2011, 19, 14411. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Diao, Z.; Dirks, J.-H.; Geiger, F.; Spatz, J. Enhanced Optical Transmittance by Reduced Reflectance of Curved Polymer Surfaces. Macromol. Mater. Eng. 2017, 302, 1700072. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Niu, S.; Zhang, Y.; Han, Z.; Ren, L. Integrated super-hydrophobic and antireflective PDMS bio-templated from nano-conical structures of cicada wings. RSC Adv. 2016, 6, 108974–108980. [Google Scholar] [CrossRef]
- Galeotti, F.; Trespidi, F.; Timo, G.; Pasini, M. Broadband and Crack-Free Antireflection Coatings by Self-Assembled Moth Eye Patterns. ACS Appl. Mater. Interfaces 2014, 6, 5827–5834. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xu, Z.; Yu, D.; Lu, L.; Yin, M.; Tavakoli, M.M.; Chen, X.; Hao, Y.; Fan, Z.; Cui, Y.; et al. Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency. ACS Appl. Mater. Interfaces 2016, 8, 10929–10936. [Google Scholar] [CrossRef]
- Dudem, B.; Ko, Y.H.; Leem, J.W.; Lee, S.H.; Yu, J.S. Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template. ACS Appl. Mater. Interfaces 2015, 7, 20520–20529. [Google Scholar] [CrossRef]
- Dudem, B.; Jung, J.W.; Yu, J.S. Improved light harvesting efficiency of semitransparent organic solar cells enabled by broadband/omnidirectional subwavelength antireflective architectures. J. Mater. Chem. A 2018, 6, 14769–14779. [Google Scholar] [CrossRef]
- Dudem, B.; Ko, Y.H.; Leem, J.W.; Lim, J.H.; Yu, J.S. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously. ACS Appl. Mater. Interfaces 2016, 8, 30165–30175. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Fang, C.; Li, Z.; Zhao, X.; Li, Y.; Ruan, X.; Dai, Y. Enhancement of silicon-wafer solar cell efficiency with low-cost wrinkle antireflection coating of polydimethylsiloxane. Sol. Energy Mater. Sol. Cells 2018, 181, 15–20. [Google Scholar] [CrossRef]
- Biswas, K.; Gangopadhyay, S.; Kim, H.-C.; Miller, R.D. Nanoporous organosilicate films as antireflection coatings. Thin Solid Film 2006, 514, 350–354. [Google Scholar] [CrossRef]
- Dai, M.; Wang, Y.; Pan, M.; Lin, S.; Rempel, G.L.; Pan, Q. Synthesis and characterization of nanostructured poly(methyl methacrylate) for antireflection coating. Appl. Surf. Sci. 2014, 289, 209–217. [Google Scholar] [CrossRef]
- Fang, C.; Yang, Z.; Zhang, J.; Zhuang, Y.; Liu, S.; He, X.; Zhang, Y. Biomimetic diodon-skin nanothorn polymer antireflection film for solar cell applications. Sol. Energy Mater. Sol. Cells 2020, 206, 110305. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Murakami, T.; Fujishima, A. Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Sol. Energy Mater. Sol. Cells 2008, 92, 1434–1438. [Google Scholar] [CrossRef]
- Lien, S.; Wuu, D.; Yeh, W.; Liu, J. Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol. Energy Mater. Sol. Cells 2006, 90, 2710–2719. [Google Scholar] [CrossRef]
- Fateh, R.; Dillert, R.; Bahnemann, D. Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate. Langmuir 2013, 29, 3730–3739. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Y.; Zhang, X.; Hu, T.; Ji, R.; Ding, B.; Jiang, B. Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Sol. Energy Mater. Sol. Cells 2013, 111, 160–164. [Google Scholar] [CrossRef]
- Miao, L.; Su, L.F.; Tanemura, S.; Fisher, C.A.J.; Zhao, L.L.; Liang, Q.; Xu, G. Cost-effective nanoporous SiO2–TiO2 coatings on glass substrates with antireflective and self-cleaning properties. Appl. Energy 2013, 112, 1198–1205. [Google Scholar] [CrossRef]
- Yao, L.; He, J.; Geng, Z.; Ren, T. Fabrication of mechanically robust, self-cleaning and optically high-performance hybrid thin films by SiO2&TiO2double-shelled hollow nanospheres. Nanoscale 2015, 7, 13125–13134. [Google Scholar]
- Lu, Z.; Chen, F.; He, M.; Song, M.; Ma, Z.; Shi, W.; Yan, Y.; Lan, J.; Li, F.; Xiao, P. Microwave synthesis of a novel magnetic imprinted TiO2 photocatalyst with excellent transparency for selective photodegradation of enrofloxacin hydrochloride residues solution. Chem. Eng. J. 2014, 249, 15–26. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, W.; Huo, P.; Luo, Y.; He, M.; Pan, J.; Li, C.; Yan, Y. Performance of a novel TiO2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste. Chem. Eng. J. 2013, 225, 34–42. [Google Scholar] [CrossRef]
- Tao, C.; Zou, X.; Du, K.; Zhou, G.; Yan, H.; Yuan, X.; Zhang, L. Fabrication of robust, self-cleaning, broadband TiO2 SiO2 double-layer antireflective coatings with closed-pore structure through a surface sol-gel process. J. Alloy Compd. 2018, 747, 43–49. [Google Scholar] [CrossRef]
- Mazur, M.; Wojcieszak, D.; Kaczmarek, D.; Domaradzki, J.; Song, S.; Gibson, D.; Placido, F.; Mazur, P.; Kalisz, M.; Poniedzialek, A. Functional photocatalytically active and scratch resistant antireflective coating based on TiO2 and SiO2. Appl. Surf. Sci. 2016, 380, 165–171. [Google Scholar] [CrossRef]
- Spinelli, P.; Hebbink, M.; de Waele, R.; Black, L.; Lenzmann, F.; Polman, A. Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays. Nano Lett. 2011, 11, 1760–1765. [Google Scholar] [CrossRef]
- Singh, Y.P.; Jain, A.; Kapoor, A. Localized Surface Plasmons Enhanced Light Transmission into c-Silicon Solar Cells. J. Sol. Energy 2013, 2013, 584283. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, P.; van Lare, C.; Verhagen, E.; Polman, A. Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate. Opt. Express 2011, 19, A303–A311. [Google Scholar] [CrossRef]
- Xu, R.; Wang, X.; Liu, W.; Song, L.; Xu, X.; Ji, A.; Yang, F.; Li, J. Optimization of the Dielectric Layer Thickness for Surface-Plasmon-Induced Light Absorption for Silicon Solar Cells. Jpn. J. Appl. Phys. 2012, 51, 042301. [Google Scholar]
- Rao, J.; Varlamov, S.; Park, J.; Dligatch, S.; Chtanov, A. Optimization of Dielectric-Coated Silver Nanoparticle Films for Plasmonic-Enhanced Light Trapping in Thin Film Silicon Solar Cells. Plasmonics 2012, 8, 785–791. [Google Scholar] [CrossRef]
- Li, H.-M.; Zhang, G.; Yang, C.; Lee, D.-Y.; Lim, Y.-D.; Shen, T.-Z.; Yoo, W.J.; Park, Y.J.; Kim, H.; Cha, S.N.; et al. Enhancement of light absorption using high-k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells. J. Appl. Phys. 2011, 109, 093516. [Google Scholar] [CrossRef]
- Cortes-Juan, F.; Chaverri Ramos, C.; Connolly, J.P.; David, C.; Garcia de Abajo, F.J.; Hurtado, J.; Mihailetchi, V.D.; Ponce-Alcantara, S.; Sanchez, G. Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. J. Renew. Sustain. Energy 2013, 5, 033116. [Google Scholar] [CrossRef]
- Liu, G.Q.; Liu, Z.Q.; Chen, Y.; Cai, Z.; Hu, Y.; Zhang, X.; Huang, K. Multi-band near-unity absorption and near-zero reflection of optical field in metal–dielectric-metal hybrid crystals. Sci. Adv. Mater. 2014, 6, 1099. [Google Scholar] [CrossRef]
- Sun, X.; Chen, X.; Zhang, Z.; Sun, Z. Plasmon based antireflection coatings containing nanostructured Ag and silica medium. Appl. Surf. Sci. 2012, 258, 3785–3788. [Google Scholar] [CrossRef]
- Huang, X.; Lou, C.; Zhang, H.; Yang, H. Broadband anti-reflection in Si substrate via Ag nanospheres on Si nanopillar arrays. Opt. Commun. 2020, 460, 125133. [Google Scholar] [CrossRef]
- Li, D.; Huang, F.; Ding, S. Sol–gel preparation and characterization of nanoporous ZnO/SiO2 coatings with broadband antireflection properties. Appl. Surf. Sci. 2011, 257, 9752–9756. [Google Scholar] [CrossRef]
- Salman, K.A.; Omar, K.; Hassan, Z. Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers. Sol. Energy 2012, 86, 541–547. [Google Scholar] [CrossRef]
- Shim, B.-H.; Kang, J.-W.; Jeong, H.; Jeong, Y.; Kumar, T.P.; Jang, J.-H.; Park, S.-J. Enhanced efficiency of Cu(In,Ga)Se2 solar cells with antireflection coating layers of MgF 2 and ZnO nanorods. Thin Solid Film 2016, 603, 103–107. [Google Scholar] [CrossRef]
- Wuu, D.-S.; Lin, C.-C.; Chen, C.-N.; Lee, H.-H.; Huang, J.-J. Properties of double-layer Al2O3/TiO2 antireflection coatings by liquid phase deposition. Thin Solid Film 2015, 584, 248–252. [Google Scholar] [CrossRef]
- Sharma, N.; Kumar, M.; Kumari, N.; Karar, V.; Sharma, A.L. Design and deposition of single and multilayer antireflection coatings of glass substrate using electron beam deposition. Mater. Today Proc. 2018, 5, 6421–6425. [Google Scholar] [CrossRef]
- Rajvikram, M.; Leoponraj, S. A method to attain power optimality and efficiency in solar panel. Beni Suef Univ. J. Basic Appl. Sci. 2018, 7, 705–708. [Google Scholar] [CrossRef]
- Zhang, W.-J.; Ma, D.-H.; Fan, Z.-Q.; Ma, X.-B.; Jiang, Z. Optimal design of quadruple-layer antireflection coating structure for conversion efficiency enhancement in crystalline silicon solar cells. Optik 2017, 177, 123–130. [Google Scholar] [CrossRef]
- Kim, M.; Kang, T.-W.; Kim, S.H.; Jung, E.H.; Park, H.H.; Seo, J.; Lee, S.-J. Antireflective, self-cleaning and protective film by continuous sputtering of a plasma polymer on inorganic multilayer for perovskite solar cells application. Sol. Energy Mater. Sol. Cells 2019, 191, 55–61. [Google Scholar] [CrossRef]
- Uzum, A.; Kuriyama, M.; Kanda, H.; Kimura, Y.; Tanimoto, K.; Ito, S. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells. Energies 2016, 9, 633. [Google Scholar] [CrossRef] [Green Version]
- Rajvikram, M.; Leoponraj, S.; Ramkumar, S. Enhancement of Solar Panel Efficiency with the Adoption of Antireflective Coating Techniques. J. Sci. Ind. Res. 2020, 79, 261–265. [Google Scholar]
- Li, D.; Liu, Z.; Wang, Y.; Shan, Y.; Huang, F. Efficiency Enhancement of Cu(In,Ga)Se2 Solar Cells by Applying SiO2–PEG/PVP Antireflection Coatings. J. Mater. Sci. Technol. 2015, 31, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Kum, B.G.; Park, Y.C.; Chang, Y.J.; Jeon, J.Y.; Jang, H.M. Single-layered porous silica films on polyethylene terephthalate substrates for antireflection coatings. Thin Solid Film 2011, 519, 3778–3781. [Google Scholar] [CrossRef]
- Yu, L.; Shearer, C.; Shapter, J. Recent Development of Carbon Nanotube Transparent Conductive Films. Chem. Rev. 2016, 116, 13413–13453. [Google Scholar] [CrossRef]
- Barbero, D.R.; Stranks, S.D. Functional Single-Walled Carbon Nanotubes and Nanoengineered Networks for Organic- and Perovskite-Solar-Cell Applications. Adv. Mater. 2016, 28, 9668–9685. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Peng, L.-M. Toward High-Performance Carbon Nanotube Photovoltaic Devices. Adv. Energy Mater. 2016, 6, 1600522. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Nicholas, R.J.; Snaith, H.J. Carbon Nanotubes in Perovskite Solar Cells. Adv. Energy Mater. 2016, 7, 1601839. [Google Scholar] [CrossRef]
- Anguita, J.V.; Ahmad, M.; Haq, S.; Allam, J.; Silva, S.R.P. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers. Sci. Adv. 2016, 2, e1501238. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Lee, J.; Seo, J.; Jung, S.; Kim, U.; Park, H. The effect of the graphene integration process on the performance of graphene-based Schottky junction solar cells. J. Mater. Chem. 2017, 5, 18716–18724. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, S.; Shin, D.H.; Seo, S.W.; Lee, H.S.; Kim, J.H.; Jang, C.W.; Kang, S.S.; Choi, S.-H.; Kwak, G.Y.; et al. Si-quantum-dot heterojunction solar cells with 16.2% efficiency achieved by employing doped-graphene transparent conductive electrodes. Nano Energy 2018, 43, 124–129. [Google Scholar] [CrossRef]
- De Nicola, F.; Hines, P.; De Crescenzi, M.; Motta, N. Moth-eye effect in hierarchical carbon nanotube anti-reflective coatings. Carbon 2016, 108, 262–267. [Google Scholar] [CrossRef] [Green Version]
- De Nicola, F.; Salvato, M.; Cirillo, C.; Crivellari, M.; Boscardin, M.; Scarselli, M.; Nanni, F.; Cacciotti, I.; Crescenzi, M.D.; Castrucci, P. Record efficiency of air-stable multi-walled carbon nanotube/silicon solar cells. Carbon 2016, 101, 226–234. [Google Scholar] [CrossRef] [Green Version]
- George, Z.; Xia, Y.; Sharma, A.; Lindqvist, C.; Andersson, G.; Inganas, O.; Moons, E.; Muller, C.; Andersson, M.R. Two-in-one: Cathode modification and improved solar cell blend stability through addition of modified fullerenes. J. Mater. Chem. A 2016, 4, 2663–2669. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-C.; Li, X.; Zhu, L.; Liu, X.; Zhang, W.; Fang, J. Efficient and Hysteresis-Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer. Adv. Energy Mater. 2017, 7, 1701144. [Google Scholar] [CrossRef]
- Ginley, D.S.; Bright, C. Transparent Conducting Oxides. MRS Bull. 2000, 25, 15–18. [Google Scholar] [CrossRef]
- Kılıç, Ç.; Zunger, A. Origins of Coexistence of Conductivity and Transparency in SnO2. Phys. Rev. Lett. 2002, 88, 095501. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, H.P.; Shinde, P.S.; Patil, P.S. Structural, optical and electrical characterization of spray-deposited TiO2 thin films. Mater. Sci. Eng. B 2006, 130, 220–227. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Y.; Hu, D.; Lian, W.; Qian, H.; Jie, J.; Wei, Q.; Ni, Z.; Zhang, X.; Xie, L. Application of Silicon Oxide on High Efficiency Monocrystalline Silicon PERC Solar Cells. Energies 2019, 12, 1168. [Google Scholar] [CrossRef] [Green Version]
- Gangopadhyay, U.; Kim, K.; Mangalaraj, D.; Yi, J. Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci. 2004, 230, 364–370. [Google Scholar] [CrossRef]
- Green, M.A.; Blakers, A.W.; Shi, J.; Keller, E.M.; Wenham, S.R. 19.1% efficient silicon solar cell. Appl. Phys. Lett. 1984, 44, 1163–1164. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Ai, L.; Lou, X.; Lin, S.; Lin, Y.; Fan, B.; Jin, J.; Song, W. Fabrication of mesoporous double-layer antireflection coatings with near-neutral color and application in crystalline silicon solar modules. Sol. Energy 2020, 201, 149–156. [Google Scholar] [CrossRef]
- Minemoto, T.; Mizuta, T.; Takakura, H.; Hamakawa, Y. Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 191–194. [Google Scholar] [CrossRef]
- Gangopadhyay, U.; Jana, S.; Das, S.; Ghosh, P.; Mondal, A. Anti-reflective nano-composite based coating for crystalline silicon solar cells with noticeable significance. J. Renew. Sustain. Energy 2013, 5, 031607. [Google Scholar] [CrossRef]
- Bowden, N.B.; Brittain, S.T.; Evans, A.G.; Hutchinson, J.W.; Whitesides, G.M. Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer. Nature 1998, 393, 146–149. [Google Scholar] [CrossRef]
- Pocivavsek, L.; Dellsy, R.; Kern, A.; Johnson, S.; Lin, B.; Lee, K.Y.C.; Cerda, E. Stress and Fold Localization in Thin Elastic Membranes. Science 2008, 320, 912–916. [Google Scholar] [CrossRef]
- Kim, P.; Abkarian, M.; Stone, H.A. Hierarchical folding of elastic membranes under biaxial compressive stress. Nat. Mater. 2011, 10, 952–957. [Google Scholar] [CrossRef]
- Kim, J.B.; Kim, P.; Pegard, N.C.; Oh, S.J.; Kagan, C.R.; Fleischer, J.W.; Stone, H.A.; Loo, Y.-L. Wrinkles and deep folds as photonic structures in photovoltaics. Nat. Photonics 2012, 6, 327–332. [Google Scholar] [CrossRef]
- Li, R.; Yi, H.; Hu, X.; Chen, L.; Shi, G.; Wang, W.; Yang, T. Generation of diffraction-free optical beams using wrinkled membranes. Sci. Rep. 2013, 3, 2775. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dai, S.; John, J.; Carter, K.R. Superhydrophobic Surfaces from Hierarchically Structured Wrinkled Polymers. ACS Appl. Mater. Interfaces 2013, 5, 11066–11073. [Google Scholar] [CrossRef] [PubMed]
- Rhee, D.; Lee, W.-K.; Odom, T.W. Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting. Angew. Chem. 2017, 129, 6623–6627. [Google Scholar] [CrossRef]
- Stafford, C.M.; Harrison, C.; Beers, K.L.; Karim, A.; Amis, E.J.; Vanlandingham, M.R.; Kim, H.-C.; Volksen, W.; Miller, R.D.; Simonyi, E.E. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 2004, 3, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Efimenko, K.; Rackaitis, M.; Manias, E.; Vaziri, A.; Mahadevan, L.; Genzer, J. Nested self-similar wrinkling patterns in skins. Nat. Mater. 2005, 4, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Basher, M.K.; Hossain, M.K.; Akand, M.A.R. Effect of surface texturization on minority carrier lifetime and photovoltaic performance of monocrystalline silicon solar cell. Optik 2018, 176, 93–101. [Google Scholar] [CrossRef]
- Singh, P.K.; Kumar, R.; Lal, M.; Singh, S.N.; Das, B.K. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol. Energy Mater. Sol. Cells 2001, 70, 103–113. [Google Scholar] [CrossRef]
- Macdonald, D.H.; Cuevas, A.; Kerr, M.J.; Samundsett, C.; Ruby, D.; Winderbaum, S.; Leo, A. Texturing industrial multicrystalline silicon solar cells. Sol. Energy 2004, 76, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-H.; Hong, F.C.-N. 0.76% absolute efficiency increase for screen-printed multicrystalline silicon solar cells with nanostructures by reactive ion etching. Sol. Energy Mater. Sol. Cells 2016, 157, 48–54. [Google Scholar] [CrossRef]
- Feng, P.; Liu, G.; Wu, W.W.; Shi, Y.; Wan, Q. Improving the blue response and efficiency of multicrystalline silicon solar cells by surface nanotexturing. IEEE Electron Device Lett. 2016, 37, 306–309. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lin, H.-H.; Hong, F.C.-N. Improvement of conversion efficiency of multi-crystalline silicon solar cells using reactive ion etching with surface pre-etching. Thin Solid Film 2015, 597, 50–56. [Google Scholar] [CrossRef]
- Prasad, B.; Bhattacharya, S.; Saxena, A.K.; Reddy, S.R.; Bedi, B.L.; Bhogra, R.K. Effect of self-masking, low-energy RIE texturization process on the performance of large-area multi-crystalline silicon solar cells. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 3–7 September 2007; WIP Renewable Energies Press: Milan, Italy, 2007; pp. 1477–1479. [Google Scholar]
- Slooff, L.H.; Kinderman, R.; Burgers, A.R.; Bakker, N.J.; van Roosmalen, J.A.M.; Buchtemann, A.; Danz, R.; Schleusener, M. Efficiency Enhancement of Solar Cells by Application of a Polymer Coating Containing a Luminescent Dye. J. Sol. Energy Eng. 2007, 129, 272. [Google Scholar] [CrossRef]
- Kuang, Y.; van Lare, M.C.; Veldhuizen, L.W.; Polman, A.; Rath, J.K.; Schropp, R.E.I. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping. J. Appl. Phys. 2015, 118, 185307. [Google Scholar] [CrossRef]
- Nowak, R.-E.; Vehse, M.; Sergeev, O.; von Maydell, K.; Agert, C. ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells. Sol. Energy Mater. Sol. Cells 2014, 125, 305–309. [Google Scholar] [CrossRef]
- Sardana, S.K.; Chandrasekhar, P.S.; Kumar, R.; Komarala, V.K. Efficiency enhancement of silicon solar cells with vertically aligned ZnO nanorod arrays as an antireflective layer. Jpn. J. Appl. Phys. 2017, 56, 040305. [Google Scholar] [CrossRef]
- Dong, W.; Huang, C.; Wei, T.; Zhang, Y.; Zhang, K.; Sun, Y.; Chen, X.; Dai, N. Nondestructively decorating surface textured silicon with nanorod arrays for enhancing light harvesting. Phys. Status Solidi A 2013, 210, 2542–2549. [Google Scholar] [CrossRef]
- Liu, B.; Qiu, S.; Hu, R.; Liao, Y.; Chen, N.; Du, G. Multiscaled hierarchical nanostructures for enhancing the conversion efficiency of crystalline silicon solar cells. Appl. Surf. Sci. 2012, 259, 705–710. [Google Scholar] [CrossRef]
- Chen, J.Y.; Sun, K.W. Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 930–934. [Google Scholar] [CrossRef]
- Peranantham, P.; Park, G.H.; Kim, K.; Ahn, K.J.; Hwangbo, C.K.; Lee, J.; Rotermund, F. Efficiency Enhancement of a Single-Junction GaAs Solar Cell with ZnO Nanorod Arrays as an Antireflection Layer. J. Nanosci. Nanotechnol. 2017, 17, 4279–4282. [Google Scholar] [CrossRef]
- Laube, M.; Rauch, F.; Ottermann, C.; Anderson, O.; Bange, K. Density of thin TiO2 films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1996, 113, 288–292. [Google Scholar] [CrossRef]
- Richards, B.S.; Rowlands, S.F.; Ueranatasun, A.; Cotter, J.E.; Honsberg, C.B. Potential cost reduction of buried-contact solar cells through the use of titanium dioxide thin films. Sol. Energy 2004, 76, 269–276. [Google Scholar] [CrossRef]
- Repins, I.; Contreras, M.A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C.L.; To, B.; Noufi, R. 19·9%-efficient ZnO/CdS/CuInGaSe2solar cell with 81·2% fill factor. Progress in Photovoltaics. Res. Appl. 2008, 16, 235–239. [Google Scholar]
- Bhal Singh, C.; Bhattacharya, S.; Singh, V.; Balaji Bhargav, P.; Sarkar, S.; Bhavanasi, V.; Ahmad, N. Application of SixNy:Hz (SiN) as index matching layer in a-Si:H thin film solar cells. J. Renew. Sustain. Energy 2013, 5, 031605. [Google Scholar] [CrossRef]
- Granqvist, C.G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529–1598. [Google Scholar] [CrossRef]
- Ellmer, K.; Klein, A.; Rech, B. (Eds.) Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells; Springer: Berlin, Germany, 2008. [Google Scholar]
- Lu, Y.; Zhang, X.; Huang, J.; Li, J.; Wei, T.; Lan, P.; Yang, Y.; Xu, H.; Song, W. Investigation on antireflection coatings for Al:ZnO in silicon thin-film solar cells. Optik 2013, 124, 3392–3395. [Google Scholar] [CrossRef]
- Yang, W.; Yu, H.; Tang, J.; Su, Y.; Wan, Q.; Wang, Y. Omnidirectional light absorption in thin film silicon solar cell with dual anti-reflection coatings. Sol. Energy 2011, 85, 2551–2559. [Google Scholar] [CrossRef]
- Addonizio, M.L.; Fusco, L.; Antonaia, A.; Cominale, F.; Usatii, I. Optimization of surface morphology and scattering properties of TCO/AIT textured glass front electrode for thin film solar cells. Appl. Surf. Sci. 2015, 357, 651–658. [Google Scholar] [CrossRef]
- Dimroth, F.; Grave, M.; Beutel, P.; Fiedeler, U.; Karcher, C.; Tibbits, T.N.D.; Oliva, E.; Siefer, G.; Schachtner, M.; Wekkeli, A.; et al. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 2014, 22, 277–282. [Google Scholar] [CrossRef]
- Zwerdling, S.; Wang, K.L.; Yeh, Y.C.M. High-Efficiency, Thin-Film GaAs Solar Cells. J. Sol. Energy Eng. 1983, 105, 237. [Google Scholar] [CrossRef]
- Oh, G.; Kim, Y.; Lee, S.J.; Kim, E.K. Broadband antireflective coatings for high efficiency InGaP/GaAs/InGaAsP/InGaAs multi-junction solar cells. Sol. Energy Mater. Sol. Cells 2020, 207, 110359. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Yang, Z.-P.; Jing, T.-S.; Hsieh, H.-H.; Yao, Y.-C.; Lin, T.-Y.; Chen, Y.-F.; Lee, Y.-J. Achieving graded refractive index by use of ZnO nanorods/TiO 2 layer to enhance omnidirectional photovoltaic performances of InGaP/GaAs/Ge triple-junction solar cells. Sol. Energy Mater. Sol. Cells 2015, 136, 17–24. [Google Scholar] [CrossRef]
- Leem, J.W.; Yu, J.S.; Kim, J.N.; Noh, S.K. Theoretical modeling and optimization of III–V GaInP/GaAs/Ge monolithic triple-junction solar cells. J. Korean Phys. Soc. 2014, 64, 1561–1565. [Google Scholar] [CrossRef]
- Hou, J.-L.; Chang, S.-J.; Hsueh, T.-J.; Wu, C.-H.; Weng, W.-Y.; Shieh, J.-M. InGaP/GaAs/Ge triple-junction solar cells with ZnO nanowires. Prog. Photovolt. Res. Appl. 2012, 21, 1645–1652. [Google Scholar] [CrossRef]
- Sertel, T.; Ozen, Y.; Baran, V.; Ozcelik, S. Effect of single-layer Ta2O5 and double-layer SiO2/Ta2O5 anti-reflective coatings on GaInP/GaAs/Ge triple-junction solar cell performance. J. Alloy Compd. 2019, 806, 439–450. [Google Scholar] [CrossRef]
- Shi, E.; Li, H.; Yang, L.; Zhang, L.; Li, Z.; Li, P. Colloidal Antireflection Coating Improves Graphene–Silicon Solar Cells. Nano Lett. 2013, 13, 1776–1781. [Google Scholar] [CrossRef]
- Lancellotti, L.; Bobeico, E.; Castaldo, A.; Delli Veneri, P.; Lago, E.; Lisi, N. Effects of different graphene dopants on double antireflection coatings/graphene/ n -silicon heterojunction solar cells. Thin Solid Film 2018, 646, 21–27. [Google Scholar] [CrossRef]
- Nakayama, K.; Tanabe, K.; Atwater, H.A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 2008, 93, 121904. [Google Scholar] [CrossRef] [Green Version]
- Ilican, S.; Caglar, Y.; Caglar, M. Preparation and characterization of ZnO thin films deposited by sol–gel spin coating method. J. Optoelectron. Adv. Mater. 2008, 10, 2578–2583. [Google Scholar]
- Yao, B.D.; Chan, Y.F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759. [Google Scholar] [CrossRef]
- Cheng, A.-J.; Tzeng, Y.; Zhou, Y.; Park, M.; Wu, T.; Shannon, C.; Wang, D.; Lee, W. Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication. Appl. Phys. Lett. 2008, 92, 092113. [Google Scholar] [CrossRef]
- Znaidi, L. Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng. B 2010, 174, 18–30. [Google Scholar] [CrossRef]
- Yeh, L.-K.; Lai, K.-Y.; Lin, G.-J.; Fu, P.-H.; Chang, H.-C.; Lin, C.-A.; He, J.-H. Giant Efficiency Enhancement of GaAs Solar Cells with Graded Antireflection Layers Based on Syringe like ZnO Nanorod Arrays. Adv. Energy Mater. 2011, 1, 506–510. [Google Scholar] [CrossRef]
- Su, B.-Y.; Chu, S.-Y.; Juang, Y.-D.; Lin, M.-C.; Chang, C.-C.; Wu, C.-J. Efficiency Enhancement of GaAs Photovoltaics Due to Sol-Gel Derived Anti-Reflective AZO Films. J. Electrochem. Soc. 2012, 159, H312–H316. [Google Scholar] [CrossRef]
- Jung, S.-M.; Kim, Y.-H.; Kim, S.-I.; Yoo, S.-I. Design and fabrication of multi-layer antireflection coating for III-V solar cell. Curr. Appl. Phys. 2011, 11, 538–541. [Google Scholar] [CrossRef]
- Inomata, Y.; Fukui, K.; Shirasawa, K. Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method. Sol. Energy Mater. Sol. Cells 1997, 48, 237–242. [Google Scholar] [CrossRef]
- Hovhannisyan, A.S. Single-layer antireflection coatings for GaAs solar cells. J. Contemp. Phys. 2008, 43, 136–138. [Google Scholar] [CrossRef]
- Wu, J.; Makableh, Y.F.M.; Vasan, R.; Manasreh, M.O.; Liang, B.; Reyner, C.J.; Huffaker, D.L. Strong interband transitions in InAs quantum dots solar cell. Appl. Phys. Lett. 2012, 100, 051907. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B.; Hao Fan, W.; Wu, D.; Han Sun, Y. Sol–gel broadband anti-reflective single-layer silica films with high laser damage threshold. Thin Solid Film 2003, 440, 180–183. [Google Scholar] [CrossRef]
- Wongcharee, K.; Brungs, M.; Chaplin, R.; Hong, Y.J.; Pillar, R.; Sizgek, E.J. Sol-gel processing by aging and pore creator addition for porous silica antireflective coatings. J. Sol Gel Sci. Technol. 2002, 25, 215–221. [Google Scholar] [CrossRef]
- Bautista, M.C.; Morales, A. Silica antireflective films on glass produced by the sol–gel method. Sol. Energy Mater. Sol. Cells 2003, 80, 217–225. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, D.-J.; Don, T.-M.; Huang, F.-H.; Cheng, L.-P. Preparation of organic–inorganic nano-composites for antireflection coatings. J. Non Cryst. Solids 2008, 354, 3828–3835. [Google Scholar] [CrossRef]
- Rezaei, N.; Isabella, O.; Vroon, Z.; Zeman, M. Optical optimization of a multi-layer wideband anti-reflection coating using porous MgF2 for sub-micron-thick CIGS solar cells. Sol. Energy 2019, 177, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Dahan, N.; Jehl, Z.; Hildebrandt, T.; Greffet, J.-J.; Guillemoles, J.-F.; Lincot, D.; Naghavi, N. Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 μm. J. Appl. Phys. 2012, 112, 094902. [Google Scholar] [CrossRef] [Green Version]
- Shimazaki, K.; Imaizumi, M.; Kibe, K. SiO2 and Al2O3/SiO2 coatings for increasing emissivity of Cu(In, Ga)Se2 thin-film solar cells for space applications. Thin Solid Film 2008, 516, 2218–2224. [Google Scholar] [CrossRef]
- Wakefield, G.; Adair, M.; Gardener, M.; Greiner, D.; Kaufmann, C.A.; Moghal, J. Mesoporous silica nanocomposite antireflective coating for Cu(In,Ga)Se2 thin film solar cells. Sol. Energy Mater. Sol. Cells 2015, 134, 359–363. [Google Scholar] [CrossRef]
- Moghal, J.; Kobler, J.; Sauer, J.; Best, J.; Gardener, M.; Watt, A.A.R.; Wakefield, G. High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 854–859. [Google Scholar] [CrossRef]
- Moghal, J.; Reid, S.; Hagerty, L.; Gardener, M.; Wakefield, G. Development of single layer nanoparticle anti-reflection coating for polymer substrates. Thin Solid Film 2013, 534, 541–545. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Roy-Mayhew, J.D.; Bozym, D.J.; Punckt, C.; Aksay, I.A. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano 2010, 4, 6203–6211. [Google Scholar] [CrossRef] [Green Version]
- Zong, H.; Zhang, J.; Shi, G.; Li, Y.; Zhang, Q.; Wang, H. Directly grown anatase TiO2 films via liquid phase deposition as the photoanodes for dye-sensitized solar cells. Electrochim. Acta 2015, 179, 197–205. [Google Scholar] [CrossRef]
- Chanta, E.; Bhoomanee, C.; Gardchareon, A.; Wongratanaphisan, D.; Phadungdhitidhada, S.; Choopun, S. Development of Anti-Reflection Coating Layer for Efficiency Enhancement of ZnO Dye-Sensitized Solar Cells. J. Nanosci. Nanotechnol. 2015, 15, 7136–7140. [Google Scholar] [CrossRef]
- Chen, C.-N.; Wu, M.-J.; Hsu, C.-F.; Huang, J.-J. Antireflection coating of SiO2 thin film in dye-sensitized solar cell prepared by liquid phase deposition. Surf. Coat. Technol. 2017, 320, 28–33. [Google Scholar] [CrossRef]
- Li, W.; Lv, F.; Shu, T.; Tan, X.; Jiang, L.; Xiao, T.; Xiang, P. Improving the performance of FTO conducting glass by SiO2 and ZnO anti-reflection films for dye-sensitized solar cells. Mater. Lett. 2019, 243, 108–111. [Google Scholar] [CrossRef]
- Chanta, E.; Wongratanaphisan, D.; Gardchareon, A.; Phadungdhitidhada, S.; Ruankham, P.; Choopun, S. Effect of ZnO Double Layer as Anti-Reflection Coating Layer in ZnO Dye-Sensitized Solar Cells. Energy Procedia 2015, 79, 879–884. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Tan, X.; Zhu, J.; Xiang, P.; Xiao, T.; Tian, L.; Yang, A.; Wang, M.; Chen, X. Broadband antireflective and superhydrophobic coatings for solar cells. Mater. Today Energy 2019, 12, 348–355. [Google Scholar] [CrossRef]
- Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Na, S.-I.; Kim, S.-S.; Jo, J.; Oh, S.-H.; Kim, J.; Kim, D.-Y. Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography. Adv. Funct. Mater. 2008, 18, 3956–3963. [Google Scholar] [CrossRef]
- You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 2017, 26, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Fujishima, D.; Yano, A.; Ogane, A.; Tohoda, S.; Matsuyama, K.; Nakamura, Y.; Tokuoka, N.; Kanno, H.; Sakata, H.; et al. The approaches for high efficiency HIT solar cell with very thin (<100 μm) silicon wafer over 23%. In Proceedings of the 26th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 5–9 September 2011; pp. 871–874. [Google Scholar]
- Descoeudres, A.; Holman, Z.C.; Barraud, L.; Morel, S.; De Wolf, S.; Ballif, C. >21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared. IEEE J. Photovolt. 2013, 3, 83–89. [Google Scholar] [CrossRef] [Green Version]
- De Wolf, S.; Descoeudres, A.; Holman, Z.C.; Ballif, C. High-efficiency Silicon Heterojunction Solar Cells: A Review. Green 2012, 2, 7–24. [Google Scholar] [CrossRef]
- Zhang, D.; Digdaya, I.A.; Santbergen, R.; van Swaaij, R.A.C.M.M.; Bronsveld, P.; Zeman, M.; van Roosmalen, J.A.M.; Weeber, A.W. Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Sol. Energy Mater. Sol. Cells 2013, 117, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Hussain, B.; Ebong, A.; Ferguson, I. Zinc oxide as an active n-layer and antireflection coating for silicon-based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 2015, 139, 95–100. [Google Scholar] [CrossRef]
- Samajdar, D.P. Light-trapping strategy for PEDOT:PSS/c-Si nanopyramid based hybrid solar cells embedded with metallic nanoparticles. Sol. Energy 2019, 190, 278–285. [Google Scholar]
- Hu, D.; Liu, D.; Zhang, J.; Wu, L.; Li, W. Preparation and stability study of broadband anti-reflection coatings and application research for CdTe solar cell. Opt. Mater. 2018, 77, 132–139. [Google Scholar] [CrossRef]
- Womack, G.; Kaminski, P.M.; Abbas, A.; Isbilir, K.; Gottschalg, R.; Walls, J.M. Performance and durability of broadband antireflection coatings for thin film CdTe solar cells. J. Vac. Sci. Technol. A Vac. Surf. Film 2017, 35, 021201. [Google Scholar] [CrossRef] [Green Version]
- Beard, M.C.; Luther, J.M.; Semonin, O.E.; Nozik, A.J. Third Generation Photovoltaics based on Multiple Exciton Generation in Quantum Confined Semiconductors. Acc. Chem. Res. 2012, 46, 1252–1260. [Google Scholar] [CrossRef]
- Wei, H.; Qiu, P.; Peng, M.; Wu, Q.; Liu, S.; An, Y.; He, Y.; Song, Y.; Zheng, X. Interface modification for high-efficient quantum dot sensitized solar cells using ultrathin aluminum nitride coating. Appl. Surf. Sci. 2019, 476, 608–614. [Google Scholar] [CrossRef]
- Lay, T.S.; Lin, Z.H.; Chuang, K.Y.; Tzeng, T.E. InGaAs quantum dots-in-a-well solar cells with anti-reflection coating. J. Cryst. Growth 2019, 513, 6–9. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Zheng, L.; Lu, Y.; Moulin, E.; Haug, F.-J.; Ballif, C.; Xu, H.; Dai, N.; Song, W. Simultaneous realization of light distribution and trapping in micromorph tandem solar cells using novel double-layered antireflection coatings. Sol. Energy Mater. Sol. Cells 2015, 143, 546–552. [Google Scholar] [CrossRef]
- Agustín-Sáenz, C.; Machado, M.; Zubillaga, O.; Tercjak, A. Hydrophobic and spectrally broadband antireflective methyl-silylated silica coatings with high performance stability for concentrated solar applications. Sol. Energy Mater. Sol. Cells 2019, 200, 109962. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Enrichi, F.; Quandt, A.; Righini, G.C. Plasmonic enhanced solar cells: Summary of possible strategies and recent results. Renew. Sustain. Energy Rev. 2018, 82, 2433–2439. [Google Scholar] [CrossRef]
- Catchpole, K.R.; Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 2008, 93, 191113. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, K.R.; Polman, A. Plasmonic solar cells. Opt. Express 2008, 16, 21793. [Google Scholar] [CrossRef] [Green Version]
- Matheu, P.; Lim, S.H.; Derkacs, D.; McPheeters, C.; Yu, E.T. Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl. Phys. Lett. 2008, 93, 113108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yang, X.; Hong, X.; Liu, Y.; Feng, J. Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt. Quantum Electron. 2014, 47, 1421–1427. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Ouyang, Z.; Lu, H.; Jia, B.; Shi, Z.; Gu, M. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Opt. Mater. Express 2013, 3, 489. [Google Scholar] [CrossRef]
- Spinelli, P.; Polman, A. Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Optics Express 2012, 20, A641. [Google Scholar] [CrossRef]
- Wang, E.; White, T.P.; Catchpole, K.R. Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells. Opt. Express 2012, 20, 13226. [Google Scholar] [CrossRef]
- Prabhathan, P.; Murukeshan, V.M. Surface Plasmon Polariton-coupled Waveguide Back Reflector in Thin-film Silicon Solar Cell. Plasmonics 2015, 11, 253–260. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Peumans, P. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt. Express 2010, 18, 10078. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.J.; Morawiec, S.; Mateus, T.; Lyubchyk, A.; Aguas, H.; Ferreira, I. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology 2015, 26, 135202. [Google Scholar] [CrossRef]
- Stanley, C.; Mojiri, A.; Rosengarten, G. Spectral light management for solar energy conversion systems. Nanophotonics 2016, 5, 161–179. [Google Scholar] [CrossRef]
- Van der Ende, B.M.; Aarts, L.; Meijerink, A. Near-Infrared Quantum Cutting for Photovoltaics. Adv. Mater. 2009, 21, 3073–3077. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Yang, C.H.; Pan, Y.X. Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods. Appl. Phys. Lett. 2007, 90, 021107. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Yu, Y.; Huang, P.; Weng, F. Near-infrared quantum cutting in transparent nanostructured glass ceramics. Opt. Lett. 2008, 33, 1884. [Google Scholar] [CrossRef]
- Chen, D.; Wan, Z.; Zhou, Y.; Zhong, J.; Ding, M.; Yu, H. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics. J. Alloy Compd. 2015, 645, 38–44. [Google Scholar] [CrossRef]
- Chen, D.; Wan, Z.; Zhou, Y.; Xiang, W.; Zhong, J.; Ding, M. Tuning into blue and red: Europium single-doped nano-glass-ceramics for potential application in photosynthesis. J. Mater. Chem. C 2015, 3, 3141–3149. [Google Scholar] [CrossRef]
- Svrcek, V.; Yamanari, T.; Mariotti, D.; Mitra, S.; Velusamy, T.; Matsubara, K. A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells. Nanoscale 2015, 7, 11566–11574. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, T.; Kato, S.; Kin, E.; Okaniwa, K.; Morikawa, H.; Honda, Z.; Kamata, N. Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance. Opt. Mater. 2009, 32, 22–25. [Google Scholar] [CrossRef]
- Chen, W.; Hou, Y.; Osvet, A.; Guo, F.; Kubis, P.; Batentschuk, M. Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Org. Electron. 2015, 19, 113–119. [Google Scholar] [CrossRef]
- Tatsi, E.; Griffini, G. Polymeric materials for photon management in photovoltaics. Sol. Energy Mater. Sol. Cells 2019, 196, 43–56. [Google Scholar] [CrossRef]
- Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 1982, 72, 899. [Google Scholar] [CrossRef]
- Basu, P.K.; Khanna, A.; Hameiri, Z. The effect of front pyramid heights on the efficiency of homogeneously textured inline-diffused screen-printed monocrystalline silicon wafer solar cells. Renew. Energy 2015, 78, 590–598. [Google Scholar] [CrossRef]
- Höhn, O.; Tucher, N.; Bläsi, B. Theoretical study of pyramid sizes and scattering effects in silicon photovoltaic module stacks. Opt. Express 2018, 26, A320. [Google Scholar] [CrossRef] [PubMed]
- Alshal, M.A.; Allam, N.K. Broadband Absorption Enhancement in Thin Film Solar Cells Using Asymmetric Double-Sided Pyramid Gratings. J. Electron. Mater. 2016, 45, 5685–5694. [Google Scholar] [CrossRef]
- Wang, K.X.; Yu, Z.; Liu, V.; Cui, Y.; Fan, S. Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings. Nano Lett. 2012, 12, 1616–1619. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Wu, B.; Zhou, J.; Huang, H.; Xu, X.; Wang, C. Efficiency enhancement in ultrathin crystalline silicon solar cells with composite surface gratings. Opt. Commun. 2017, 393, 207–212. [Google Scholar] [CrossRef]
- Zin, N.; McIntosh, K.; Bakhshi, S.; Vázquez-Guardado, A.; Kho, T.; Fong, K.; Stocks, M.; Franklin, E.; Blakers, A. Polyimide for silicon solar cells with double-sided textured pyramids. Sol. Energy Mater. Sol. Cells 2018, 183, 200–204. [Google Scholar] [CrossRef]
- Hsu, W.-C.; Tong, J.K.; Branham, M.S.; Huang, Y.; Yerci, S.; Boriskina, S.V.; Chen, G. Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells. Opt. Commun. 2016, 377, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Guan, L.; Shen, G.; Liang, Y.; Tan, F.; Xu, X.; Tan, X.; Li, X. Double-sided pyramid texturing design to reduce the light escape of ultrathin crystalline silicon solar cells. Opt. Laser Technol. 2019, 120, 105700. [Google Scholar] [CrossRef]
- Wangyang, P.; Wang, Q.; Hu, K.; Shen, X. Optical absorption enhancement of nanoconical frustum arrays texturing for c-Si film solar cells. Opt. Commun. 2014, 310, 19–24. [Google Scholar] [CrossRef]
- Callahan, D.M.; Munday, J.N.; Atwater, H.A. Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Lett. 2012, 12, 214–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konedana, S.S.P.; Vaida, E.; Viller, V.; Shalev, G. Optical absorption beyond the Yablonovitch limit with light funnel arrays. Nano Energy 2019, 59, 321–326. [Google Scholar] [CrossRef]
- Wang, C.; Yu, S.; Chen, W.; Sun, C. Highly Efficient Light-Trapping Structure Design Inspired By Natural Evolution. Sci. Rep. 2013, 3, 1025. [Google Scholar] [CrossRef] [Green Version]
- Saeta, P.N.; Ferry, V.E.; Pacifici, D.; Munday, J.N.; Atwater, H.A. How much can guided modes enhance absorption in thin solar cells? Opt. Express 2009, 17, 20975. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, K.H.; Kittel, T.; Wondraczek, K.; Wondraczek, L. Optical breathing of nano-porous antireflective coatings through adsorption and desorption of water. Sci. Rep. 2014, 4, 6595. [Google Scholar]
- Toth, S.; Muller, M.; Miller, D.C.; Moutinho, H.; To, B.; Micheli, L.; Linger, J.; Engtrakul, C.; Einhorn, A.; Simpson, L. Soiling and cleaning: Initial observations from 5-year photovoltaic glass coating durability study. Sol. Energy Mater. Sol. Cells 2018, 185, 375–384. [Google Scholar] [CrossRef]
- Ábrahám, A.; Kócs, L.; Albert, E.; Tegze, B.; Szolnoki, B.; Nagy, N.; Safran, G.; Basa, P.; Hórvölgyi, Z. Durability of microporous hybrid silica coatings: Optical and wetting properties. Thin Solid Films 2020, 699, 137914. [Google Scholar] [CrossRef]
- Zhang, J.; Ai, L.; Lin, S.; Lan, P.; Lu, Y.; Dai, N.; Tan, R.; Fan, B.; Song, W. Preparation of humidity, abrasion, and dust resistant antireflection coatings for photovoltaic modules via dual precursor modification and hybridization of hollow silica nanospheres. Sol. Energy Mater. Sol. Cells 2019, 192, 188–196. [Google Scholar] [CrossRef]
- Guiheneuf, V.; Delaleux, F.; Pouliquen, S.; Riou, O.; Logerais, P.-O.; Durastanti, J.-F. Effects of the irradiance intensity during UV accelerated aging test on unencapsulated silicon solar cells. Sol. Energy 2017, 157, 477–485. [Google Scholar] [CrossRef]
- Bouraiou, A.; Hamouda, M.; Chaker, A.; Neçaibia, A.; Mostefaoui, M.; Boutasseta, N.; Ziane, A.; Dabou, R.; Sahouane, N.; Lachtar, S. Experimental investigation of observed defects in crystalline silicon PV modules under outdoor hot dry climatic conditions in Algeria. Sol. Energy 2018, 159, 475–487. [Google Scholar] [CrossRef]
- Vicente, G.S.; Bayon, R.; Morales, A. Effect of Additives on the Durability and Properties of Antireflective Films for Solar Glass Covers. J. Sol. Energy Eng. 2008, 130, 011007. [Google Scholar] [CrossRef]
- Druffel, T.; Geng, K.; Grulke, E. Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter. Nanotechnology 2006, 17, 3584–3590. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.Y.; Koh, J.K.; Kang, G.; Ahn, S.H.; Chi, W.S.; Kim, K.; Kim, J.H. Bifunctional Moth-Eye Nanopatterned Dye-Sensitized Solar Cells: Light-Harvesting and Self-Cleaning Effects. Adv. Energy Mater. 2013, 4, 1300632. [Google Scholar] [CrossRef]
- Leem, J.W.; Choi, M.; Dudem, B.; Yu, J.S. Hierarchical structured polymers for light-absorption enhancement of silicon-based solar power systems. RSC Adv. 2016, 6, 55159–55166. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-J.; Lee, Y.; Kim, H.G.; Choi, K.-J.; Kweon, H.-S.; Park, S.; Jeong, K.-H. Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proc. Natl. Acad. Sci. USA 2012, 109, 18674–18678. [Google Scholar] [CrossRef] [Green Version]
- Osbond, P. Plasma sprayed anti-reflection coatings for microwave optical components. Adv. Mater. 1992, 4, 807–809. [Google Scholar] [CrossRef]
- Guerrero-Lemus, R.; Vega, R.; Kim, T.; Kimm, A.; Shephard, L.E. Bifacial solar photovoltaics—A technology review. Renew. Sustain. Energy Rev. 2016, 60, 1533–1549. [Google Scholar] [CrossRef]
- Cui, H.N.; Costa, M.F.; Teixeira, V.; Porqueras, I.; Bertran, E. Electrochromic coatings for smart windows. Surf. Sci. 2003, 532–535, 1127–1131. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Zhou, Y.; Yang, H.; Lu, Q.; Magdassi, S.; Tay, C.Y.; Long, Y. Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing. J. Alloy Compd. 2018, 731, 1197–1207. [Google Scholar] [CrossRef]
- Lee, M.-H.; Cho, J.-S. Better thermochromic glazing of windows with anti-reflection coating. Thin Solid Film 2000, 365, 5–6. [Google Scholar] [CrossRef]
YOP | Title of the Review Work | Outcome | Provided Future Direction of Research | Reference |
---|---|---|---|---|
2020 | A review of anti-reflection and self-cleaning coatings on photovoltaic panels |
|
| [34] |
2019 | Recent developments in multifunctional coatings for solar panel applications: A review |
|
| [35] |
2019 | Ascendant bioinspired antireflective materials: Opportunities and challenges coexist |
|
| [36] |
2016 | Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review |
|
| [37] |
2016 | Antireflective surface inspired from biology: A review |
|
| [38] |
2016 | Superhydrophobic surfaces with antireflection properties for solar applications: A critical review |
|
| [39] |
2014 | Recent progress in antireflection and self-cleaning technology—From surface engineering to functional surfaces |
|
| [40] |
2011 | Anti-reflective coatings: A critical, in-depth review |
|
| [41] |
2010 | Anti-reflecting and photonic nanostructures |
|
| [42] |
Fabrication Techniques | Controlling Parameters | Type of Coatings Commonly Fabricated | Facileness | Uniformity of the Deposited Coating | Film Quality | Deposition Rate or Rate of Fabrication | Cost | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|---|---|
Sol-gel | Type of precursors, the concentration of precursors and additives, solvent nature, pH of the solution, pre- and post- heat treatment | Metal oxide and dielectric (silica) thin films, nanoporous films | Yes | Depends on the coating used and the controlling parameters. Spin coating yields higher uniformity | High homogenous films can be obtained | Very fast deposition | Low-cost | Simple, fast, low temperature, and inexpensive technique | Precise control in tuning the morphology and reproducibility is difficult |
Thermal Evaporation | Pressure and substrate heat are the prime parameters. Also, the process can be assisted with microwave, plasma or electron resonance to have more control | Preferably low melting point metals and dielectrics | Yes | Uniformity is less | High impurities but low in case of E-beam heating | Moderate deposition rate (10–100 nm/min) | Cost-effective in large-scale production | Facile method of deposition, suitable for large-scale implementation, good reproducibility and scalable method | Poor uniformity, low dense films and becomes expensive when E-beam is used |
Sputtering | Intense of vacuum pressure, sputter gas pressure, substrate and target temperature and sputter power | Both metal and dielectric porous and thin films | No | Excellent uniformity | Less impurities and high-quality films | Variable depositing rates depending on the type of sputtering used | Expensive | High-quality films, wide variety of materials can be deposited, scalable method | Requires sophisticated arrangements and cost-ineffective |
Glancing angle deposition | Vacuum, deposition pressure, deposition rate, vapor flux incident angle and rotational speed of the substrate | Both metal and dielectric porous films | Yes | Uniformity is less | Moderate to high quality structures can be formed | Variable deposition rate | Moderate cost | Morphology and porosity can be accurately controlled. Highly suitable for porous films | Low dense films |
PECVD | Substrate material and temperature, gas composition, flow rate, temperature and pressure, frequency | Mainly dielectric thin and porous films | No | Good uniformity | Very low impurities and high-quality films | Variable and high deposition rate | Expensive but APCVD is less expensive comparatively | Industrial method, high deposition and uniformity, easily coated even on textured substrates | Expensive method, high operating temperature |
Wet Etching | Concentration of etchant, temperature and rate of waste product removal | Textured surfaces | Yes | Isotropic etching results in uniform etching | - | High etching rate. It depends on the etchant used | Low-cost | High selectivity, high etching rate and straight forward method. Often, used with other fabrication methods | Most cases are mask-assisted to protect the substrate and no precision control |
Dry Etching | Chamber pressure, gas flow rate and bias control | Textured surfaces | Yes | Uniformity is obtained in tradeoff with rate and selectivity | - | Etching rate depends on gas or ions used | Low-cost | Cheap and eliminates the use of dangerous solvents and acids | No precision control and some employed gases are corrosive and toxic |
Lithography | Resist film thickness and uniformity, exposed radiation | Wide variety of structures and surfaces | No | Depends on the etching after lithographic exposure | - | - | Depends on the radiation used. Low-cost approaches exist | Process parameters can be precisely controlled. Time efficient, simple and high throughput | Sophisticated equipment is required. Inefficiency in generating 3D structures |
Nano imprint lithography | Precision of the mold, applied pressure. | Wide variety of structures and surfaces, and biomimetic coatings | Yes | High uniformity | Quality of the structures depends on the mold | Rapid fabrication if mold is ready | Cost-effective in large-scale production | Simple, cost-effective, time-effective and large area fabrication is possible | Usually, the cleaning of the compressed resist demands reactive ion etching process. Mold fabrication requires advanced technologies |
Soft lithography | Depends on the elastomeric stamp, temperature and pressure applied | Wide variety of nano-structures and surfaces. Preferably polymer coatings | Yes | Excellent surface uniformity | Good quality structures | Rapid fabrication | Low-cost | Simple, fast, good adhesion, high resolution with high precision | It depends on lithography techniques to create master patterns |
AR Coating Material | ARC Structure | Fabrication Technology | Reflectance (%) | Transmittance (%) | Wavelength (nm) | Features | Research Potential | Reference |
---|---|---|---|---|---|---|---|---|
Silicon | Nanowires (NWs) | Ag catalyzed chemical etching | 5.6 | - | 250–800 | Large scale SiNWs arrays can be prepared using MACE method | Experimental analysis of the increase in PCE using this coating | [111] |
Porous silicon (PSi) |
| Electrochemical process |
| - | 400–1000 | Porosity can be varied by modulating current density in the electochemical process | Effect of this coating on various solar cells to find its suitable application | [102] |
Porous silicon (PSi) | Double PSi layer | Chemical stain etching | 5.8 | - | 400–1100 | Low reflectivity comparable to SiNx coating | Effect of this coating on various solar cells to find its suitable application | [103] |
Hydrogenated nanocrystalline Si | Nanorod arrays | High frequency plasma enhanced vapor deposition | <5 | - | 400–1100 | Broadband antrireflection coating with very low reflectance | Experimental analysis of the increase in PCE using this coating | [121] |
Silica | Single layer nanoporous | Sol-gel dip-coating | - | 97.5 | 500 | Cost-effective and straight forward technique. | Transmittance can be improved in the whole visible range | [99] |
Silica | Double layer porous film | Remote PECVD | - | 99.4 | 400–1150 | The low refractive index of the order of 1.11 can be fabricated | Power conversion efficiency changes can be analyzed using this coating | [100] |
Silica | Single layer SiO2 | Chemical etching and thermal oxidation | 15.6 | - | 400–900 | Uses pyramidal textured Si wafer on which SiO2 is deposited | Research can be performed to reduce the reflectance further | [105] |
Silica | Closed-surface silica ARC | Acid catalyst sol-gel method | - | 97.1 | 300–1200 | Robust mechanical properties with 5 H pencil hardness and high moisture and high-temperature resistance | Effect of this coating on various solar cells to find its suitable application | [106] |
Silica | Multi-layer stacks of silica | Sol-gel and evaporation induced self-assembly (EISA) technique | - | 7.2% increase than bare glass | 300–2000 | Suitable for Concentrated photovoltaic (CPV) application | Stability, reliability and environmental effects of/on the coating can be analyzed | [107] |
Silica | Nanoporous | Dip or spray coating | - | 3.1% increase than bare glass | 400–1100 | Large area and cost-effectiveARC for solar glasses | Transmission can be enhanced further, and efficiency analysis can be made | [112] |
Silica | Nanocylinder | Sol-gel and softimprint lithography | 0.57 | - | 425–700 | Large area fabrication, cost-effective, and simple methods | Improvement of transmittance in broadband wavelength range and efficiency analysis can be considered | [113] |
Silica | Four-layer Nano-porous SiO2 | Glancing angle deposition technique | 0.04 | - | 400–800 | Very negligable reflectance | Experimental analysis of the increase in PCE using this coating | [114] |
Silica | Five-layer hollow silica nanoparticles | Dip coating method | - | 99.04 | 380–1600 | Broadband antrireflection coating | Effect of this coating on various solar cells to find its suitable application | [115] |
Silica | Nanopore | Phase separation process, calcination, dip coating | - | 97 | 400–800 | The coating is resistant to water, strong alkali and acids possessing 4H pencil hardness | Experimental analysis of the increase in PCE using this coating | [116] |
Silica | Nanoparticles | Stober and dip coating method | - | 99.9 | 550 | Robust and self-cleaning ARCs | Effect of this coating on various solar cells to find its suitable application | [117] |
Silica | Double function SiO2-DMS coating | Sol-gel method | - | 96.07 | 300–800 | Fluorine-free materials were used as a modifier to obtain water repellent capability | Effect of this coating on various solar cells to find its suitable application | [118] |
Silica | Nanosphere | Spin coating | - | 3.8% increase | 400–800 | PCE improved from 14.81 to 15.82% for PSC device | Improvement of transmittance in broadband wavelength range and stability, the durability of the film can be considered | [119] |
Silica | Moth-eye like structure | Sol–gel dip-coating and electrostatic self-assembly technique | - | 8.21% increase | 400–800 | PCE is icreased from 11.66% to 12.59% for CIGS device | Stability, durability and environmental effects of/on the coating can be analyzed | [120] |
Mesoporous silicon + SiOx layer |
| Plasma enhanced chemical vapour deposition |
| - | 400–1000 | Passivation property is also improved | Experimental analysis of increase in PCE using this coating | [83] |
SiO2 with boron doped Zinc oxide (BZO) substrate | SiO2 AR coatings/glass/BZO | Sol-gel dip coating method | - | 93.4 | 400–1000 | The efficiency of the amorphous thin film Si PV cell enhanced from 9.83% to 10.24% | Stability, reliabilty and environmental effects of/on the coating can be analyzed | [104] |
Silicon nitride | Single layer SiNx on textured Si wafer | Plasma deposition | 2.5 | 97 | 300–1000 | Good optical and excellent passivation properties | Stability, durability and environmental effects of/on the coating can be analysed | [122] |
Silicon nitride | SiNx coating on multicrystalline silicon wafer | Plasma texturization and chemical etching | <10 | - | 350–800 | Perfomance enhancement of mc-Si solar cells | A comparative study with other ARC can be made considering, cost-effectiveness and efficiency enhancement | [123] |
AR Coating Material | ARC Structure | Fabrication Technology | Reflectance (%) | Transmittance (%) | Wavelength Range (nm) | Features | Research Potential | Reference |
---|---|---|---|---|---|---|---|---|
Au | Nanocone arrays | Gold vapor deposition | <1 | - | 450–950 | Broadband antireflective and light-absorbing properties | Effect of this coating on various solar cells to find its suitable application | [131] |
TiO2 | Thin film | Atmospheric pressure chemical vapor deposition | 8.61 | - | 300–1150 | Simple, inexpensive methodology and attains a +3% gain in PCE relative to the reference cell | Stability, reliabilty and environmental effects of/on the coating can be analysed | [147] |
TiO2 | Porous film | Sol-gel based self-assembly and plasma-based approach | - | 95 | 400–900 | Usage of a novel fabrication method involving a low-cost block copolymer | Experimental analysis of increase in PCE using this coating | [150] |
Ni-doped TiO2 | Thin film | Pulsed Laser Deposition | - | 60 | 300–1100 | Reflectance decreased with increasing Ni concentrations significantly | Research to improve transmittance further can be considered | [151] |
TiO2 | TiO2 thin films | Liquid phase deposition | 3.6 | - | 400–800 | Excellent compatibility, uniformity, large-scale production blended with cost-effectiveness. | Experimental analysis of increase in PCE using this coating | [152] |
TiO2 | TiO2 thin films deposited on textured Si substrate | High impulse power magnetron sputtering | <3 | - | 400–1100 | HiPIMS deposited films show the lowest reflectance in comparison to the DC deposited samples of the same thickness | Effect of this coating on various solar cells to find its suitable application | [153] |
TiO2 | Double layer TiO2 film | Atmospheric pressure chemical vapor deposition | 6.5 | - | 350–1150 | 2.5 mA/cm2 improvement in the short-circuit current density | Experimental analysis of the increase in PCE using this coating | [154] |
ZnO | Nanorod array | Electrochemical deposition method | 6.1 | - | 340–760 | The size of the nanorod arrays can be easily controlled | Reflectance for increased bandwidth can be analyzed combined with PCE analysis | [168] |
ZnO | Nanorods | Hydrothermal method | 14.8 | - | 400–800 | Different morphologies of ZnO is obtained and observed for reflectance | Research to reduce reflectance further can be considered | [169] |
ZnO | Thin film | Sol-gel method | 3 | - | 650 | Enhancement in the PCE of GaAs p-n junction PV cell by 30% | Reflectance for increased bandwidth can be analyzed | [170] |
ZnO | Nanorod array | Chemical bath deposition | 15.9 | - | 300–1200 | PCE increases from 2.27% to 6.61% in polycrystalline Si solar cells | Research to reduce reflectance further can be considered | [171] |
ZnO | Syringe shaped Nanorod | Two-step aqueous solution technique | <5 | - | 300–1100 | Improvement of short-circuit current density and PCE by ~37% and ~41%, respectively | Effect of this coating on various solar cells to find its suitable application | [172] |
ZnO | Moth eye structure | Aqueous solution method | 1.46 | - | 200–800 | The PCE of the PV cell enhanced from 10% to 11.5% | Stability, reliability and environmental effects of/on the coating can be analyzed | [188] |
ZnO:Al | Thin film | Radio frequency magnetron sputtering | <15 | - | 300–1050 | Increment achieved in the roughness of the film and decrease of its sheet resistance helps to enhance the efficiency of the devices | Experimental analysis of the increase in PCE using this coating | [173] |
ITO | Nano-lens array | UV nano-imprinting and oxygen etching | 4.7 | - | 400–1100 | Exhibited near-zero reflectance in wide incident angles | Experimental analysis of the increase in PCE using this coating | [174] |
ITO | Nano-branched stuctures | Electron beam deposition method | - | 92 | 500–800 | High transmittance and conductive material | Transmission can be analyzed and improved for broadband wavelength | [175] |
ITO | Double layer ITO film | Long throw radio frequency magnetron sputtering technique + supercritical CO2 treatment | 4.3 | 86.2 | 400–1000 | The low optical reflectance and excellent electrical conductance make it suitable for Si-based solar cell applications | Research to improve transmittance further can be considered, and together with PCE analysis can be considered | [176] |
MgF2 | Hollow nanoparticles | Formation–deformation-reformation approach | - | 96.2 | 300–1500 | High-performance AR coating with a low index of refraction, high durability, and economical coating | Effect of this coating on various solar cells to find its suitable application | [185] |
MgF2 | Mesoporous MgF2 nanoparticles | Deformation-reformation approach | - | 97 | 300–1500 | Broadband ARC is obtained with a simple method using ink-bottle MgF2. | Effect of this coating on various solar cells to find its suitable application | [186] |
MgF2 | Mesoporous MgF2 nanoparticles | Lyothermal and Dip coating process | - | 97.03 | 300–1500 | The hydrophilic surface of MgF2 AR films is advanced to hydrophobicity | Experimental analysis of the increase in PCE using this coating | [187] |
Barium titanate | Thin film | Radio frequency magnetron sputtering | 50% reduction | - | 250–1100 | Usage of barium titanate | Stability, reliability and environmental effects of/on the coating can be analyzed | [189] |
AR Coating Material | ARC Structure | Fabrication Technology | Reflectance (%) | Transmittance (%) | Wavelength (nm) | Features | Research Potential | Reference |
---|---|---|---|---|---|---|---|---|
Polystyrene | Biomimetic nanopillars | Microinjection compression molding | ~4 | - | 400–1000 | Inspired from Cicada of wing nanostructures and has a water contact angle of 143° ± 2° | Experimental analysis of the increase in PCE using this coating | [197] |
Polystyrene | Pyramid- arrayed PS film | Microinjection compression molding | ~5 | 93 | 400–900 | PS coated thin-film PV cell shown an improvement of 7.9% increase in PCE | Stability, reliability and environmental effects of/on the coating can be analyzed | [6] |
PMMA | Nano-cone array | Vacuum-assisted surface wetting methodology | 0.64 | 99.4 | 400–800 | Antireflection coating of parabola shape made of PMMA with nano-cone arrays | Effect of this coating on various solar cells to find its suitable application | [193] |
PMMA | Nanopatterns | Thermal nanoimprinting, laser lithography and dry etching | <0.5 | - | 400–800 | Simple, large-scale and cost-effective production | Experimental analysis of the increase in PCE using this coating | [5] |
PDMS | Nano-domes | Replica molding approach | <2 | 95 | 400–900 | Broadband AR PDMS film with a hemispherical nano-domes structure | The threshold of the nanopatterned PDMS film need to be investigated | [206] |
PDMS | Tappered nanoholes (NHs) | Soft lithography | ~7.1 | - | 350–800 | When the film is used on a DSSC, the PCE enhanced to 7.56% from 7.15% | Stability, reliability and environmental effects of/on the coating can be analyzed | [94] |
PET | Nano-cone array | Reactive-ion Etching | ~0.5 | ~97 | 300–900 | The film exhibits superhydrophobic properties | Effect of this coating on various solar cells to find its suitable application | [190] |
PET | Nano-porous patterns | Plasma etching | - | ~98 | 660–1100 | The coating showed broadband and quasi- omnidirectional antireflection performance | Experimental analysis of the increase in PCE using this coating | [195] |
Poly(methylsilsesquioxane) (PMSSQ) | Nanoporous poly(methylsilsesquioxane) (PMSSQ) films | Sacrificial-porogen approach | - | >99.7 | 400–800 | The refractive indices ranges from 1.44 to as low as 1.18 | Stability, reliability and environmental effects of/on the coating can be analyzed | [212] |
Poly(methyl methacrylate)/polystyrene | PMMA/PS nanoparticles | Spin-coating method | - | 99.17 | 400–800 | Improved transmittance obtained from the modification of surface roughness | Transmission can be analyzed and improved for broadband wavelength, and PCE analysis can be considered | [213] |
Epoxy resin | Biomimetic diodon-skin nanothorn (DSNT) epoxy resin ARC | Soft imprint lithography | ~15.8 | - | 300–1100 | PCE of the silicon PV cell is increased from 18.99% to 19.88% | Effect of this coating on various solar cells to find its suitable application | [214] |
AR Coating Material | ARC Structure | Fabrication Technology | Reflectance (%) | Transmittance (%) | Wavelength (nm) | Features | Research Potential | Reference |
---|---|---|---|---|---|---|---|---|
SiO2 and TiO2 | SiO2/TiO2 DLARC | Sol–gel dip-coating method | - | 92 | 350–800 | Super-hydrophilic with water contact angle less than 2° | Experimental analysis of the increase in PCE using this coating | [215] |
SiO2 and TiO2 |
| Sol-gel method |
| - | 400–1000 | An enhancement of 39% in PCE of a mono c-Si PV cell is obtained with triple-layer ARC | Effect of this coating on various solar cells to find its suitable application | [216] |
SiO2 and TiO2 | SiO2/TiO2 DLARC | Surface sol-gel process | - | 97.7 | 400–1200 | Multifunctional ARC with high performance, wide wavelength range, and high environmental stability | Experimental analysis of the increase in PCE using this coating | [223] |
SiO2 and TiO2 | Five TiO2 and SiO2 thin films | Microwave assisted reactive magnetron sputtering process | - | 97 | 450–780 | Improved hardness, high photocatalytic activity, scratch-resistant, and hydrophobic | Transmission can be analyzed and improved for broadband wavelength | [224] |
Ag and SiiO2 | Nanostructured Ag and silica | Localized surface plasmon resonance | - | 97.2 | 400–800 | Low refractive index and high forward scattering is obtained | Effect of this coating on various solar cells to find its suitable application | [233] |
Ag and Silicon | Ag nanosphereson Si nanopillar arrays | Simulation Research | 2.66 | - | 400–1100 | Practicable method for the optimization of antireflection in different device applications | Experimental analysis of the increase in PCE using this coating | [234] |
ZnO and SiO2 | Nanoporous ZnO/SiO2 bilayer coating | Sol-gel dip-coating method | - | 6.5% increase | 300–1200 | Broadband antireflection performance of the bilayer structure | Stability, reliability and environmental effects of/on the coating can be analyzed | [235] |
ZnO and Silicon | ZnO/porous silicon layer | Photoelectrochemical etching methodology and radio frequency sputtering technique | - | - | 400–1000 | Increased the efficiency of the solar cell to 18.15% | Transmission and reflectance values can be obtained | [236] |
MgF2 and ZnO | Double layer MgF2 and ZnO nanorods layer | RF sputtering | 5.5 | - | 300–1000 | An enhanced PCE of 17% in CIGS solar cells | Stability, reliability and environmental effects of/on the coating can be analyzed | [237] |
Al2O3 and TiO2 | Al2O3/TiO2 DARC | Liquid phase deposition | 3.3 | - | 400–800 | Highly favorable method for Si PV cells | Experimental analysis of the increase in PCE using this coating | [238] |
Al2O3, TiO2, SiO2 and MgF2 |
| E-beam deposition technique |
|
| 400–700 | These filters can be used for applications such as transparent industrial display systems, relay optics in complex optical instruments | Transmission can be analyzed and improved for broadband wavelength, and PCE analysis can be considered | [239] |
SiO2, Al2O3 and SiNx |
| DC reactive magnetron sputtering and PECVD |
| - | 350–1100 | Optimal design of quadruple-layer antireflection coating | Experimental analysis of the increase in PCE using this coating | [241] |
PPFC and NSN | PPFC on Nb2O5/SiO2/ Nb2O5 (NSN) trilayers | Roll to roll sputtering and plasma treatment | 1.71 | - | 528 | Possesses a water contact angle of 100° | Effect of this coating on various solar cells to find its suitable application | [242] |
SiO2, PEG and polyvinyl pyrrolidone |
| Sol-gel dip-coating method | - | 97 | 450–700 | The enhancement of PCE of SiO2—PVP and SiO2—PEG AR coatings are 8.33% and 7.27%, respectively | Stability, reliability and environmental effects of/on the coating can be analyzed | [245] |
Silica and PET | Single-layered porous silica films on polyethylene terephthalate (PET) substrates | Template synthesis and spin-coating method | <2 | - | 400–800 | ARC for efficient, large-scale flexible optoelectronics devices | Research to improve transmittance further can be considered, and together with PCE analysis can be considered | [246] |
Type of PV Cell | AR Coating Material | Fabrication Technology | PCE (%) | Reference |
---|---|---|---|---|
Mono-crystalline solar cells | ZnS | Chemical bath deposition | 13.80% | [262] |
Mono-crystalline solar cells | SiO2/SiO2–TiO2/TiO2 triple-layer ARC | Sol-gel method | 39% improvement | [216] |
Crystalline solar cells | Mesoporous DLAR silica | Sol-gel | 2.40 times increase | [264] |
Crystalline silicon solar cells |
| DC reactive magnetron sputerring and PECVD |
| [241] |
Crystalline silicon solar cells | Polydimethylsiloxane (PDMS) | Ion-beam etching and plasma treatment | 13.60% | [211] |
Crystalline silicon solar cells | MgF2 | Deformation-reformation approach | 6% improvement | [186] |
Crystalline silicon solar cells | ZnO/PS layers | Photoelectrochemical etching and radio frequency sputtering method | 18.15% | [236] |
Multi-crystalline silicon solar cells | ZnO nanorod arrays | Two-step aqueous solution method | enhancement of 41% | [172] |
Multi-crystalline silicon solar cells | TiO2 | Atmospheric pressure chemical vapor deposition | increased from 11.24% to 14.26% | [147] |
Multi-crystalline silicon solar cells | Silicon nitride | Plasma texturization and chemical etching | improvement up to ~2.4% | [123] |
Thin film solar cells | SiO2 and BZO | Sol-gel and MOCVD method | Enhanced from 9.83% to 10.24% | [104] |
Multi-junction solar cells | ZnS and MgF2 | Glancing angle deposition | improved from 9.91% to 13.3% | [302] |
Multi-junction solar cells |
| Molecular beam epitaxy method | enhancement of (i) 6% and (ii) 19% | [306] |
GaAs p-n junction solar cell | ZnO | Sol-gel method | 32% enhancement | [170] |
CiGS solar cells | MgF2 and ZnO | RF sputtering and hydrothermal method | boosted by 17% | [237] |
CiGS solar cells |
| Sol-gel dip coating process |
| [245] |
CiGS solar cells | SiO2 | Sol–gel dip-coating and electrostatic self-assembly technique | increased from 11.66% to 12.59% | [120] |
CiGS solar cells | ZnO nanorods | Aqueous solution method | increased from 10% to 11.5% | [188] |
DSSC | Silica | Liquid phase deposition | increased from 4.76% to 6.03% | [334] |
DSSC | SiO2 and ZnO | Sol-gel and spraying technique | enhanced from 4.67% to 5.79% | [335] |
Organic solar cells | PDMS film | Soft imprint lithography | increased from 5.16% to 6.19% | [18] |
Organic solar cells | ZnO moth-eye structure | Soft imprint nanopatterning | enhanced from 5.12% to 6.28% | [159] |
Perovskite solar cells | PPFC and NSN | Roll to roll sputtering and plasma treatment | 17% | [242] |
Perovskite solar cells | Silica | Spin coating | Increased from 14.81% to 15.82% | [119] |
Configuration | Material | Substrate | Material Structures | Dimensions | Category | Results | Reference |
---|---|---|---|---|---|---|---|
1 | Ag and Au nanoparticles | Silicon | Cylinder | d = 100 nm, h = 50 nm | Simulations | Cylindrical and hemispherical shapes exhibited improved path lengths than spherical shaped particles. Also, Ag particles provide better path length enhancements than Au particles | [358] |
Hemispherical | d = 100 nm | ||||||
Spherical | d = 100 nm & 150 nm | ||||||
Au and silica nanoparticles | Silicon | - | Au—d = 100 nm | Simulation and experiment | Photocurrent enhancement of 2.8% and 8.8% in crystalline Si PV were obtained for Au and silica nanoparticles, respectively | [360] | |
Silica—d = 150 nm | |||||||
Aluminum nanoparticles | Silicon | Spherical | d = 100 ± 30 nm | Simulation and experiment | Photocurrent improvement of 0.4 mA/cm2 was achieved due to the incorporation of Al nanoparticles in SiNx AR coatings deposited on textured multi-crystalline Si solar cells | [362] | |
Aluminum nanoparticles | Silicon | - | d = Varied from 60 to 220 nm | Simulation | The enhancement factor increase as the size of nanoparticles increases up to 100 nm. Maximum absorption enhancement of 40% is obtained for Al nanoparticles with d = 100 nm and 150 nm period | [361] | |
2 | Ag nanoparticles | Crystalline Si, amorphous Si, polymer blend and Fe2O3 | - | d = 5 to 60 nm | Simulation | Significant Ohmic losses in the metal dominate the absorption in c-Si, a-Si, Fe2O3, and polymer blend. 5-fold enhancement in c-Si while a-Si cannot be sensitized. Absorption can be enhanced by 17–34% in the polymer blend | [363] |
Ag, Au and Al | - | Spherical metal nanoparticles | d = 10 nm | Simulation | Evaluation of the potential of spherical metal nanoparticles in enhancing the light absorption by embedding them into thin-film solar cells | [366] | |
3 | Ag and TiO2 | Silicon | Silver discs and titanium dioxide pillars | Ag—d = 200 nm, h = 50 nm | Simulation | Enhancement of short circuit current of about 67% and 45% for silver and TiO2 nanoparticles, respectively | [364] |
TiO2—d = 400 nm, h = 300 nm | |||||||
Au | Silicon | Spherical gold nano colloids | d = 100, 150 and 200 nm | Experiment | Superior enhancements of photocurrent are obtained by incorporating plasmonic back reflectors with 150 and 200 nm Au metal nanoparticle | [367] | |
4 | Aluminum | Silicon | Thin metal layer (SPP grating) | Thickness = 20 nm | Simulation | Improvement in the absorption for an ultrathin Si solar cell is about 153% in the wavelength range of 400–1100 nm | [365] |
Length = 1.5 μm | |||||||
Spacing = 100 nm | |||||||
Distance from back metal = 30 nm | |||||||
Silicon substrate thickness = 220 nm |
AR Coating Material | AR Structure | Fabrication Technology | Optical Performance | Broadband Antireflectivity | Multifunctionality | Stability and Durability | Feasibility and Cost-Effectiveness | Source | ||
---|---|---|---|---|---|---|---|---|---|---|
Reflectance (%) | Transmittance (%) | Wavelength Range (nm) | ||||||||
Silica | Closed-surface silica AR thin film | Acid catalyst sol-gel method | - | 97.1 | 300–1200 | Yes | No | Highly stable and durable. 5H pencil hardness, damp test showed excellent moisture and temperature resistance | Dip-coating method is used. Simple, convenient and cost-effective method | [106] |
Silica | Four layer Nanoporous SiO2 | Glancing angle deposition technique | 0.04 | - | 400–800 | No | No | No information | Involves complex fabrication of thin film layers | [114] |
Silica | Five layer hollow silica nanoparticles | Dip-coating method | - | 99.04 | 380–1600 | Omnidirectional broadband antireflectivity | No | No information | Simple method, feasible for large area manufacturing | [115] |
Porous silicon (PS) |
| Electrochemical process | Single layer—~7 Double layer—~3 | - | 400–1000 | No | No | No information | Multiple PSi layers can be formed in one step process | [102] |
Silicon nitride | Single layer SiNx on textured Si wafer | Plasma deposition | <2.5 | >97 | 300–1000 | Yes | No | No information | Industrially used method of PECVD is used. Implementation will be easier | [122] |
TiO2 | TiO2 thin films deposited on textured Si substrate | High impulse power magnetron sputtering | <3 | - | 400–1100 | Yes | No | No information | Large scale manufacturing isn’t cost-effective with HiPIMS | [153] |
TiO2 | Double layer TiO2 film | Atmospheric pressure chemical vapor deposition | 6.5 | - | 350–1150 | Yes | No | No information | Low cost, US$0.05 per 100 mm × 100 mm wafer | [154] |
MgF2 | Mesoporous MgF2 nanoparticles | Lyothermal synthesis and Dip coating process | - | 97.03 | 300–1500 | Yes | Hydrophobic film | Environmentally and mechanically stable coating | Simple technique and cost-effective methodology | [187] |
ZnO | Moth eye structure | Aqueous solution method | 1.46 | - | 200–800 | No | No | No information | - | [188] |
Polystyrene | Biomimetic nanopillars | Microinjection compression molding | ~4 | - | 400–1000 | No | Hydrophobic coating | No information | Rapid fabrication and efficient replication method | [197] |
PMMA | Nanopatterns | Thermal nanoimprinting, laser lithography and dry etching | <0.5 | - | 400–800 | No | Antiwettability, antiadhesion and antimicrobial coating | No information | Complicated fabrication technique | [5] |
PET | Nano-cone array | Reactive-ion Etching | <0.5 | >97 | 300–900 | No | Superhydrophobic coating | No information | Facile method but requires sophisticated equipment | [190] |
SiO2 and TiO2 |
| Sol-gel method |
| - | 400–1000 | No | No | No information | Low-cost fabrication approach | [216] |
SiO2 and TiO2 | Double-layer SiO2/TiO2 coating | Surface sol-gel process | - | 97.7 | 400–1200 | Yes | Photocatalytic and hydrophobic coating | Mechanically robust, moisture resistance, long-term stability against temperature and durable | Simple and facile fabrication method | [223] |
ZnO and SiO2 | Nanoporous ZnO/SiO2 bilayer coating | Sol-gel dip-coating method | 2.4 | 96.1 | 300–1200 | Yes | No | No information | Cost-effective fabrication technique | [235] |
MgF2 and ZnO | Double layer MgF2 and Zno nanorods layer | RF sputtering | 5.5 | - | 300–1000 | Yes | No | No information | Expensive method | [237] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugam, N.; Pugazhendhi, R.; Madurai Elavarasan, R.; Kasiviswanathan, P.; Das, N. Anti-Reflective Coating Materials: A Holistic Review from PV Perspective. Energies 2020, 13, 2631. https://doi.org/10.3390/en13102631
Shanmugam N, Pugazhendhi R, Madurai Elavarasan R, Kasiviswanathan P, Das N. Anti-Reflective Coating Materials: A Holistic Review from PV Perspective. Energies. 2020; 13(10):2631. https://doi.org/10.3390/en13102631
Chicago/Turabian StyleShanmugam, Natarajan, Rishi Pugazhendhi, Rajvikram Madurai Elavarasan, Pitchandi Kasiviswanathan, and Narottam Das. 2020. "Anti-Reflective Coating Materials: A Holistic Review from PV Perspective" Energies 13, no. 10: 2631. https://doi.org/10.3390/en13102631
APA StyleShanmugam, N., Pugazhendhi, R., Madurai Elavarasan, R., Kasiviswanathan, P., & Das, N. (2020). Anti-Reflective Coating Materials: A Holistic Review from PV Perspective. Energies, 13(10), 2631. https://doi.org/10.3390/en13102631