Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Katz, E.; Buckmann, A.F.; Willner, I. Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 2001, 123, 10752–10753. [Google Scholar] [CrossRef] [PubMed]
- Dondi, D.; Bertacchini, A.; Brunelli, D.; Larcher, L.; Benini, L. Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks. IEEE Trans. Ind. Electron. 2008, 55, 2759–2766. [Google Scholar] [CrossRef]
- Bhatia, D.; Sharma, H.; Meena, R.S.; Palkar, V.R. A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sens. Biosens. Res. 2016, 9, 45–52. [Google Scholar] [CrossRef]
- Hu, Y.F.; Xu, C.; Zhang, Y.; Lin, L.; Snyder, R.L.; Wang, Z.L. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. J. Adv. Mater. 2011, 23, 4068–4071. [Google Scholar] [CrossRef]
- Hsu, C.L.; Chen, K.C. Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. J. Phys. Chem. C 2012, 116, 9351–9355. [Google Scholar] [CrossRef]
- Ko, Y.H.; Nagaraju, G.; Lee, S.H.; Yu, J.S. PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS Appl. Mater. Interfaces 2014, 6, 6631–6637. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.X.; Pradel, K.C.; Zhu, G.; Zhou, Y.S.; Zhang, Y.; Hu, Y.F.; Lin, L.; Wang, Z.L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef]
- Wang, X.D.; Gao, Y.F.; Wei, Y.G.; Wang, Z.L. Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res. 2009, 2, 177–182. [Google Scholar] [CrossRef]
- Lu, M.P.; Song, J.; Lu, M.Y.; Chen, M.T.; Gao, Y.; Chen, L.J.; Wang, Z.L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 2009, 9, 1223–1227. [Google Scholar] [CrossRef]
- Liu, C.W.; Chang, S.J.; Hsiao, C.H.; Lo, K.Y.; Kao, T.H.; Wang, B.C.; Young, S.J.; Tsai, K.S.; Wu, S.L. Noise properties of low-temperature-grown Co-doped ZnO nanorods as ultraviolet photodetectors. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3800707. [Google Scholar]
- Fang, X.S.; Zhai, T.Y.; Gautam, U.K.; Li, L.; Wu, L.M.; Bando, Y.S.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater Sci. 2011, 56, 175–287. [Google Scholar] [CrossRef]
- Astakhov, G.V.; Yakovlev, D.R.; Kochereshko, V.P.; Ossau, W.; Faschinger, W.; Puls, J.; Henneberger, F.; Crooker, S.A.; McCulloch, Q.; Wolverson, D.; et al. Binding energy of charged excitons in ZnSe-based quantum wells. Phys. Rev. B. 2002, 65, 165335. [Google Scholar] [CrossRef]
- Orton, J.W. Acceptor binding energy in GaN and related alloys. Semicond. Sci. Technol. 1995, 10, 101–104. [Google Scholar] [CrossRef]
- Young, S.J.; Tang, W.L. Wireless Zinc Oxide Based pH Sensor System. J. Electrochem. Soc. 2019, 166, B3047–B3050. [Google Scholar] [CrossRef]
- Chu, Y.L.; Ji, L.W.; Lu, H.Y.; Young, S.J.; Tang, I.T.; Chu, T.T.; Guo, J.S.; Tsai, Y.T. Fabrication and Characterization of UV Photodetectors with Cu-Doped ZnO Nanorod Arrays. J. Electrochem. Soc. 2020, 167, 027522. [Google Scholar] [CrossRef]
- Al-Ruqeishi, M.S.; Mohiuddin, T.; Al-Habsi, B.; Al-Ruqeishi, F.; Al-Fahdi, A.; Al-Khusaibi, A. Piezoelectric nanogenerator based on ZnO nanorods. Arab. J. Chem. 2016, 12, 5173–5179. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.H.; Zhao, D.X.; Shen, D.Z.; Li, B.H.; Wang, X.H. Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p-n homojunction LED fabricated by hydrothermal method. J. Phys. Chem. C 2009, 113, 21208–21212. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Chang, S.J.; Ji, L.W.; Hsiao, Y.J.; Tang, I.T.; Lu, H.Y.; Chu, Y.L. High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega 2018, 3, 13798–13807. [Google Scholar] [CrossRef]
- Young, S.J.; Wang, T.H. ZnO Nanorods Adsorbed with Photochemical Ag Nanoparticles for IOT and Field Electron Emission Application. J. Electrochem. Soc. 2018, 165, B3043–B3045. [Google Scholar] [CrossRef]
- Bae, S.Y.; Na, C.W.; Kang, J.H.; Park, J. Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J. Phys. Chem. B 2005, 109, 2526–2531. [Google Scholar] [CrossRef]
- Wu, D.; Yang, M.; Huang, Z.; Yin, G.; Liao, X.; Kang, Y.; Chen, X.; Wang, H. Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution. J. Colloid Interface Sci. 2009, 330, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Chikoidze, E.; Modreanu, M.; Sallet, V.; Gorochov, O.; Galtier, P. Electrical properties of chlorine-doped ZnO thin films grown by MOCVD. Phys. Status Solidi A 2008, 205, 1575–1579. [Google Scholar] [CrossRef]
- Liu, Y.H.; Young, S.J.; Ji, L.W.; Chang, S.J. Noise Properties of Mg-Doped ZnO Nanorods Visible-Blind Photosensors. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 3800405. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Liu, J.; Wang, Z.L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105. [Google Scholar] [CrossRef]
- Elkamel, I.B.; Hamdaoui, N.; Mezni, A.; Ajjel, R.; Beji, L. High responsivity and 1/f noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles. RSC Adv. 2018, 8, 32333–32343. [Google Scholar] [CrossRef]
- Chiu, S.H.; Huang, J.C.A. Chemical bath deposition of ZnO and Ni doped ZnO nanorod. J. Non-Cryst. Solids 2012, 358, 2453–2457. [Google Scholar] [CrossRef]
- Chen, C.C.; Wu, T.L.; Meen, T.H.; Chen, C.Y.; Su, C.H.; Tsai, J.K.; Lee, C.Y.; Lee, C.H.; Liu, D.S. ZnO Nanogenerator Prepared from ZnO Nanorods Grown by Hydrothermal Method. Sens. Mater. 2019, 31, 1083–1089. [Google Scholar] [CrossRef]
- Kim, K.H.; Jin, Z.; Abe, Y.; Kawamura, M. A comparative study on the structural properties of ZnO and Ni-doped ZnO nanostructures. Mater. Lett. 2015, 149, 8–11. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Wang, H.; Shi, Z.F.; Zhang, B.L. Adjust the Content of Nickel in NiZnO Films by Vacuum Anneal. Adv. Mater. Res. 2012, 562, 11–14. [Google Scholar] [CrossRef]
- Chithira, P.R.; John, T.T. Defect and dopant induced room temperature ferromagnetism in Ni doped ZnO nanoparticles. J. Alloy. Compd. 2018, 766, 572–583. [Google Scholar] [CrossRef]
- Chand, P.; Gaur, A.; Kumar, A.; Gaur, U.K. Structural, morphological and optical study of Li doped ZnO thin films on Si (100) substrate deposited by pulsed laser deposition. Ceram. Int. 2014, 40, 11915–11923. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Dinesha, M.L.; Jayanna, H.S.; Mohanty, S.; Ravi, S. Structural, electrical and magnetic properties of Co and Fe co-doped ZnO nanoparticles prepared by solution combustion method. J. Alloy. Compd. 2010, 490, 618–623. [Google Scholar] [CrossRef]
- Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Phan, J.; He, R.; Choi, H.J. Controlled Growth of ZnO Nanowires and Their Optical Properties. Adv. Funct. Mater. 2002, 12, 323–331. [Google Scholar] [CrossRef]
- Modaberi, M.R.; Rooydell, R.; Brahma, S.; Akande, A.A.; Mwakikunga, B.W.; Liu, C.P. Enhanced response and selectivity of H2S sensing through controlled Ni doping into ZnO nanorods by using single metal organic precursors. Sens. Actuators B Chem. 2018, 273, 1278–1290. [Google Scholar] [CrossRef]
- He, J.H.; Lao, C.S.; Chen, L.J.; Davidovic, D.; Wang, Z.L. Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties. J. Am. Chem. Soc. 2005, 127, 16376–16377. [Google Scholar] [CrossRef]
- Chu, Y.L.; Ji, L.W.; Hsiao, Y.J.; Lu, H.Y.; Young, S.J.; Tang, I.T.; Chu, T.T.; Chen, X.J. Fabrication and Characterization of Ni-Doped ZnO Nanorod Arrays for UV Photodetector Application. J. Electrochem. Soc. 2020, 167, 067506. [Google Scholar] [CrossRef]
- Hu, C.J.; Lin, Y.H.; Tang, C.W.; Tsai, M.Y.; Hsu, W.K.; Kuo, H.F. ZnO-coated carbon nanotubes: Flexible piezoelectric generators. Adv. Mater. 2011, 23, 2941–2945. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Mater. 2004, 16, R829–R858. [Google Scholar] [CrossRef]
- Kind, H.; Yan, H.Q.; Messer, B.; Law, M.; Yang, P.D. Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 2002, 14, 158–160. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Angappane, S. Synthesis, characterization and photoresponse study of un-doped and transition metal (Co, Ni, Mn) doped ZnO thin films. Mater. Sci. Eng. B 2013, 178, 1068–1075. [Google Scholar]
- Islam, R.; Chen, G.; Ramesh, P.; Suh, J.; Fuchigami, N.; Lee, D.; Littau, K.A.; Weiner, K.; Collins, R.T.; Saraswat, K.C. Investigation of the Changes in Electronic Properties of Nickel Oxide (NiOx) Due to UV/Ozone Treatment. ACS Appl. Mater. Interfaces 2017, 9, 17201–17207. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Wang, B.Q.; Liu, X.F.; Yu, D.P.; He, B.; Yu, R.H. Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods. New J. Phys. 2009, 11, 063009. [Google Scholar] [CrossRef]
- Hu, Y.F.; Zhang, Y.; Xu, C.; Zhu, G.A.; Wang, Z.L. High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display. Nano Lett. 2010, 10, 5025–5031. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Y.-L.; Young, S.-J.; Ji, L.-W.; Chu, T.-T.; Chen, P.-H. Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators. Energies 2020, 13, 2731. https://doi.org/10.3390/en13112731
Chu Y-L, Young S-J, Ji L-W, Chu T-T, Chen P-H. Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators. Energies. 2020; 13(11):2731. https://doi.org/10.3390/en13112731
Chicago/Turabian StyleChu, Yen-Lin, Sheng-Joue Young, Liang-Wen Ji, Tung-Te Chu, and Po-Hao Chen. 2020. "Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators" Energies 13, no. 11: 2731. https://doi.org/10.3390/en13112731
APA StyleChu, Y.-L., Young, S.-J., Ji, L.-W., Chu, T.-T., & Chen, P.-H. (2020). Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators. Energies, 13(11), 2731. https://doi.org/10.3390/en13112731