Analysis of the Thermal Environment in Pedestrian Space Using 3D Thermal Imaging
Abstract
:1. Introduction
2. Methodology
2.1. Acquisition of 3D Models
2.2. Acquisition of 2D Thermal Images
2.3. 3D Thermagraphy Processing
2.4. Estimation of Mean Radiant Temperature
3. Case Study
3.1. Thermal Environment in Pedestrian Space around the Teaching Buildings
3.2. Thermal Environment in Pedestrian Space around the Dormitory Buildings
3.3. Spatial Distribution of MRT around the Teaching Buildings
- At the same height, the MRT values at the analysis points in any column (such as points A1, B2, C3 and D3) followed the same trend, first of all rising, then holding steady, before finally decreasing rapidly. This is because the start and end points were closer to the lower temperature façades in the pedestrian space, and their MRT values were lower. Meanwhile the MRT values at the analysis points in the same row (e.g., A1-a, B1-a, C1-a and D1-a) also followed the order of A > B > C > D. Because analysis points A and B were in the sunlit area, analysis point C was at the junction of the sunlit and shaded areas, and analysis point D was in the shade, the ordering is A > B > C > D.
- The distance between the analysis points (A1, A2, A3) and the building was equal, while the MRT values for the same position along the length of the building façade decreased as the height increased, i.e., A3-a < A2-a < A1-a. This is because, for the same position, the closer the analysis point was to the ground, the higher its temperature, making the MRT value higher.
- The height of thermal comfort evaluation for pedestrian feet is 0.5 m when walking. At this height, the highest MRT value, 39.0 °C, appears in column A1 (analysis points f, g, h and i). The lowest MRT value, 33.5 °C, appears in column D1 (analysis points a and 1), with a temperature difference of 5.5 °C.
- The average height of thermal comfort evaluation for children is 1.0 m. In Figure 9b, it can be seen that the highest and lowest MRT values appear in column A2 (analysis points g and h) and D2 (analysis points a and l), with temperatures of 38.8 °C and 32.9 °C, respectively, and a temperature difference of 5.9 °C.
- The average height of thermal comfort evaluation for adults is 1.5 m. As seen in Figure 9c, it is obvious that the highest MRT value appears in the middle of column A3 (analysis points f, g, h and i), i.e., 38.6 °C. The lowest MRT value appears at the beginning and end of column D3 (analysis points a and l), with a temperature of 32.7 °C and a temperature difference of 5.9 °C.
3.4. Validation of MRTs Estimated with Thermal Images
4. Discussion
4.1. 3D Thermal Image Visualization
4.2. Analysis of MRT in Pedestrian Space
4.3. Combination with Other Application Software
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jin, H.; Liu, S.Q.; Kang, J. Thermal comfort range and influence factor of urban pedestrian streets in severe cold regions. Energy Build. 2019, 198, 197–206. [Google Scholar] [CrossRef]
- Eliasson, I.; Knez, I.; Westerberg, U.; Thorsson, S.; Lindberg, F. Climate and behaviour in a Nordic city. Landsc. Urban Plan. 2007, 82, 72–84. [Google Scholar] [CrossRef]
- Xu, M.; Hong, B.; Jiang, R.; An, L.; Zhang, T. Outdoor thermal comfort of shaded spaces in an urban park in the cold region of China. Build. Environ. 2019, 155, 408–420. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Lam, C.K.C.; Kenawy, I. Outdoor thermal comfort assessment: A review on thermal comfort research in Australia. Build. Environ. 2020, 177, 106917. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A. Study on importance, procedure, and scope of outdoor thermal comfort—A review. Sustain. Cities Soc. 2020, 61, 102297. [Google Scholar] [CrossRef]
- Ma, X.; Fukuda, H.; Zhou, D.; Gao, W.J.; Wang, M.Y. The study on outdoor pedestrian thermal comfort in blocks: A case study of the Dao He Old Block in hot-summer and cold-winter area of southern China. Sol. Energy 2019, 179, 210–225. [Google Scholar] [CrossRef]
- Ma, X.; Fukuda, H.; Zhou, D.; Wang, M.Y. Study on outdoor thermal comfort of the commercial pedestrian block in hot-summer and cold-winter region of southern China-a case study of The Taizhou Old Block. Tour. Manag. 2019, 75, 186–205. [Google Scholar] [CrossRef]
- Rakha, T.; Gorodetsky, A. Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Automat. Constr. 2018, 93, 252–264. [Google Scholar] [CrossRef]
- Maes, W.H.; Huete, A.; Steppe, K. Optimizing the processing of UAV-based thermal imagery. Remote Sens. 2017, 9, 476. [Google Scholar] [CrossRef] [Green Version]
- Golasi, I.; Salata, F.; De Lieto Vollaro, E.; Coppi, M. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies 2016, 9, 550. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Lang, W.; Xiao, Y.Q. The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot-humid area of China. Sustain. Cities Soc. 2019, 49, 101571. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Du, X.H.; Shi, Y.R. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China. Int. J. Biometeorol. 2017, 61, 1421–1432. [Google Scholar] [CrossRef]
- Kang, G.; Kim, J.J.; Choi, W. Computational fluid dynamics simulation of tree effects on pedestrian wind comfort in an urban area. Sustain. Cities Soc. 2020, 56, 102086. [Google Scholar] [CrossRef]
- Du, Y.X.; Mak, C.M.; Li, Y.T. A multi-stage optimization of pedestrian level wind environment and thermal comfort with lift-up design in ideal urban canyons. Sustain. Cities Soc. 2019, 46, 101424. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhou, D.; Gao, W.J.; Zhang, Z.H.; Chen, W.; Peng, W.C.Y. Simulation on the impacts of the street tree pattern on built summer thermal comfort in cold region of China. Sustain. Cities Soc. 2018, 37, 563–580. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhou, D.; Wang, Y.P.; Ma, D.; Chen, W.; Xu, D.; Zhu, Z.Z. Economical and outdoor thermal comfort analysis of greening in multistory residential areas in Xi’an. Sustain. Cities Soc. 2019, 51, 101730. [Google Scholar] [CrossRef]
- Su, X.W.; Wang, Z.J.; Xu, Y.Y.; Liu, N.C. Thermal comfort under asymmetric cold radiant environment at different exposure distances. Build. Environ. 2020, 178, 106961. [Google Scholar] [CrossRef]
- Guo, H.S.; Aviv, D.; Loyola, M.; Teitelbaum, E.; Houchois, N.; Meggers, F. On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renew. Sustain. Energy Rev. 2020, 117, 109207. [Google Scholar] [CrossRef]
- ISO 15265-2004; Ergonomics of Thermal Environments−Strategy of Evaluation of the Risk for the Prevention of Constraints or Discomfort under Thermal Working Conditions; International Organisation for Standardization: Geneva, Switzerland, 2004.
- D’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. On the Transition Thermal Discomfort to Heat Stress as a Function of the PMV Value. Ind. Healthy 2013, 51, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Middel, A.; Lukasczyk, J.; Maciejewski, R. Sky View Factors from Synthetic Fisheye Photos for Thermal Comfort Routing—A Case Study in Phoenix, Arizona. Urban Plan. 2017, 2, 19–31. [Google Scholar] [CrossRef]
- Gál, C.V.; Kántor, N. Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. Urban Clim. 2020, 32, 100571. [Google Scholar] [CrossRef]
- Roth, M.; Lim, V.H. Evaluation of canopy-layer air and mean radiant temperature simulations by a microclimate model over a tropical residential neighbourhood. Build. Environ. 2017, 112, 177–189. [Google Scholar] [CrossRef]
- Krayenhoff, E.; James, V. Daytime Thermal Anisotropy of Urban Neighbourhoods: Morphological Causation. Remote Sens. 2016, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Nardi, I.; Lucchi, E.; Rubeis, T.D.; Ambrosini, D. Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography. Build. Environ. 2018, 146, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Jarrar, Z.A.; Alshibli, K.A.; AI-Raoush, R.I.; Jung, J. 3D measurements of hydrate surface area during hydrate dissociation in porous media using dynamic 3D imaging. Fuel 2020, 265, 116978. [Google Scholar] [CrossRef]
- Edelman, G.J.; Aalders, M.C. Photogrammetry using visible, infrared, hyperspectral and thermal imaging of crime scenes. Forensic Sci. Int. 2018, 292, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Andraši, P.; Radišić, T.; Muštra, M.; Ivošević, J. Night-time Detection of UAVs using Thermal Infrared Camera. Transp. Res. Proc. 2017, 28, 183–190. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhang, F.; Qi, Y.X.; Deng, L.F.; Wang, X.L.; Yang, S.T. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl. Earth Obs. 2019, 78, 215–226. [Google Scholar] [CrossRef]
- Harvey, M.C.; Rowland, J.V.; Luketina, K.M. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand. J. Volcanol. Geotherm. Res. 2016, 325, 61–69. [Google Scholar] [CrossRef]
- Caldwell, S.H.; Kelleher, C.; Baker, E.A.; Lautz, L.K. Relative information from thermal infrared imagery via unoccupied aerial vehicle informs simulations and spatially-distributed assessments of stream temperature. Sci. Total Environ. 2019, 661, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Laguela, S.; Diaz-Vilarino, L.; Roca, D.; Lorenzo, H. Aerial thermography from low cost UAV for the generation of thermographic digital terrain models. Opto-Electron. Rev. 2018, 23, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Sudhakar, S.; Vijayakumar, V.; Sathiya Kumar, C.; Priya, V.; LogeshRavi, V.; Subramaniyaswamy, V. Unmanned Aerial Vehicle (UAV) based Forest Fire Detection and monitoring for reducing false alarms in forest-fires. Comput. Commun. 2020, 149, 1–16. [Google Scholar] [CrossRef]
- Zhang, M.N.; Zhou, J.F.; Sudduth, K.A.; Kitchen, N.R. Estimation of maize yield and effects of variable-rate nitrogen application using UAV-based RGB imagery. Biosyst. Eng. 2020, 189, 24–35. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.J.; Yang, C.; Zhou, Y.; Ai, M.C. Pattern identification and analysis for the traditional village using low altitude UAV-borne remote sensing: Multifeatured geospatial data to support rural landscape investigation, documentation and management. J. Cult. Herit. 2018. [Google Scholar] [CrossRef]
- Langhammer, J.; Bohumír, J.; Jan, K.; Robert, M. 3-D reconstruction of an abandoned montane reservoir using UAV photogrammetry, aerial LiDAR and field survey. Appl. Geogr. 2018, 98, 9–21. [Google Scholar] [CrossRef]
- Da, L.; Carol, C.M.; Vineet, R.K. Robust non-intrusive interpretation of occupant thermal comfort in built environments with low-cost networked thermal cameras. Appl. Energy 2019, 251, 113336. [Google Scholar] [CrossRef]
- Jiang, W.G.; Zhou, Y.; Ding, L.Y.; Zhou, C.; Ning, X.D. UAV-based 3D reconstruction for hoist site mapping and layout planning in petrochemical construction. Automat. Constr. 2019, 113, 103137. [Google Scholar] [CrossRef]
- Hastaoğlu, K.Ö.; Gül, Y.; Poyraz, F.; Kara, B.C. Monitoring 3D areal displacements by a new methodology and software using UAV photogrammetry. Int. J. Appl. Earth Obs. 2019, 83, 101916. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Previtali, M.; Barazzetti, L.; Redaelli, V.; Scaioni, M.; Rosina, E. Rigorous procedure for mapping thermal infrared images on three-dimensional models of building façades. J. Appl. Remote Sens. 2013, 7, 073503. [Google Scholar] [CrossRef] [Green Version]
- Charlie Lam, C.K.; Hang, J. Solar Radiation Intensity and Outdoor Thermal Comfort in Royal Botanic Garden Melbourne during Heatwave Conditions. Procedia Eng. 2017, 205, 3456–3462. [Google Scholar] [CrossRef]
- Lai, P.Y.; Koh, J.H.; Koh, W.S.; Liu, H.Z. Effectively modeling surface temperature and evaluating mean radiant temperature in tropical outdoor industrial environments. Build. Environ. 2020, 169, 106277. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, T.P.; Matzarakis, A. Comparison of mean radiant temperature from field experiment and modelling: A case study in Freiburg, Germany. Theor. Appl. Climatol. 2014, 118, 535–551. [Google Scholar] [CrossRef]
- Lee, D.S.; Kim, E.J.; Cho, Y.H.; Kang, J.W.; Jo, J.H. A field study on application of infrared thermography for estimating mean radiant temperatures in large stadiums. Energy AMP Build. 2019, 202, 109360. [Google Scholar] [CrossRef]
- Chen, L.; Yu, B.L.; Yang, F.; Mayer, H. Intra-urban differences of mean radiant temperature in different urban settings in Shanghai and implications for heat stress under heat waves: A GIS-based approach. Energy Build. 2016, 130, 829–842. [Google Scholar] [CrossRef]
- Wang, L.J.; Di, Y.H. Discussion on the application of mean radiant temperature. Heat. Ventil. Air Condition. 2015, 1, 87–90. [Google Scholar]
- Sofia, T.; Fredrik, L.B.; Ingegärd, F.; Björn, H. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
- Barry, M.; Ying, J.; Durka, M.J.; Clifford, C.E.; Reddy, B.V.K.; Chyu, M.K. Numerical solution of radiation view factors within a thermoelectric device. Energy 2016, 102, 427–435. [Google Scholar] [CrossRef]
- Lee, H.; Holst, J.; Mayer, H. Modification of human-biometeorologically significant radiant flux densities by shading as local method to mitigate heat stress in summer within urban street canyons. Adv. Meteorol. 2013, 2013, 312572. [Google Scholar] [CrossRef]
- Thorsson, S.; Honjo, T.; Lindberg, F.; Eliasson, I.; Lim, E.M. Thermal Comfort and outdoor activity in Japanese urban public places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Hassan Abdallah, A.S.; Hussein, S.W.; Nayel, M. The Impact of outdoor shading strategies on Student thermal comfort in Open Spaces Between Education Building. Sustain. Cities Soc. 2020, 2020, 102124. [Google Scholar] [CrossRef]
- Coccolo, S.; Pearlmutter, D.; Kaempf, J.; Scartezzini, J.L. Thermal Comfort Maps to estimate the impact of urban greening on the outdoor human comfort. Urban For. Urban Green. 2018, 35, 91–105. [Google Scholar] [CrossRef]
- Niu, L.; Tang, R.L.; Jiang, Y.Z.; Zhou, X. Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas. Sustainability 2020, 12, 478. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Luo, Y.; He, J. Analysis of the Thermal Environment in Pedestrian Space Using 3D Thermal Imaging. Energies 2020, 13, 3674. https://doi.org/10.3390/en13143674
Zhao X, Luo Y, He J. Analysis of the Thermal Environment in Pedestrian Space Using 3D Thermal Imaging. Energies. 2020; 13(14):3674. https://doi.org/10.3390/en13143674
Chicago/Turabian StyleZhao, Xuexiu, Yanwen Luo, and Jiang He. 2020. "Analysis of the Thermal Environment in Pedestrian Space Using 3D Thermal Imaging" Energies 13, no. 14: 3674. https://doi.org/10.3390/en13143674
APA StyleZhao, X., Luo, Y., & He, J. (2020). Analysis of the Thermal Environment in Pedestrian Space Using 3D Thermal Imaging. Energies, 13(14), 3674. https://doi.org/10.3390/en13143674