Passenger Transport Energy Use in Ten Swedish Cities: Understanding the Differences through a Comparative Review
Abstract
:1. Introduction
- (1)
- How does energy use per capita in private and public transport modes compare within Sweden and with other cities in the USA, Australia, Canada, Europe and Asia?
- (2)
- How do the modal energy-consumption rates per vehicle kilometer and passenger kilometer in Swedish cities differ from each other and other cities worldwide?
- (3)
- Can differences in transport energy use per capita be explained through reference to a range of other important transport indicators in Swedish cities?
2. Methodology
3. Transport Energy Use per Capita and Modal Energy Consumption
3.1. Private Passenger Transport Energy Use per Person
3.2. Public Transport Energy Use per Person
3.3. Modal Energy Consumption in Private Transport
3.3.1. Energy Use per Private Passenger Vehicle Kilometer
3.3.2. Energy Use per Public Transport Vehicle Kilometer
3.3.3. Energy Use per Private Passenger Kilometer (PKT)
3.3.4. Energy Use per Public Transport Passenger Kilometer (PKT)
3.3.5. Ratio of Private to Public Transport Energy Use per PKT
3.3.6. Bus Energy Use per PKT
3.3.7. Tram/LRT Energy Use per PKT
3.3.8. Metro Energy Use per PKT
3.3.9. Suburban Rail Energy Use per PKT
3.3.10. Ferry Energy Use per PKT
4. Understanding Differences in Patterns of Energy Use in Swedish Cities
4.1. Differences and Similarities in Car-Related Factors
4.2. Public Transport and Non-Motorized Mode Factors
5. Conclusions
5.1. How Does Energy Use per Capita in Private and Public Transport Modes Compare within Sweden and with Other Cities in the USA, Australia, Canada, Europe and Asia?
5.2. How Do the Modal Energy Consumption Rates per Vehicle Kilometer and Passenger Kilometer in Swedish Cities Differ from Each Other and Other Cities Worldwide?
5.2.1. Energy Use per Vehicle Kilometer
5.2.2. Energy Use per Passenger Kilometer
5.3. Can Differences in Transport Energy Use per Capita Be Explained through Reference to a Range of Other Important Transport Indicators in Swedish Cities?
Funding
Acknowledgments
Conflicts of Interest
References
- Amadeo, K. OPEC Oil Embargo, Its Causes, and the Effects of the Crisis: The Truth about the 1973 Arab Oil Crisis. 2020. Available online: https://www.thebalance.com/opec-oil-embargo-causes-and-effects-of-the-crisis-3305806 (accessed on 8 May 2020). The Balance.
- Kettel, S. Oil Crisis. Encyclopedia Britannica. 2014. Available online: https://www.britannica.com/topic/oil-crisis (accessed on 8 May 2020).
- United States Office of International Energy Affairs. U.S. Oil Companies and the Arab Oil Embargo; University of Michigan Library: Ann Arbor, MI, USA, 1975.
- Vernon, R. Oil Crisis. US Department of Energy; Office of Scientific and Technical Information: Washington, DC, USA, 1976. Available online: https://www.osti.gov/biblio/7186106 (accessed on 12 May 2020).
- Pisarski, A.; de Terra, N. American and European transportation responses to the 1973–74 oil embargo. Transportation 1975, 4, 291–312. [Google Scholar] [CrossRef]
- Hirst, E.; Hylander, W. Transportation Energy Conservation Policies. Science 1976, 192, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.D. Historical Oil Shocks; Working Paper 16790; National Bureau of Economic Research: Cambridge, MA, USA, 2011. [Google Scholar]
- Phillips, J. The Iranian Oil Crisis; Backgrounder No. 76; The Heritage Foundation: Washington, DC, USA, 1979; Available online: http://s3.amazonaws.com/thf_media/1979/pdf/bg76.pdf (accessed on 8 May 2020).
- Kaden, D.; Rose, T. Environmental and Health Issues in Unconventional Oil and Gas Development; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Pojani, D.; Stead, D. The Urban Transport Crisis in Emerging Economies; Springer Nature: Cham, Switzerland, 2017. [Google Scholar]
- Macrotrends. Crude Oil Prices—70 Year Historical Chart. 2020. Available online: https://www.macrotrends.net/1369/crude-oil-price-history-chart (accessed on 3 July 2020).
- Campbell, C.J.; Leherrere, J.H. The World’s Oil Supply 1930–2050: Report; Petroconsultants: Geneva, Switzerland, 1995. [Google Scholar]
- Ruppert, M.C.; Campbell, C. Confronting Collapse: The Crisis of Energy and Money in a Post Peak Oil World; Chelsea Green Publishing: White River Junction, VT, USA, 2009. [Google Scholar]
- Lynch, M. The “Peak Oil” Scare and the Coming Oil Flood; Praeger: Westport, CT, USA, 2016. [Google Scholar]
- Newman, P.; Kenworthy, J. Urban Passenger Transport Energy Consumption and Carbon Dioxide Emissions: A Global Review and Assessment of Some Reduction Strategies; Hickman, R., Givoni, M., Bonilla, D., Banister, D., Eds.; Handbook on Transport and Development; Edward Elgar Publishing: Cheltenham, UK, 2015; Chapter 3; pp. 36–58. [Google Scholar]
- Kenworthy, J.; Laube, F. The Millennium Cities Database for Sustainable Transport; (CDROM Database); International Union (Association) of Public Transport (UITP): Brussels, Belgium; Institute for Sustainability and Technology Policy (ISTP): Perth, Australia, 2001. [Google Scholar]
- Kenworthy, J.R. Reducing Passenger Transport Energy Use in Cities: A Comparative Perspective on Private and Public Transport Energy Use in American, Canadian, Australian, European and Asian Cities. In Urban Energy Transition: Renewable Strategies for Cities and Regions, 2nd ed.; Droege, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 2.1; pp. 169–204. [Google Scholar]
- Pucher, J.; Clorer, S. Taming the automobile in Germany. Transp. Q. 1992, 46, 383–395. [Google Scholar]
- Schiller, P.; Kenworthy, J.R. An Introduction to Sustainable Transportation: Policy, Planning and Implementation, 2nd ed.; Earthscan: London, UK, 2018; 420p. [Google Scholar]
- Kenworthy, J.R. The Good, the Bad and the Ugly in Urban Transport: Comparing Global Cities for Dependence on the Automobile; Hartz-Karp, J., Marinova, D., Eds.; Methods for Sustainability Research; Edward Elgar Publishing: Cheltenham, UK, 2017; Chapter 3; pp. 46–62. [Google Scholar]
- Kenworthy, J. Urban Transport and Eco-Urbanism: A Global Comparative Study of Cities with a Special Focus on Five Larger Swedish Urban Regions. Urban Sci. 2019, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- An, F.; Rousseau, A. Integration of a Modal Energy and Emissions Model into a PNGV Vehicle Simulation Model, PSAT. J. Engines 2001, 110, 781–793. [Google Scholar]
- Faris, W.F.; Rakha, H.A.; Kafafy, R.I.; Idres, M.; Elmoselhy, S. Vehicle fuel consumption and emission modelling: An in-depth literature review. Int. J. Veh. Syst. Model. Test. 2011, 6, 318. [Google Scholar] [CrossRef]
- Kenworthy, J. Trends in Transport and Urban Development in Thirty-Three International Cities, 1995-6 to 2005-6: Some Prospects for Lower Carbon Transport; Lehmann, S., Ed.; Low Carbon Cities: Transforming Urban Systems; Routledge: London, UK, 2014; Chapter 5; pp. 113–130. [Google Scholar]
- Kenworthy, J. Is Automobile Dependence in Emerging Cities an Irresistible Force? Perspectives from São Paulo, Taipei, Prague, Mumbai, Shanghai, Beijing, and Guangzhou. Sustainability 2017, 9, 1953. [Google Scholar] [CrossRef] [Green Version]
- Kenworthy, J.R.; Laube, F.B. An International Sourcebook of Automobile Dependence in Cities, 1960–1990; University Press of Colorado: Boulder, CO, USA, 1999; 704p. [Google Scholar]
- Airviro. Emissions Inventories for Swedish Counties and Municipalities; The Swedish Meteorological and Hydrological Institute: Malmo, Sweden, 2019; Available online: http://www.airviro.smhi.se/cgi-bin/RUS/apub.html_rusreport.cgi (accessed on 19 June 2020).
- Newman, P.W.G.; Kenworthy, J.R. Sustainability and Cities: Overcoming Automobile Dependence; Island Press: Washington, DC, USA, 1999; 442p. [Google Scholar]
- Watt, K.E.F.; Ayres, C. Urban land use patterns and transportation energy cost. In Proceedings of the Paper Presented at the 140th Annual Meeting of the American Association for the Advancement of Science (AAAS), San Francisco, CA, USA, 25 February 1974. [Google Scholar]
- Chang, M.F.; Evans, L.; Herman, R.; Wasielewski, P. Gasoline Consumption in Urban Traffic. Transp. Res. Rec. 1976, 599, 25–30. [Google Scholar]
- Chang, M.-F.; Herman, R. An Attempt to Characterize Traffic in Metropolitan Areas. Transp. Sci. 1978, 12, 58–79. [Google Scholar] [CrossRef]
- Chang, M.F.; Horowitz, A.J. Estimates of fuel savings through improved traffic flow in seven US cities. Traffic Eng. Control 1979, 20, 62–65. [Google Scholar]
- Newman, P.W.G.; Kenworthy, J.R. The transport energy trade-off: Fuel-efficient traffic versus fuel-efficient cities. Transp. Res. 1988, 22A, 163–174. [Google Scholar] [CrossRef]
- Thomson, J.M. Great Cities and Their Traffic; Penguin Books: Middlesex, UK, 1977. [Google Scholar]
- Cervero, R. Sustainable new towns: Stockholm’s rail served satellites. Cities 1995, 12, 41–51. [Google Scholar] [CrossRef]
- Cervero, R. The Transit Metropolis: A Global Inquiry; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Newman, P.; Kosonen, L.; Kenworthy, J. Theory of urban fabrics: Planning the walking, transit/public transport and automobile/motor car cities for reduced car dependency. Town Plan. Rev. 2016, 87, 429–458. [Google Scholar] [CrossRef]
City | Population | Metropolitan GDP | Total Annual |
---|---|---|---|
Per Capita | Public Transport Use | ||
(US$1995) | Per Capita (Boardings) | ||
American Cities | |||
Atlanta 2005 | 3,826,866 | $41,641 | 39 |
Chicago 2005 | 8,217,201 | $40,666 | 73 |
Denver 2005 | 2,256,442 | $45,762 | 38 |
Houston 2005 | 4,853,225 | $44,124 | 19 |
Los Angeles 2005 | 9,758,886 | $40,899 | 68 |
New York 2005 | 20,580,795 | $47,206 | 168 |
Phoenix 2005 | 3,590,804 | $32,589 | 17 |
San Diego 2005 | 2,824,259 | $42,324 | 32 |
San Francisco 2005 | 4,071,751 | $54,266 | 103 |
Washington 2005 | 4,273,361 | $55,070 | 109 |
Australian Cities | |||
Brisbane 2006 | 1,819,800 | $29,365 | 74 |
Melbourne 2006 | 3,743,000 | $30,411 | 104 |
Perth 2006 | 1,518,700 | $37,416 | 68 |
Sydney 2006 | 4,282,000 | $31,583 | 136 |
Canadian Cities | |||
Calgary 2005 | 988,193 | $36,713 | 131 |
Montreal 2005 | 3,487,520 | $26,815 | 206 |
Ottawa 2005 | 1,130,761 | $29,956 | 129 |
Toronto 2005 | 5,555,912 | $33,103 | 154 |
Vancouver 2005 | 2,116,581 | $29,726 | 134 |
European Cities | |||
Graz 2005 | 247,248 | $33,889 | 411 |
Copenhagen 2005 | 1,827,239 | $43,108 | 191 |
Helsinki 2005 | 988,347 | $47,548 | 309 |
Düsseldorf 2005 | 577,416 | $40,270 | 266 |
Oslo 2005 | 1,039,536 | $53,941 | 214 |
Madrid 2005 | 5,964,143 | $26,964 | 337 |
Stockholm 2005 | 1,889,945 | $43,527 | 332 |
Bern 2005 | 303,202 | $54,145 | 543 |
Geneva 2005 | 440,982 | $50,918 | 320 |
London 2005 | 7,512,000 | $33,368 | 483 |
Vienna 2005 | 1,651,437 | $36,131 | 511 |
Manchester 2005 | 2,543,800 | $26,611 | 102 |
Stuttgart 2005 | 592,028 | $33,294 | 285 |
Brussels 2005 | 1,006,749 | $39,758 | 328 |
Prague 2005 | 1,181,610 | $20,179 | 1051 |
Berlin 2005 | 3,395,189 | $21,027 | 410 |
Frankfurt 2005 | 651,583 | $38,356 | 327 |
Hamburg 2005 | 1,743,627 | $36,733 | 266 |
Munich 2005 | 1,288,307 | $45,133 | 505 |
Zurich 2005 | 832,159 | $48,756 | 536 |
Asian Cities | |||
Hong Kong 2006 | 6,857,100 | $18,823 | 548 |
Singapore 2005 | 4,341,800 | $23,578 | 353 |
Swedish Cities | |||
Stockholm 2015 | 2,231,439 | $49,271 | 359 |
Malmö 2015 | 695,430 | $32,709 | 111 |
Goteborg 2015 | 982,360 | $40,808 | 285 |
Linköping 2015 | 152,966 | $30,260 | 64 |
Helsingborg 2015 | 137,909 | $28,917 | 158 |
Uppsala 2015 | 210,126 | $31,998 | 108 |
Västerås 2015 | 145,218 | $29,594 | 53 |
Örebro 2015 | 144,200 | $29,045 | 39 |
Jönköping 2015 | 133,310 | $29,952 | 60 |
Umeå 2015 | 120,777 | $29,415 | 45 |
Freiburg (benchmark small city) | |||
Freiburg 2015 | 222,082 | $25,782 | 192 |
Variable | Units | USA 1995 | USA 2005 | AUS 1996 | AUS 2006 | CAN 1996 | CAN 2006 | EUR 1995 | EUR 2005 | ASIA 1995 | ASIA 2005 |
---|---|---|---|---|---|---|---|---|---|---|---|
Private passenger transport energy use per capita | MJ/person | 60,034 | 53,441 | 31,044 | 35,972 | 32,519 | 30,804 | 15,324 | 15,795 | 6447 | 6076 |
Public transport energy use per capita | MJ/person | 811 | 963 | 876 | 1036 | 1044 | 1190 | 1243 | 1532 | 1905 | 2691 |
Total passenger transport energy use (private plus public) | MJ/person | 60,845 | 54,404 | 31,920 | 37,008 | 33,563 | 31,994 | 16,567 | 17,326 | 8352 | 8768 |
Energy use per private passenger vehicle kilometre | MJ/km | 4.6 | 4.1 | 4.0 | 4.1 | 5.1 | 4.9 | 3.3 | 3.1 | 5.4 | 4.8 |
Energy use per public transport vehicle kilometre | MJ/km | 26.3 | 24.6 | 15.8 | 17.3 | 22.0 | 23.0 | 13.7 | 14.7 | 15.9 | 19.6 |
* Energy use per bus vehicle kilometre | MJ/km | 28.8 | 31.3 | 18.0 | 21.9 | 24.1 | 24.9 | 15.7 | 18.8 | 19.2 | 23.5 |
* Energy use per minibus vehicle kilometre | MJ/km | 8.5 | 13.2 | - | - | 8.1 | - | - | - | 6.9 | 9.5 |
* Energy use per tram wagon kilometre | MJ/km | 19.1 | 19.9 | 10.1 | 11.2 | 12.1 | 14.2 | 12.9 | 14.9 | 5.5 | 5.4 |
* Energy use per light rail wagon kilometre | MJ/km | 17.5 | 15.3 | - | 10.5 | 13.1 | 18.2 | 14.6 | 11.7 | 16.1 | 14.3 |
* Energy use per metro wagon kilometre | MJ/km | 25.3 | 16.1 | - | 22.6 | 10.6 | 13.5 | 11.0 | 9.3 | 7.8 | 18.7 |
* Energy use per suburban rail wagon kilometre | MJ/km | 51.8 | 50.4 | 12.7 | 11.9 | 48.8 | 43.0 | 14.3 | 15.6 | 8.9 | 14.8 |
* Energy use per ferry vessel kilometre | MJ/km | 846.5 | 1073.3 | 144.0 | 140.7 | 290.8 | 283.5 | 151.5 | 141.0 | 601.7 | 641.4 |
Energy use per private passenger kilometre | MJ/p.km | 3.26 | 2.85 | 2.55 | 2.87 | 3.82 | 3.79 | 2.46 | 2.30 | 3.46 | 3.31 |
Energy use per public transport passenger kilometre | MJ/p.km | 2.13 | 2.09 | 0.99 | 0.97 | 1.14 | 1.18 | 0.74 | 0.76 | 0.59 | 0.70 |
* Energy use per bus passenger kilometre | MJ/p.km | 2.85 | 2.97 | 1.77 | 1.87 | 1.50 | 1.57 | 1.10 | 1.31 | 0.77 | 0.95 |
* Energy use per minibus passenger kilometre | MJ/p.km | 1.02 | 7.68 | - | - | 2.34 | - | - | - | 2.66 | 1.96 |
* Energy use per tram passenger kilometre | MJ/p.km | 0.99 | 1.02 | 0.36 | 0.48 | 0.31 | 0.27 | 0.70 | 0.73 | 0.23 | 0.24 |
* Energy use per light rail passenger kilometre | MJ/p.km | 0.67 | 0.64 | - | 0.58 | 0.25 | 1.07 | 0.65 | 0.53 | 0.34 | 0.55 |
* Energy use per metro passenger kilometre | MJ/p.km | 1.65 | 0.69 | - | 0.75 | 0.49 | 0.64 | 0.45 | 0.42 | 0.12 | 0.34 |
* Energy use per suburban rail passenger kilometre | MJ/p.km | 1.38 | 1.29 | 0.55 | 0.49 | 1.31 | 1.17 | 0.69 | 0.60 | 0.16 | 0.27 |
* Energy use per ferry passenger kilometre | MJ/p.km | 5.41 | 6.80 | 2.97 | 2.53 | 3.62 | 1.23 | 4.01 | 4.88 | 3.64 | 4.26 |
Urban density | persons/ha | 14.9 | 15.4 | 13.3 | 14.0 | 26.2 | 25.8 | 49.3 | 47.9 | 215.4 | 217.3 |
Proportion of jobs in CBD | % | 9.2% | 8.2% | 13.3% | 12.7% | 15.7% | 15.0% | 22.2% | 18.3% | 11.4% | 9.1% |
Metropolitan gross domestic product per capita | USD 1995 | $31,386 | $44,455 | $20,226 | $32,194 | $20,825 | $31,263 | $34,673 | $38,683 | $23,593 | $21,201 |
Length of freeway per person | m/ person | 0.156 | 0.156 | 0.086 | 0.083 | 0.122 | 0.157 | 0.080 | 0.094 | 0.025 | 0.026 |
Parking spaces per 1000 CBD jobs | spaces/1000 jobs | 555 | 487 | 367 | 298 | 390 | 319 | 212 | 248 | 135 | 121 |
Passenger cars per 1000 persons | units/1000 persons | 587 | 640 | 591 | 647 | 530 | 522 | 412 | 463 | 73 | 78 |
Average speed of the road network (24/7) | km/h | 49.3 | 50.4 | 43.6 | 42.8 | 44.5 | 45.4 | 34.2 | 34.3 | 31.8 | 30.6 |
Total length of public transport lines per 1000 persons | m/1000 persons | 1420 | 1382 | 2814 | 2609 | 1929 | 2496 | 2420 | 3183 | 1582 | 2614 |
Total length of reserved public transport routes per 1000 persons | m/1000 persons | 49 | 72 | 170 | 160 | 56 | 67 | 231 | 298 | 18 | 34 |
Total public transport seat kilometres of service per capita | seat km/person | 1566 | 1874 | 3997 | 4077 | 2290 | 2368 | 5245 | 6126 | 6882 | 7267 |
Overall average speed of public transport | km/h | 27.3 | 27.3 | 32.5 | 33.0 | 25.1 | 25.7 | 28.0 | 29.8 | 24.0 | 26.3 |
* Average speed of buses | km/h | 21.7 | 19.9 | 23.8 | 23.4 | 22.0 | 22.4 | 21.6 | 21.9 | 19.3 | 19.4 |
* Average speed of suburban rail | km/h | 54.7 | 57.3 | 46.2 | 47.6 | 49.5 | 44.7 | 49.4 | 52.1 | 40.0 | 50.8 |
Total public transport boardings per capita | boardings/person | 60.1 | 66.7 | 90.4 | 95.6 | 140.2 | 150.7 | 357.1 | 386.3 | 476.6 | 450.4 |
Total public transport passenger kilometres per capita | p.km/person | 492 | 571 | 966 | 1075 | 917 | 1031 | 1830 | 2234 | 3169 | 3786 |
Overall public transport vehicle occupancy | persons/unit | 13.9 | 13.1 | 16.9 | 18.1 | 19.2 | 19.8 | 19.8 | 21.0 | 26.9 | 28.1 |
Overall public transport seat occupancy | % | 29% | 29% | 25% | 27% | 40% | 44% | 38% | 39% | 46% | 52% |
Passenger car passenger kilometres per capita | p.km/person | 18,155 | 18,703 | 12,114 | 12,447 | 8645 | 8495 | 6319 | 6817 | 1978 | 1975 |
Percentage of total daily trips by non motorised modes | % | 8.1% | 9.5% | 14.9% | 14.2% | 10.4% | 11.6% | 31.7% | 34.5% | 25.0% | 26.1% |
Percentage of total daily trips by motorised public modes | % | 3.4% | 5.5% | 5.4% | 7.5% | 9.1% | 13.1% | 21.3% | 22.4% | 39.3% | 46.0% |
Proportion of total motorised passenger kilometres on public transport | % | 2.9% | 3.2% | 7.5% | 8.0% | 9.9% | 11.3% | 22.3% | 24.5% | 62.0% | 62.9% |
Ratio of public versus private transport speeds | ratio | 0.57 | 0.55 | 0.75 | 0.78 | 0.57 | 0.57 | 0.83 | 0.88 | 0.76 | 0.86 |
Ratio of segregated public transport infrastructure versus expressways | ratio | 0.41 | 0.56 | 2.18 | 1.98 | 0.55 | 0.56 | 4.17 | 5.51 | 0.93 | 1.42 |
Variable | Units | Stockholm | Malmö | Göteborg | Linköping | Helsingborg | SWE LARGE | Uppsala | Västerås | Örebro | Jönköping |
---|---|---|---|---|---|---|---|---|---|---|---|
Private passenger transport energy use per capita | MJ/person | 12,051 | 15,670 | 15,905 | 18,124 | 17,681 | 15,886 | 12,157 | 14,030 | 17,095 | 21,678 |
Public transport energy use per capita | MJ/person | 1949 | 1310 | 2680 | 1179 | 1819 | 1787 | 1423 | 939 | 862 | 2050 |
Total passenger transport energy use (private plus public) | MJ/person | 14,000 | 16,980 | 18,585 | 19,304 | 19,500 | 17,674 | 13,580 | 14,969 | 17,957 | 23,728 |
Energy use per private passenger vehicle kilometre | MJ/km | 2.4 | 2.9 | 3.1 | 3.5 | 3.3 | 3.1 | 2.5 | 2.6 | 3.3 | 3.6 |
Energy use per public transport vehicle kilometre | MJ/km | 17.1 | 19.9 | 17.8 | 19.3 | 18.4 | 18.2 | 12.2 | 17.2 | 16.8 | 25.0 |
* Energy use per bus vehicle kilometre | MJ/km | 20.0 | 17.2 | 15.4 | 17.5 | 17.2 | 17.4 | 13.3 | 17.0 | 17.9 | 32.1 |
* Energy use per minibus vehicle kilometre | MJ/km | - | - | - | - | - | - | - | - | - | - |
* Energy use per tram wagon kilometre | MJ/km | - | - | - | - | - | - | - | - | - | - |
* Energy use per light rail wagon kilometre | MJ/km | 10.5 | - | 14.0 | 11.1 | - | 11.9 | - | - | - | - |
* Energy use per metro wagon kilometre | MJ/km | 7.8 | - | - | - | - | 7.8 | - | - | - | - |
* Energy use per suburban rail wagon kilometre | MJ/km | 38.3 | 28.7 | 33.2 | 30.1 | 28.7 | 31.8 | 9.3 | 18.0 | 5.0 | 12.7 |
* Energy use per ferry vessel kilometre | MJ/km | 230.4 | - | 243.4 | - | - | 236.9 | - | - | - | - |
Energy use per private passenger kilometre | MJ/p.km | 1.82 | 2.29 | 2.38 | 2.69 | 2.58 | 2.35 | 1.98 | 1.99 | 2.32 | 2.74 |
Energy use per public transport passenger kilometre | MJ/p.km | 0.76 | 0.90 | 1.09 | 1.34 | 1.14 | 1.00 | 0.81 | 1.06 | 2.35 | 2.53 |
* Energy use per bus passenger kilometre | MJ/p.km | 1.37 | 1.67 | 1.45 | 1.65 | 1.57 | 1.54 | 1.33 | 1.40 | 2.64 | 3.43 |
* Energy use per minibus passenger kilometre | MJ/p.km | - | - | - | - | - | - | - | - | - | - |
* Energy use per tram passenger kilometre | MJ/p.km | - | - | - | - | - | - | - | - | - | - |
* Energy use per light rail passenger kilometre | MJ/p.km | 0.52 | - | 0.47 | 0.80 | - | 0.60 | - | - | - | - |
* Energy use per metro passenger kilometre | MJ/p.km | 0.39 | - | - | - | - | 0.39 | - | - | - | - |
* Energy use per suburban rail passenger kilometre | MJ/p.km | 0.39 | 0.47 | 0.66 | 0.74 | 0.48 | 0.55 | 0.32 | 0.52 | 0.46 | 1.18 |
* Energy use per ferry passenger kilometre | MJ/p.km | 6.88 | - | 8.66 | - | - | 7.77 | - | - | - | - |
Table 3 cont. | |||||||||||
Variable | Units | Umeå | Freiburg | SWE SMALL | SWE ALL | USA | AUS | CAN | EUR | ASIA | ALL |
Private passenger transport energy use per capita | MJ/person | 11,622 | 16,488 | 15,317 | 15,601 | 53,441 | 35,972 | 30,804 | 15,795 | 6,076 | 28,301 |
Public transport energy use per capita | MJ/person | 1,132 | 1,081 | 1281 | 1534 | 963 | 1036 | 1190 | 1532 | 2691 | 1360 |
Total passenger transport energy use (private plus public) | MJ/person | 12,754 | 17,569 | 16,598 | 17,136 | 54,403 | 37,008 | 31,994 | 17,326 | 8768 | 29,661 |
Energy use per private passenger vehicle kilometre | MJ/km | 2.3 | 3.1 | 2.9 | 3.0 | 4.1 | 4.1 | 4.9 | 3.1 | 4.8 | 3.8 |
Energy use per public transport vehicle kilometre | MJ/km | 12.5 | 17.8 | 16.2 | 17.3 | 24.6 | 17.3 | 23.0 | 14.7 | 19.6 | 18.6 |
* Energy use per bus vehicle kilometre | MJ/km | 12.0 | 17.9 | 18.5 | 18.0 | 31.3 | 21.9 | 24.9 | 18.8 | 23.5 | 23.1 |
* Energy use per minibus vehicle kilometre | MJ/km | - | - | - | - | 13.2 | - | - | - | 9.5 | 12.9 |
* Energy use per tram wagon kilometre | MJ/km | - | - | - | - | 19.9 | 11.2 | 14.2 | 14.9 | 5.4 | 14.4 |
* Energy use per light rail wagon kilometre | MJ/km | - | 13.0 | - | 11.9 | 15.3 | 10.5 | 18.2 | 11.7 | 14.3 | 13.3 |
* Energy use per metro wagon kilometre | MJ/km | - | - | - | 7.8 | 16.1 | 22.6 | 13.5 | 9.3 | 18.7 | 12.7 |
* Energy use per suburban rail wagon kilometre | MJ/km | 22.4 | 19.0 | 13.5 | 22.6 | 50.4 | 11.9 | 43.0 | 15.6 | 14.8 | 23.9 |
* Energy use per ferry vessel kilometre | MJ/km | - | - | - | 236.9 | 1073.3 | 140.7 | 283.5 | 141.0 | 641.4 | 358.8 |
Energy use per private passenger kilometre | MJ/p.km | 1.74 | 2.39 | 2.18 | 2.27 | 2.85 | 2.87 | 3.79 | 2.30 | 3.31 | 2.72 |
Energy use per public transport passenger kilometre | MJ/p.km | 1.01 | 0.79 | 1.30 | 1.10 | 2.09 | 0.97 | 1.18 | 0.76 | 0.70 | 1.16 |
* Energy use per bus passenger kilometre | MJ/p.km | 1.06 | 1.66 | 1.97 | 1.76 | 2.97 | 1.87 | 1.57 | 1.31 | 0.95 | 1.78 |
* Energy use per minibus passenger kilometre | MJ/p.km | - | - | - | - | 7.68 | - | - | - | 1.96 | 7.16 |
* Energy use per tram passenger kilometre | MJ/p.km | - | - | - | - | 1.02 | 0.48 | 0.27 | 0.73 | 0.24 | 0.65 |
* Energy use per light rail passenger kilometre | MJ/p.km | - | 0.33 | - | 0.60 | 0.64 | 0.58 | 1.07 | 0.53 | 0.55 | 0.63 |
* Energy use per metro passenger kilometre | MJ/p.km | - | - | - | 0.39 | 0.69 | 0.75 | 0.64 | 0.42 | 0.34 | 0.52 |
* Energy use per suburban rail passenger kilometre | MJ/p.km | 0.68 | 0.65 | 0.64 | 0.59 | 1.29 | 0.49 | 1.17 | 0.60 | 0.27 | 0.76 |
* Energy use per ferry passenger kilometre | MJ/p.km | - | - | - | 7.77 | 6.80 | 2.53 | 1.23 | 4.88 | 4.26 | 4.60 |
Variable | Units | Stockholm | Malmö | Göteborg | Linköping | Helsingborg | SWE LARGE | Uppsala | Västerås | Örebro | Jönköping |
---|---|---|---|---|---|---|---|---|---|---|---|
Urban density | persons/ha | 23.5 | 20.0 | 19.7 | 13.8 | 21.9 | 19.8 | 15.3 | 17.1 | 13.7 | 12.6 |
Proportion of jobs in CBD | % | 28.2% | 7.8% | 7.0% | 18.9% | 19.7% | 16.3% | 19.2% | 23.3% | 14.6% | 20.6% |
Metropolitan gross domestic product per capita | USD 1995 | $49,271 | $32,709 | $40,808 | $30,260 | $28,917 | $36,393 | $31,998 | $29,594 | $29,045 | $29,952 |
Length of freeway per person | m/ person | 0.138 | 0.232 | 0.225 | 0.269 | 0.287 | 0.230 | 0.180 | 0.224 | 0.366 | 0.496 |
Parking spaces per 1000 CBD jobs | spaces/1000 jobs | 125 | 237 | 160 | 225 | 483 | 246 | 169 | 501 | 461 | 287 |
Passenger cars per 1000 persons | units/1000 persons | 398 | 442 | 405 | 432 | 435 | 423 | 387 | 461 | 435 | 481 |
Average speed of the road network (24/7) | km/h | 37.1 | 41.0 | 39.0 | 30.5 | 39.1 | 37.3 | 51.3 | 48.5 | 47.4 | 45.0 |
Total length of public transport lines per 1000 persons | m/1000 persons | 4867 | 3109 | 6098 | 11,055 | 3031 | 5,632 | 11,176 | 6894 | 9876 | 9024 |
Total length of reserved public transport routes per 1000 persons | m/1000 persons | 234 | 222 | 283 | 378 | 432 | 310 | 584 | 1275 | 422 | 1457 |
Total public transport seat kilometres of service per capita | seat km/person | 8294 | 5837 | 9376 | 4647 | 6321 | 6,895 | 7115 | 2677 | 3642 | 4330 |
Overall average speed of public transport | km/h | 33.6 | 46.8 | 30.9 | 38.6 | 31.5 | 36.3 | 64.4 | 38.4 | 33.4 | 40.7 |
* Average speed of buses | km/h | 24.8 | 27.8 | 28.0 | 31.3 | 23.6 | 27.1 | 46.0 | 28.0 | 30.5 | 31.5 |
* Average speed of suburban rail | km/h | 56.3 | 75.6 | 66.0 | 93.8 | 65.8 | 71.5 | 102.0 | 93.9 | 89.0 | 72.5 |
Total public transport boardings per capita | boardings/person | 359 | 111 | 285 | 64 | 158 | 195 | 108 | 53 | 39 | 60 |
Total public transport passenger kilometres per capita | p.km/person | 2579 | 1451 | 2463 | 877 | 1590 | 1,792 | 1765 | 884 | 367 | 809 |
Overall public transport vehicle occupancy | persons/unit | 22.6 | 22.0 | 16.3 | 14.4 | 16.1 | 18.3 | 15.2 | 16.2 | 7.2 | 9.9 |
Overall public transport seat occupancy | % | 31% | 25% | 26% | 19% | 25% | 25% | 25% | 33% | 10% | 19% |
Passenger car passenger kilometres per capita | p.km/person | 6630 | 6839 | 6689 | 6734 | 6862 | 6,751 | 6131 | 7048 | 7361 | 7902 |
Percentage of total daily trips by non motorised modes | % | 22.1% | 31.2% | 26.3% | 33.0% | 23.0% | 27.1% | 46.8% | 32.7% | 34.0% | 21.2% |
Percentage of total daily trips by motorised public modes | % | 31.6% | 17.6% | 20.0% | 9.7% | 18.0% | 19.4% | 14.1% | 6.7% | 9.0% | 9.6% |
Proportion of total motorised passenger kilometres on public transport | % | 27.8% | 17.4% | 26.7% | 11.4% | 18.7% | 20.4% | 22.2% | 11.1% | 4.7% | 9.2% |
Ratio of public versus private transport speeds | ratio | 0.91 | 1.14 | 0.79 | 1.27 | 0.81 | 0.98 | 1.25 | 0.79 | 0.71 | 0.90 |
Ratio of segregated public transport infrastructure versus expressways | ratio | 1.69 | 0.96 | 1.26 | 1.41 | 1.51 | 1.36 | 5.48 | 10.34 | 2.32 | 7.67 |
Table 4 cont. | |||||||||||
Variable | Units | Umeå | Freiburg | SWE SMALL | SWE ALL | USA | AUS | CAN | EUR | ASIA | ALL |
Urban density | persons/ha | 11.5 | 46.0 | 14.0 | 16.9 | 15.4 | 14.0 | 25.8 | 47.9 | 217.3 | 42.2 |
Proportion of jobs in CBD | % | 13.7% | 16.3% | 18.3% | 17.3% | 8.2% | 12.7% | 15.0% | 18.3% | 9.1% | 14.5% |
Metropolitan gross domestic product per capita | USD 1995 | $29,415 | $25,782 | $30,001 | $33,197 | $44,455 | $32,194 | $31,263 | $38,683 | $21,201 | $37,700 |
Length of freeway per person | m/ person | 0.000 | 0.063 | 0.253 | 0.242 | 0.156 | 0.083 | 0.157 | 0.094 | 0.026 | 0.112 |
Parking spaces per 1000 CBD jobs | spaces/1000 jobs | 240 | 271 | 332 | 289 | 487 | 298 | 319 | 248 | 121 | 314 |
Passenger cars per 1000 persons | units/1000 persons | 435 | 393 | 440 | 431 | 640 | 647 | 522 | 463 | 78 | 512 |
Average speed of the road network (24/7) | km/h | 46.7 | 29.9 | 47.8 | 42.6 | 50.4 | 42.8 | 45.4 | 34.3 | 30.6 | 40.2 |
Total length of public transport lines per 1000 persons | m/1000 persons | 18,969 | 5131 | 11,188 | 8,410 | 1382 | 2609 | 2496 | 3183 | 2614 | 2576 |
Total length of reserved public transport routes per 1000 persons | m/1000 persons | 1878 | 411 | 1,123 | 716 | 72 | 160 | 67 | 298 | 34 | 188 |
Total public transport seat kilometres of service per capita | seat km/person | 4963 | 3957 | 4,546 | 5,720 | 1874 | 4077 | 2368 | 6126 | 7267 | 4486 |
Overall average speed of public transport | km/h | 34.0 | 32.1 | 42.2 | 39.2 | 27.3 | 33.0 | 25.7 | 29.8 | 26.3 | 28.8 |
* Average speed of buses | km/h | 31.2 | 26.1 | 33.4 | 30.3 | 19.9 | 23.4 | 22.4 | 21.9 | 19.4 | 21.5 |
* Average speed of suburban rail | km/h | 90.4 | 50.6 | 89.6 | 80.5 | 57.3 | 47.6 | 44.7 | 52.1 | 50.8 | 51.7 |
Total public transport boardings per capita | boardings/person | 45 | 192 | 61 | 128 | 67 | 96 | 151 | 386 | 450 | 254 |
Total public transport passenger kilometres per capita | p.km/person | 1117 | 1375 | 988 | 1390 | 571 | 1075 | 1031 | 2234 | 3786 | 1644 |
Overall public transport vehicle occupancy | persons/unit | 12.3 | 22.6 | 12.1 | 15.2 | 13.1 | 18.1 | 19.8 | 21.0 | 28.1 | 19.0 |
Overall public transport seat occupancy | % | 23% | 35% | 22% | 24% | 29% | 27% | 44% | 39% | 52% | 37% |
Passenger car passenger kilometres per capita | p.km/person | 6680 | 6899 | 7,024 | 6,888 | 18,703 | 12,447 | 8495 | 6817 | 1975 | 10,234 |
Percentage of total daily trips by non motorised modes | % | 29.3% | 63.0% | 32.8% | 30.0% | 9.5% | 14.2% | 11.6% | 34.5% | 26.1% | 23.2% |
Percentage of total daily trips by motorised public modes | % | 6.9% | 16.0% | 9.3% | 14.3% | 5.5% | 7.5% | 13.1% | 22.4% | 46.0% | 16.8% |
Proportion of total motorised passenger kilometres on public transport | % | 14.2% | 16.4% | 12.3% | 16.3% | 3.2% | 8.0% | 11.3% | 24.5% | 62.9% | 18.0% |
Ratio of public versus private transport speeds | ratio | 0.73 | 1.07 | 0.88 | 0.93 | 0.55 | 0.78 | 0.57 | 0.88 | 0.86 | 0.75 |
Ratio of segregated public transport infrastructure versus expressways | ratio | - | 19.10 | 6.45 | 3.26 | 0.56 | 1.98 | 0.56 | 5.51 | 1.42 | 3.16 |
Variable | Units | Stockholm | Jönköping |
---|---|---|---|
Private passenger transport energy use per capita | MJ/person | 12,051 | 21,678 |
Public transport energy use per capita | MJ/person | 1949 | 2050 |
Energy use per private passenger kilometre | MJ/p.km | 1.82 | 2.74 |
Energy use per public transport passenger kilometre | MJ/p.km | 0.76 | 2.53 |
Urban density | persons/ha | 23.5 | 12.6 |
Proportion of jobs in CBD | % | 28.2% | 20.6% |
Metropolitan gross domestic product per capita | USD 1995 | $49,271 | $29,952 |
Length of freeway per person | m/ person | 0.138 | 0.496 |
Parking spaces per 1000 CBD jobs | spaces/1000 jobs | 125 | 287 |
Passenger cars per 1000 persons | units/1000 pers. | 398 | 481 |
Average speed of the road network (24/7) | km/h | 37.1 | 45.0 |
Total length of public transport lines per 1000 persons | m/1000 persons | 4867 | 9024 |
Total length of reserved public transport routes per 1000 persons | m/1000 persons | 234 | 1457 |
Total public transport seat kilometres of service per capita | seat km/person | 8294 | 4330 |
Overall average speed of public transport | km/h | 33.6 | 40.7 |
* Average speed of buses | km/h | 24.8 | 31.5 |
* Average speed of suburban rail | km/h | 56.3 | 72.5 |
Total public transport boardings per capita | boardings/person | 359 | 60 |
Total public transport passenger kilometres per capita | p.km/person | 2579 | 809 |
Overall public transport vehicle occupancy | persons/unit | 22.6 | 9.9 |
Overall public transport seat occupancy | % | 31% | 19% |
Passenger car passenger kilometres per capita | p.km/person | 6630 | 7902 |
Percentage of total daily trips by non motorised modes | % | 22.1% | 21.2% |
Percentage of total daily trips by motorised public modes | % | 31.6% | 9.6% |
Proportion of total motorised PKT on public transport | % | 27.8% | 9.2% |
Ratio of public vs private transport speeds | ratio | 0.91 | 0.90 |
Ratio of segregated public transport infrastructure vs expressways | ratio | 1.69 | 7.67 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenworthy, J.R. Passenger Transport Energy Use in Ten Swedish Cities: Understanding the Differences through a Comparative Review. Energies 2020, 13, 3719. https://doi.org/10.3390/en13143719
Kenworthy JR. Passenger Transport Energy Use in Ten Swedish Cities: Understanding the Differences through a Comparative Review. Energies. 2020; 13(14):3719. https://doi.org/10.3390/en13143719
Chicago/Turabian StyleKenworthy, Jeffrey R. 2020. "Passenger Transport Energy Use in Ten Swedish Cities: Understanding the Differences through a Comparative Review" Energies 13, no. 14: 3719. https://doi.org/10.3390/en13143719
APA StyleKenworthy, J. R. (2020). Passenger Transport Energy Use in Ten Swedish Cities: Understanding the Differences through a Comparative Review. Energies, 13(14), 3719. https://doi.org/10.3390/en13143719