The New Test Procedure for Group-Type Composition of Base Oils of Lubricating Oils, Especially Emitted into the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Drop Test Development
2.3. Adaptation of UV-Vis Spectroscopy for Lubricating Oil Composition Determination
2.4. FT-MIR Spectroscopy Adaptation for Lubricating Oils Analysis
2.5. NP-TLC Method Development
3. Results and Discussion
3.1. Drop Test
3.2. UV-Vis Spectroscopy
3.3. FT-MIR Spectroscopy
3.4. NP-TLC
3.5. Procedure Summary
4. Conclusions
- A simple drop test, allowing to test the fluorescence of an oil sample against a black, matte background under the influence of 365 nm light. The test reveals the presence of aromatic hydrocarbons, if luminescence occurs. Further methodology is proposed as follows:
- Assessing the presence and content of easy biodegradable fraction (acylglycerols and their derivatives) by examining the spectrum of oil sample in the medium infrared range with Fourier transformation (FT-MIR), as well as assessing the identification and determination of a group of ingredients of petroleum origin (aromatic hydrocarbons) by examining the spectrum of the oil solution in n-alkane, using spectrophotometry in the UV-Vis range.
- Assessing the group-type composition of oil using multi-stage thin layer chromatography in normal phase system (NP-TLC), with different methods of visualization of spots representing groups of oil components, including plate impregnation with berberine salt, for visualization under the influence of UV light 365 nm and after iodine exposure.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beran, E. Wpływ Budowy Chemicznej Bazowych Olejów Smarowych na ich Biodegradowalność i Wybrane Właściwości Eksploatacyjne; PWR: Wrocław, Poland, 2008; ISBN 1896-4532. [Google Scholar]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Singh, Y. Tribological behavior as lubricant additive and physiochemical characterization of Jatropha oil blends. Friction 2015, 3, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Rudko, T.; Rybczyński, R. Właściwości smarne olejów roślinnych i mineralnych stosowanych w układach tnących pilarek. Acta Agrophys. 2010, 15, 145–153. [Google Scholar]
- Briassoulis, D.; Mistriotis, A.; Mortier, N.; Tosin, M. A horizontal test method for biodegradation in soil of bio-based and conventional plastics and lubricants. J. Clean. Prod. 2020, 242, 118392. [Google Scholar] [CrossRef]
- Neri, F.; Foderi, C.; Laschi, A.; Fabiano, F.; Cambi, M.; Sciarra, G.; Aprea, M.C.; Cenni, A.; Marchi, E. Determining exhaust fumes exposure in chainsaw operations. Environ. Pollut. 2016, 218, 1162–1169. [Google Scholar] [CrossRef]
- Nowak, P.; Kucharska, K.; Kamiński, M. Ecological and Health Effects of Lubricant Oils Emitted into the Environment. Int. J. Environ. Res. Public Health 2019, 16, 3002. [Google Scholar] [CrossRef] [Green Version]
- Włodarczyk-Makuła, M. Zagrożenie zanieczyszczenia środowiska wodnego związkami ropopochodnymi. LAB Lab. Apar. Bad. 2013, 21, 12–16. [Google Scholar]
- Wojtkowiak, R.; Tomczak, R.J. Analiza porównawcza wybranych właściwości olejów smarujących układ tnący pilarki łańcuchowej. Rośliny Oleiste 2003, XXIV, 317–325. [Google Scholar]
- Abosede, E.E. Effect of Crude Oil Pollution on some Soil Physical Properties. IOSR J. Agric. Vet. Sci. 2013, 6, 14–17. [Google Scholar] [CrossRef]
- Dmochowska, A.; Dmochowski, D.; Biegugnis, S. Charakterystyka biorekultywacji gleb skażonych produktami ropopochodnymi metodą pryzmowania ex situ. Annu. Set Environ. Prot. 2016, 18, 759–771. [Google Scholar]
- Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Kalandyk, A.; Waligórski, P. Influence of Oil Contamination on Physical and Biological Properties of Forest Soil After Chainsaw Use. Water Air Soil Pollut. 2015, 226, 389. [Google Scholar] [CrossRef] [Green Version]
- Aluyor, E.O.; Ori-jesu, M. Biodegradation of mineral oils—A review. Afr. J. Biotechnol. 2009, 8, 915–920. [Google Scholar]
- Stelmaszuk, W.; Linowska, E.; Podedworny, I.; Antoniuk, N. Wpływ produktów ropopochodnych na organizmy żywe. In Proceedings of the Związki ropopochodne-kryteria i metodyka oceny skażenia, Karwice, Poland, 14–15 April 1994. [Google Scholar]
- Gawęda, E.; Bednarek, K.; Szydło, Z. Oznaczanie mgły olejowej w powietrzu na stanowiskach pracy metodą wagową. Bezpieczeństwo Pr. 2005, 12, 11–14. [Google Scholar]
- Rogoś, E.; Urbański, A. Charakterystyki tribologiczne roślinnych olejów bazowych dla olejów hydraulicznych. Tribologia 2010, 5, 201–212. [Google Scholar]
- Krzemińska, S.; Irzmańska, E. Zagrożenia olejami mineralnymi na stanowiskach pracy oraz nowe rozwiązania polimerowych materiałów ochronnych w wybranych środkach ochrony indywidualnej. Med. Pr. 2011, 62, 435–443. [Google Scholar]
- Cain, R.B. Biodegradation of Lubricants. In Proceedings of the 8th International Biodeterioration and Biodegradation, Windsor, ON, Canada, 26–31 August 1990; pp. 249–275. [Google Scholar]
- Bartz, W.J. Lubricants and the environment. Tribol. Int. 1998, 31, 35–47. [Google Scholar] [CrossRef]
- Khaled, M.A.R. Biodegradation of used lubricating and diesel oils by a new yeast strain Candida viswanathii KA-2011. Afr. J. Biotechnol. 2012, 11, 14166–14174. [Google Scholar]
- Krasodmosmki, M. Nowoczesne Środki Smarowe do Specjalistycznych Zastosowań w Urządzeniach Przemysłowych, Transporcie i Komunikacji; Instytut Nafty i Gazu—Państwowy Instytut Badawczy: Kraków, Poland, 2015; ISBN 2353-2718. [Google Scholar]
- Lasy Państwowe. Available online: http://www.lasy.gov.pl/pl (accessed on 3 April 2019).
- Lasy Państwowe 2020. Available online: https://www.bdl.lasy.gov.pl/portal/lasy-na-swiecie (accessed on 20 May 2020).
- Decyzja nr 126 z Dnia 12 Sierpnia 2019 r. w Sprawie Udostępnienia Jednolitych Wzorów Dokumentów Oraz Stosowania Standardów Jako-Ściowych Odnoszących Się Do Wszystkich Istotnych Cech Przedmiotu Zamówienia Dotyczących Zamawiania usług Leśnych z Zakresu Gosp; Generalny Dyrektor Lasów Państowywch: Warszawa, Poland, 2019.
- Stryker, W.A. Absorption of liquid petrolatum (“mineral oil”) from the intestine. Arch. Pathol. Lab. Med. Online 1941, 31, 670–692. [Google Scholar]
- Beran, E. Biodegradowalność jako nowe kryterium w ocenie jakości olejów smarowych. Przem. Chem. 2005, 84, 320–328. [Google Scholar]
- Kramer, D.; Lok, B.; Krug, R. The Evolution of Base Oil Technology. In Turbine Lubrication in the 21st Century; ASTM International: West Conshohocken, PA, USA, 2001; pp. 25–38. [Google Scholar]
- Nowak, P.; Kucharska, K.; Kamiński, M. Current legal regulations regarding the emission of lubricating oils to the environment. In Proceedings of the IV Interdyscyplinarna Akademicka Konferencja Ochrony Środowiska, Politechnika Gdańska, Gdańsk, Poland, 5–7 April 2019. [Google Scholar]
- Rozporządzeniu Komisji (WE) NR 440/2008 z Dnia 30 Maja 2008 r. Metoda OECD 301 A-F; Komisja Europejska: Bruksela, Belgia, 2008.
- Rozporządzenie (WE) nr 1907/2006 Parlamentu Europejskiego i Rady w Sprawie Rejestracji, Oceny, Udzielania Zezwoleń i Stosowanych Ograniczeń w Zakresie Chemikaliów (REACH); Parlament Europejski: Strasbourg, France, 2006.
- Organization for Economic Co-operation and Development (2006) OECD Guidlines for the Testing of Chemical; OECD: Paris, France, 2006.
- Wieczorek, A. Oznaczenia składu grupowego olejów bazowych. Naft. Gaz 2018, 74, 67–74. [Google Scholar] [CrossRef]
- Nowak, P.; Kucharska, K.; Kamiński, M. Metody kontroli olejów smarowych emitowanych do środowiska. In Proceedings of the XIV Konferencja Dla Miasta i Środowiska—Problemy Unieszkodliwiania Odpadów, Warszawa, Poland, 26 November 2018. [Google Scholar]
- Iob, A.; Ali, M.A.; Tawabini, B.S.; Abbas, N.M. Hydrocarbon group (PONA) analysis of reformate by FT-i.r. spectroscopy. Fuel 1996, 75, 1060–1064. [Google Scholar] [CrossRef]
- Pawelec, E.; Eksploatacji, I.T. Zastosowanie Spektrofotometrii FT-IR Do Oceny Zmiany Składu Smaru Plastycznego Wskutek Wymuszeń Mechanicznych Nauka Technika; Chemik: Radom, Poland, 2011. [Google Scholar]
- Sharma, K.; Sharma, S.P.; Lahiri, S.C. Characterization and Identification of Petroleum Hydrocarbons and Biomarkers by GC-FTIR and GC-MS. Pet. Sci. Technol. 2009, 27, 1209–1226. [Google Scholar] [CrossRef]
- Rudzinski, W.E.; Aminabhavi, T.M.; Sassman, S.; Watkins, L.M. Isolation and Characterization of the Saturate and Aromatic Fractions of a Maya Crude Oil. Energy Fuels 2000, 14, 839–844. [Google Scholar] [CrossRef]
- Heikal, E.K.; Elmelawy, M.S.; Khalil, S.A.; Elbasuny, N.M. Manufacturing of environment friendly biolubricants from vegetable oils. Egypt. J. Pet. 2017, 26, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Sarpal, A.S.; Kapur, G.S.; Chopra, A.; Jain, S.K.; Srivastava, S.P.; Bhatnagar, A.K. Hydrocarbon characterization of hydrocracked base stocks by one and two-dimensional n.m.r. spectroscopy. Fuel 1996, 75, 483–490. [Google Scholar] [CrossRef]
- Weber, S.; Schrag, K.; Mildau, G.; Kuballa, T.; Walch, S.G.; Lachenmeier, D.W. Analytical Methods for the Determination of Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH)—A Short Review. Anal. Chem. Insights 2018. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, W.; Rajca, A. Metody Spektroskopowe i ich Zastosowanie do Identyfikacji Związków Organicznych; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 2000. [Google Scholar]
- Baszanowska, E.; Otremba, Z. Ultraviolet-induced fluorescence of lubricate oils. Combust. Engines 2015, 163, 21–25. [Google Scholar]
- Beens, J. The role of gas chromatography in compositional analyses in the petroleum industry. TrAC Trends Anal. Chem. 2000, 19, 260–275. [Google Scholar] [CrossRef]
- Barman, B.N.; Cebolla, V.L.; Membrado, L. Chromatographic Techniques for Petroleum and Related Products. Crit. Rev. Anal. Chem. 2000, 30, 75–120. [Google Scholar] [CrossRef]
- Hsu, C.S. Characterization of heavy hydrocarbons by coupling high performance liquid chromatography with mass spectrometry (LC/MS). Am. Chem. Soc. Div. Pet. Chem. 2000, 45, 584. [Google Scholar]
- Pei, P.; Britton, J.; Hsu, S. Hydrocarbon Type Separation of Lubricating Base Oil in Multigram Quantity by Preparative HPLC. J. Liq. Chromatogr. 1983, 6, 627–645. [Google Scholar] [CrossRef]
- Gudebska, J. Chromatografia Cieczowa w Oznaczaniu Składu Grupowego Olejów Bazowych i Asfaltów Drogowych; Rozprawa Doktorska: Gdańsk, Poland, 1999. [Google Scholar]
- Ashoori, S.; Sharifi, M.; Masoumi, M.; Mohammad Salehi, M. The relationship between SARA fractions and crude oil stability. Egypt. J. Pet. 2017, 26, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, D.M.; França, D.; Vanini, G.; Mendes, L.A.N.; Gomes, A.O.; Pereira, V.B.; Ávila, B.M.F.; Azevedo, D.A. Rapid hydrocarbon group-type semi-quantification in crude oils by comprehensive two-dimensional gas chromatography. Fuel 2018, 220, 379–388. [Google Scholar] [CrossRef]
- Silva, S.L.; Silva, A.M.S.; Ribeiro, J.C.; Martins, F.G.; Da Silva, F.A.; Silva, C.M. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review. Anal. Chim. Acta 2011, 707, 18–37. [Google Scholar] [CrossRef]
- Choodum, A.; Tripuwanard, K.; Daeid, N.N. Analysis of chain saw lubricating oils commonly used in Thailand’s southern border provinces for forensic science purpose. Forensic Sci. Int. 2014, 241, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Krasodomski, W.; Krasodomski, M. GC/MS application in the structural group analysis of basic lubricant oils. Part I—State of knowledge. Naft. Gaz 2010, 8, 711–718. [Google Scholar]
- Bissada, K.K.; Tan, J.; Szymczyk, E.; Darnell, M.; Mei, M. Group-type characterization of crude oil and bitumen. Part I: Enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA). Org. Geochem. 2016, 95, 21–28. [Google Scholar] [CrossRef]
- Kamiński, M. Studies on Selectivity of Hydrocarbon Group-Type Separation of Petroleum Vacuum Distillates and Base Oils by HPLC. Chem. Analityczna 2003, 48, 531–542. [Google Scholar]
- Robbins, W.K. Quantitative Measurement of Mass and Aromaticity Distributions for Heavy Distillates 1. Capabilities of the HPLC-2 System. J. Chromatogr. Sci. 1998, 36, 457–466. [Google Scholar] [CrossRef]
- Karlsen, D.A.; Larter, S.R. Analysis of petroleum fractions by TLC-FID: Applications to petroleum reservoir description. Org. Geochem. 1991, 17, 603–617. [Google Scholar] [CrossRef]
- Nowak, P.; Kosińska, J.; Glinka, M.; Kamiński, M. The Thin-Layer Microchromatography (μTLC) and TLC–FID Technique as a New Methodology in the Study of Lubricating Oils. J. AOAC Int. 2017, 100, 922–934. [Google Scholar] [CrossRef]
- Jiang, C.; Larter, S.R.; Noke, K.J.; Snowdon, L.R. TLC–FID (Iatroscan) analysis of heavy oil and tar sand samples. Org. Geochem. 2008, 39, 1210–1214. [Google Scholar] [CrossRef]
- Gudebska, J.; Kamiński, M. The method of identification of low-volatile petroleum products utilizing thin-layer chromatography. Chem. Anal. 1998, 43, 859–865. [Google Scholar]
- Kamiński, M.; Gudebska, J.; Górecki, T.; Kartanowicz, R. Optimized conditions for hydrocarbon group type analysis of base oils by thin-layer chromatography-flame ionisation detection. J. Chromatogr. A 2003, 991, 255–266. [Google Scholar] [CrossRef]
- ASTM D1319:2018 Standard Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption; ASTM International: Ottawa, ON, Canada, 2018.
- PKN. PN EN 12916; PKN: Warsaw, Poland, 2016. [Google Scholar]
- PN-72/C-04025 Oznaczanie Składu Grupowego Węglowodo-Rów Metodą Chromatografii Elucyjnej; PKN: Warsaw, Poland, 2018.
- ASTM D 2007:2016 Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method; ASTM International: Ottawa, ON, Canada, 2016.
- ASTM D4124-09:2018 Standard Test Method for Separation of Asphalt into Four Fractions; ASTM International: Ottawa, ON, Canada, 2018.
- Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Habib, M.A.; Mobarak, H.M. Effect of Bio-Lubricant on Tribological Characteristics of Steel. Procedia Eng. 2014, 90, 740–745. [Google Scholar] [CrossRef] [Green Version]
- Madankar, C.S.; Dalai, A.K.; Naik, S.N. Green synthesis of biolubricant base stock from canola oil. Ind. Crops Prod. 2013, 44, 139–144. [Google Scholar] [CrossRef]
- Nowak, P.; Kucharska, K.; Kamiński, M.; Rybarczyk, P. A new method and equipment for the detection of presence and estimation of the content of the petroleum-based fraction in lubricating oils, especially those emitted to the atmosphere. Apar. Badaw. Dydakt. 2019, 2, 245–250. [Google Scholar]
- Mattley, Y. Fluorescence of Cutting Oils. Available online: www.oceanoptics.com (accessed on 20 May 2020).
- Vasco, P.; Herrik, E.; Cebolla, V.L.; Membrado, L.; Domingo, P.; Henrion, P.; Garriga, R.; Gonz, P. Quantitative Applications of Fluorescence and Ultraviolet Scanning Densitometry for Compositional Analysis of Petroleum Products in Thin-Layer Chromatography. J. Chromatogr. Sci. 1999. [Google Scholar] [CrossRef] [Green Version]
- Steffens, J.; Landulfo, E.; Courrol, L.C.; Guardani, R. Application of Fluorescence to the Study of Crude Petroleum. J. Fluoresc. 2010, 21, 859–864. [Google Scholar] [CrossRef]
- Szafran, M.; Dega-Szafran, Z. Określanie struktury związków organicznych metodami spektroskopowymi. Tablice i Ćwiczenia; PWN: Warszawa, Poland, 1988. [Google Scholar]
- Nowak, P.; Kamiński, M. Wykorzystanie zjawiska fluorescencji i spektofotometrii dla metod wstępnej oceny grupowego składu olejów i ich komponentów. In Proceedings of the IX Kongres Technologii Chemicznej, Gdańsk, Poland, 3–7 September 2018. [Google Scholar]
- Kyriakids, N.; Skarkalis, P. Fluorescence Spectra Measurement of Olive Oil and Other Vegetable Oils. J. AOAC Int. 2000, 83, 1435–1439. [Google Scholar] [CrossRef] [Green Version]
- Dudley, P.A.; Anderson, R.E. Separation of polyunsaturated fatty acids by argentation thin layer chromatography. Lipids 1975, 10, 113–115. [Google Scholar] [CrossRef]
- Wilson, R.; Sargent, J.R. High-resolution separation of polyunsaturated fatty acids by argentation thin-layer chromatography. J. Chromatogr. A 1992, 623, 403–407. [Google Scholar] [CrossRef]
- Fuchs, B.; Süß, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid analysis by thin-layer chromatography—A review of the current state. J. Chromatogr. A 2011, 1218, 2754–2774. [Google Scholar] [CrossRef]
- Myher, J.J.; Kuksis, A. General strategies in chromatographic analysis of lipids. J. Chromatogr. B Biomed. Sci. Appl. 1995, 671, 3–33. [Google Scholar] [CrossRef]
- Buchgraber, M.; Ulberth, F.; Emons, H.; Anklam, E. Triacylglycerol profiling by using chromatographic techniques. Eur. J. Lipid Sci. Technol. 2004, 106, 621–648. [Google Scholar] [CrossRef]
- Snyder, L.R.; Kirkland, J.J.; Dolan, J.W. Introduction to Modern Liquid Chromatography, 3rd ed.; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470167540. [Google Scholar]
- Totten, G.E.; Westbrook, S.R.; Shah, R.J. (Eds.) Fuels and Lubricants Handbook: Technology, Performance, and Testing; ASTM International: Glen Burnie, MD, USA, 2003. [Google Scholar]
- Morassuti, C.Y.; Lima, S.M.; Dos Santos, F.A.; Andrade, L.H.D.C. Fluorescence spectroscopy applied in lubricant oils. Orbital Electron. J. Chem. 2018, 10, 42. [Google Scholar] [CrossRef]
- Gromadzka, J.; Wardencki, W. Trends in edible vegetable oils analysis. Part B. Application of different analytical techniques. Polish J. Food Nutr. Sci. 2011, 61, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.P.; Março, P.H.; Valderrama, P. Thermal edible oil evaluation by UV–Vis spectroscopy and chemometrics. Food Chem. 2014, 163, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, N.; Feng, Y.; Su, S.; Li, T.; Liang, B. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV–Vis spectrometry. Food Chem. 2015, 185, 326–332. [Google Scholar] [CrossRef]
- Drabik, J.; Pawelec, E. Monitorowanie Stabilności Oksydacyjnej Oleju Rzepakowego na Różnych Etapach Procesu Termooksydacji Metodą Spektrofotometrii UV-VIS; Instytut Technologii Eksploatacji—Państwowy Instytut Badawczy: Radom, Poland, 2011. [Google Scholar]
- Shankar, R.; Jung, J.-H.; Loh, A.; An, J.G.; Ha, S.Y.; Yim, U.H. Environmental significance of lubricant oil: A systematic study of photooxidation and its consequences. Water Res. 2020, 168, 115183. [Google Scholar] [CrossRef]
- Adhvaryu, A.; Liu, Z.; Erhan, S.Z. Synthesis of novel alkoxylated triacylglycerols and their lubricant base oil properties. Ind. Crops Prod. 2005, 21, 113–119. [Google Scholar] [CrossRef]
- Matwijczuk, A.; Oniszczuk, T.; Matwijczuk, A.; Chruściel, E.; Kocira, A.; Niemczynowicz, A.; Wójtowicz, A.; Combrzyński, M.; Wiącek, D. Use of FTIR Spectroscopy and Chemometrics with Respect to Storage Conditions of Moldavian Dragonhead Oil. Sustainability 2019, 11, 6414. [Google Scholar] [CrossRef] [Green Version]
- ASTM E2412-10(2018). In Standard Practice for Condition Monitoring of In-Service Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry; ASTM International: Ottawa, ON, Canada, 2018.
- Aluyor, E.O.; Ibom, A. Chromatographic analysis of vegetable oils: A review. Sci. Res. Essays 2009, 4, 191–197. [Google Scholar]
- Ali, M.; Hassan, A. Hydrocarbon group types analysis of petroleum products: A comparative evaluation of HPLC and TLC analytical performance. Pet. Sci. Technol. 2002, 20, 771–782. [Google Scholar] [CrossRef]
No. | Sample | Purity | Producer | Country of Orgin |
---|---|---|---|---|
1. | Anhydrous glycerin | Analytical purity | POCH | Poland |
2. | Propylene glycol | Analytical purity | Chempur | Poland |
3. | Edible, rapeseed oil | - | Szamotuły | Poland |
4. | Fatty acids methyl esters (FAME) | Technical purity | Rafinery in Gdańsk | Poland |
5. | Lubricant oil for cutting systems based on vegetable oil with enriching additives | - | Commercially available | Gliwice, Poland |
6. | Oil base—synthetic polyalphaolefin oil (PAO 6) | Technical purity | Rafinery in Gdańsk | Poland |
7. | Engine oil based on synthetic polyalphaolefin oil | - | Commercially available | Paris, France |
8. | Mineral base oil SAE 10/95 | Technical purity | Rafinery in Gdańsk | Poland |
9. | Mineral base oil SAE 30/95 | Technical purity | Rafinery in Gdańsk | Poland |
10. | Lubricating oil for cutting system based on vegetable and mineral oils | - | Commercially available | Malbork, Poland |
11. | Machine, mineral oil | - | Commercially available | Płock, Poland |
Technique | Drop Method | UV-Vis Spectrometry | FT-MIR Spectrometry | NP-Thin Layer Chromatography | |
---|---|---|---|---|---|
Limit of detection (LOD) * | LOD is equal to 0.33% m/m of mineral oil in base oil | LOD for mineral oil, characterized by a maximum at 265 nm is extremely low | - | LOD for the mineral oil of the base oil is 5% m/m | |
- | - | LOD for ester structures is 5% m/m for carbonyl structures present in base oil, LOD (wave number 1747 cm−1) is 3% m/m | LOD for “natural/vegetable” base oil is 5% m/m | ||
No. | Sample | Results | |||
1. | Edible rapeseed oil (commercially available) | Does not show fluorescence, no petroleum components identified | Presence of vegetable/ester oil fraction, absence of petroleum oil | Presence of vegetable/ester oil fraction, absence of petroleum oil | Only ingredients of natural origin - acylglycerols (TAG + DAG) |
2. | Vegetable-based lubricating oil for cutting systems with improvers (commercially available) | Only ingredients of natural origin—acylglycerols (TAG + DAG) and natural additives | |||
3. | Fatty acids methyl esters FAME | The presence of an ester fraction—FAME | |||
4. | Oil base-synthetic polyalphaolefin type (PAO 6) | No vegetable/ester and petroleum fractions | No vegetable/ester and petroleum fractions | No natural fraction—acylglycerols and their derivatives | |
5. | Engine oil based on synthetic polyalphaolefin (PAO) type (commercially available) | ||||
6. | Mineral base oil SAE 10/95 | Shows fluorescence, presence of components of petroleum origin confirmed | No vegetable/ester fraction, petroleum fraction confirmed | No vegetable/ester fraction, petroleum fraction confirmed | Presence of paraffin + naphthenes, but also aromatic hydrocarbons, no acylglycerols and derivatives |
7. | Mineral base oil SAE 30/95 | ||||
8. | Oil for lubrication of cutting systems based on vegetable and petroleum oils (commercially available) | Presence of vegetable/ester oil fraction and petroleum fraction confirmed | Presence of vegetable/ester oil fraction and petroleum fraction confirmed | Presence of paraffin + naphthenes, aromatic hydrocarbons and TAG | |
9. | Machine oil based on petroleum (commercially available) | No vegetable/ester fraction, petroleum fraction confirmed | No vegetable/ester fraction, petroleum fraction confirmed | Presence of paraffin + naphthenes, but also aromatic hydrocarbons, no acylglycerols and derivatives |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, P.; Kucharska, K.; Kaminski, M.A. The New Test Procedure for Group-Type Composition of Base Oils of Lubricating Oils, Especially Emitted into the Environment. Energies 2020, 13, 3772. https://doi.org/10.3390/en13153772
Nowak P, Kucharska K, Kaminski MA. The New Test Procedure for Group-Type Composition of Base Oils of Lubricating Oils, Especially Emitted into the Environment. Energies. 2020; 13(15):3772. https://doi.org/10.3390/en13153772
Chicago/Turabian StyleNowak, Paulina, Karolina Kucharska, and Marian Antoni Kaminski. 2020. "The New Test Procedure for Group-Type Composition of Base Oils of Lubricating Oils, Especially Emitted into the Environment" Energies 13, no. 15: 3772. https://doi.org/10.3390/en13153772
APA StyleNowak, P., Kucharska, K., & Kaminski, M. A. (2020). The New Test Procedure for Group-Type Composition of Base Oils of Lubricating Oils, Especially Emitted into the Environment. Energies, 13(15), 3772. https://doi.org/10.3390/en13153772