Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis
Abstract
:1. Introduction
- (1)
- The energy efficiency performance of 48 BRI countries was first established by employing a stochastic frontier analysis (SFA), where we measured persistent and transient efficiency. Through this, the paper contributes to the energy economic literature by providing a complete picture of the level of persistent, transient, and total energy efficiency estimates for the BRI countries using a recently developed model (by Kumbhakar, Lien, and Hardaker [16]), which is suitable for separating unobserved country-specific heterogeneity from transient and persistent energy efficiency. The inability to control for unobserved country-specific heterogeneities when they exist can bias the estimate of the persistent and transient component, and hence the overall energy efficiency results.
- (2)
- Second, we checked whether BRI countries with poor energy efficiency are generally catching up (or falling behind) to the initially higher energy efficient ones. Attaining convergence in energy efficiency improvements has vital implications on environmental and sustainable growth for the BRI region. To achieve this aim, we applied the beta convergence on the estimated total energy efficiency index.
2. Literature Review
2.1. Energy Efficiency
2.2. Energy Efficiency Convergence
3. Methodology
3.1. Stochastic Energy Demand Function
3.2. Other Models for Robustness
3.3. Energy Efficiency Convergence
3.4. Variables and Their Sources
4. Empirical Results and Discussion
4.1. Results for the Energy Demand Function
4.2. Energy Efficiency Analysis
4.3. Energy Efficiency Convergence
4.4. Discussion
5. Conclusions and Policy Recommendations
- (1)
- In the energy demand frontier function, we found that while rising energy price, population density, service sector, and technical change reduces energy consumption, high economic activities, growing urban population, and the industrial sector increases it.
- (2)
- Persistent inefficiencies are much higher than transient inefficiencies, suggesting a more structural energy problem in the BRI countries, which can be addressed with long-term policies such as an increase in technical progress.
- (3)
- Energy efficiency varies widely across the BRI countries, suggesting the presence of significant unobserved country heterogeneity.
- (4)
- We found evidence of energy efficiency convergence, but the convergence rate accelerates even more when there is an increase in trade in the BRI countries. The industrial sector, on the other hand, slows the convergence rate, and FDI does not affect the convergence process.
- BRI countries (both high and low-income countries) need to increase energy technology to significantly reduce persistent inefficiency. Under the BRI, more investments should go into energy-related infrastructure to increase technological progress.
- The level of human capital may be low in BRI countries. Low-income countries must therefore focus more on developing their human capital in order to improve their ability to absorb technological diffusion from FDI and trade to reduce the technological gap and speed up the energy efficiency convergence
- Considering the different resource endowment of each BRI country, with mutual cooperation under the BRI, China and the Middle East oil-producing countries can improve energy efficiency and security. For instance, China’s investment in energy projects such as oil and gas pipelines, nuclear power, and liquefied natural gas terminals may create a better and more energy-efficient network (https://theasiadialogue.com/2018/03/30/chinas-energy-revolution-strategy-opportunities-and-challenges/). Additionally, the construction of these liquefied natural gas terminals and gas pipelines will enable Qatar, Iran, Indonesia, and Australia to increase the production of natural gas as a cleaner substitute for coal and oil.
- Since the industrial sector of the BRI region is energy-intensive, efforts to invest in less energy-intensive industrial technology should be a priority in the BRI region. This can be done by setting up research and development (R&D) funds (if not yet done) and provide low-interest loans for entrepreneurs investing in energy R&D projects. Furthermore, like in Slovenia, countries should take a deliberate step to stop operations of some energy intensive industries.
- Considering that some developing countries (e.g., China) restrict imports from developed countries, especially those of high-tech goods [70], it is appropriate that these policies be revised under the BRI to encourage transfers of innovation, technology, and spillover activities.
- Last, but not least, BRI countries (especially the developing ones) should raise the threshold of entry for dirty industries, control exports of pollution and energy-intensive industries, or develop new export competitive advantages.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Southeast Asia | Central & Eastern Europe | Middle East & Africa | South Asia | Northeast Asia | Central Asia |
---|---|---|---|---|---|
Vietnam | Ukraine | Egypt | Sri Lanka | China | Kyrgyz Rep. |
Thailand | Turkey | Israel | Pakistan | Mongolia | Kazakhstan |
Singapore | Slovak Republic | Jordan | India | Tajikistan | |
Philippines | Slovenia | Lebanon | Bangladesh | Georgia | |
Malaysia | Albania | Oman | Nepal | Azerbaijan | |
Indonesia | Belarus | Saudi Arabia | |||
Cambodia | Bosnia & Herzegovina | United Arab Emirates | |||
Brunei Darussalam | Bulgaria | Iran | |||
Croatia | Yemen | ||||
Estonia | |||||
Czech Republic | |||||
Moldova | |||||
Lithuania | |||||
Latvia | |||||
Hungary | |||||
Cyprus | |||||
Russia | |||||
Romania | |||||
Poland | |||||
8 | 19 | 9 | 5 | 2 | 5 |
Coefficients | (b-B) Difference | sqrt(diag(V_b-V_B)) (S.E.) | ||
---|---|---|---|---|
(b) Fixed | (B) Random | |||
lnPrice | −0.0343283 | −0.0236043 | −0.010724 | 0.0027465 |
lnGDP | 0.255418 | 0.2279398 | 0.0274782 | 0.006843 |
LnPD | −0.2302651 | −0.2143666 | −0.0158985 | 0.0271285 |
Service | −0.006711 | −0.0062211 | −0.0004899 | 0.0002204 |
Indus | 0.0019625 | 0.0025773 | −0.0006147 | 0.0002536 |
Time | −0.0145202 | −0.0134028 | −0.0011174 | 0.0006685 |
References
- Mao, H.; Liu, G.; Zhang, C.; Muhammad Atif, R. Does Belt and Road Initiative Hurt Node Countries? A Study from Export Perspective. Emerg. Mark. Financ. Trade 2019, 55, 1472–1485. [Google Scholar] [CrossRef]
- Huang, Y. China Economic Review Understanding China’s Belt & Road Initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar] [CrossRef]
- Adom, P.K. An evaluation of energy efficiency performances in Africa under heterogeneous technologies. J. Clean. Prod. 2019, 209, 1170–1181. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, L. Has China’s Belt and Road Initiative promoted its green total factor productivity?—Evidence from primary provinces along the route. Energy Policy 2019, 129, 360–369. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, L. Dynamic analysis of spatial convergence of green total factor productivity in China’s primary provinces along its Belt and Road Initiative. Chin. J. Popul. Resour. Environ. 2019, 17, 101–112. [Google Scholar] [CrossRef]
- Qi, S.; Peng, H.; Zhang, X.; Tan, X. Is energy efficiency of Belt and Road Initiative countries catching up or falling behind? Evidence from a panel quantile regression approach. Appl. Energy 2019, 253, 113581. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135. [Google Scholar] [CrossRef]
- Adom, P.K.; Amakye, K.; Abrokwa, K.K.; Quaidoo, C. Estimate of transient and persistent energy efficiency in Africa: A stochastic frontier approach. Energy Convers. Manag. 2018, 166, 556–568. [Google Scholar] [CrossRef]
- Alberini, A.; Filippini, M. Transient and persistent energy efficiency in the US residential sector: Evidence from household-level data. Energy Effic. 2018, 11, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Filippini, M.; Hunt, L.C. Measuring persistent and transient energy efficiency in the US. Energy Effic. 2016, 9, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Colombi, R.; Martini, G.; Vittadini, G. Determinants of transient and persistent hospital efficiency: The case of Italy. Heal. Econ. 2017, 26, 5–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, D.I. Modeling international trends in energy efficiency. Energy Econ. 2012, 34, 2200–2208. [Google Scholar] [CrossRef]
- Liddle, B.; Sadorsky, P. Energy Efficiency in OECD and non-OECD Countries: Estimates and Convergence. USAEE Working Paper No. 20-437. 2020. Available online: http://dx.doi.org/10.2139/ssrn.3575110 (accessed on 25 July 2020).
- Zhai, F. China’s belt and road initiative: A preliminary quantitative assessment. J. Asian Econ. 2018, 55, 84–92. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Jin, Y.L.; Shen, B. Measuring the Energy Saving and CO2 Emissions Reduction Potential Under China’s Belt and Road Initiative. Comput. Econ. 2018. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lien, G.; Hardaker, J.B. Technical efficiency in competing panel data models: A study of Norwegian grain farming. J. Product. Anal. 2014, 41, 321–337. [Google Scholar] [CrossRef]
- Faghihi, V.; Hessami, A.R.; Ford, D.N. Sustainable campus improvement program design using energy efficiency and conservation. J. Clean. Prod. 2015, 107, 400–409. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. [Google Scholar] [CrossRef]
- Patterson, M.G. What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy 1996, 24, 377–390. [Google Scholar] [CrossRef]
- Chang, C.P.; Wen, J.; Zheng, M.; Dong, M.; Hao, Y. Is higher government efficiency conducive to improving energy use efficiency? Evidence from OECD countries. Econ. Model. 2018, 72, 65–77. [Google Scholar] [CrossRef]
- Bu, M.; Li, S.; Jiang, L. Foreign direct investment and energy intensity in China: Firm-level evidence. Energy Econ. 2019, 80, 366–376. [Google Scholar] [CrossRef]
- Dargahi, H.; Khameneh, K.B. Energy intensity determinants in an energy-exporting developing economy: Case of Iran. Energy 2019, 168, 1031–1044. [Google Scholar] [CrossRef]
- Jebali, E.; Essid, H.; Khraief, N. The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach. Energy 2017, 134, 991–1000. [Google Scholar] [CrossRef]
- Hu, J.; Wang, S. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Du, M.; Wang, B.; Zhang, N. National research funding and energy efficiency: Evidence from the National Science Foundation of China. Energy Policy 2018, 120, 335–346. [Google Scholar] [CrossRef]
- Lin, B.; Long, H. A stochastic frontier analysis of energy efficiency of China’s chemical industry. J. Clean. Prod. 2015, 2011. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis. Appl. Energy 2014, 119, 67–78. [Google Scholar] [CrossRef]
- Chang, M. Room for improvement in low carbon economies of G7 and BRICS countries based on the analysis of energy efficiency and environmental Kuznets curves. J. Clean. Prod. 2015, 99, 140–151. [Google Scholar] [CrossRef]
- Boles, J.N. Efficiency squared- Efficient computation of Efficiency Indexes. In Proceedings of the Annual Meeting-Western Farm Economics Association, San Francisco, CA, USA, 27–29 December 1966; Volume 39, pp. 137–142. [Google Scholar]
- Afriat, S. Efficiency Estimation of Production Functions. Int. Econ. Rev. 1972, 13, 268–598. [Google Scholar] [CrossRef]
- Mukherjee, K. Energy use efficiency in U.S. manufacturing: A nonparametric analysis. Energy Econ. 2008, 30, 76–96. [Google Scholar] [CrossRef]
- Mukherjee, K. Measuring energy efficiency in the context of an emerging economy: The case of indian manufacturing. Eur. J. Oper. Res. 2010, 201, 933–941. [Google Scholar] [CrossRef]
- Gökgöz, F.; Erkul, E. Investigating the energy efficiencies of European countries with super efficiency model and super SBM approaches. Energy Effic. 2019, 12, 601–618. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and Estimation of Stochastic Frontier Production Function Models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; Broeck, J. van Den Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Zhou, D.Q. Measuring economy-wide energy efficiency performance: A parametric frontier approach. Appl. Energy 2012, 90, 196–200. [Google Scholar] [CrossRef]
- Filippini, M.; Hunt, L.C. Measurement of energy efficiency based on economic foundations. Energy Econ. 2015, 52, S5–S16. [Google Scholar] [CrossRef] [Green Version]
- Marin, G.; Palma, A. Technology invention and adoption in residential energy consumption: A stochastic frontier approach. Energy Econ. 2017, 85–98. [Google Scholar] [CrossRef]
- Filippini, M.; Hunt, L.C. Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach. Energy J. 2011, 32, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Filippini, M.; Hunt, L.C. US residential energy demand and energy efficiency: A stochastic demand frontier approach. Energy Econ. 2012, 34, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Filippini, M.; Hunt, L.C.; Zorić, J. Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector. Energy Policy 2014, 69, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Yu, Y. Modelling energy efficiency in China: A fixed- effects panel stochastic frontier approach. Econ. Polit. Stud. 2018, 6, 158–175. [Google Scholar] [CrossRef]
- Filippini, M.; Zhang, L. Estimation of the energy efficiency in Chinese provinces. Energy Effic. 2016, 9, 1315–1328. [Google Scholar] [CrossRef]
- Zhang, L. Correcting the uneven burden sharing of emission reduction across provinces in China. Energy Econ. 2017, 64, 335–345. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Heshmati, A. Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data. Am. J. Agric. Econ. 1995, 77, 660–674. [Google Scholar] [CrossRef]
- Tsionas, E.; Kumbhakar, S.C. Firm heterogeneity, persistent and transient technical inefficiency: A generalized true random-effects model. Appl. Econ. 2014, 29, 110–132. Available online: https://doi.org/10.1002/jae.2300 (accessed on 25 July 2020). [CrossRef]
- Colombi, R.; Kumbhakar, S.C.; Martini, G.; Vittadini, G. Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency. J. Product. Anal. 2014, 42, 123–136. [Google Scholar] [CrossRef]
- Filippini, M.; Greene, W. Persistent and transient productive inefficiency: A maximum simulated likelihood approach. J. Product. Anal. 2016, 45, 187–196. [Google Scholar] [CrossRef]
- Herrerias, M.J. World energy intensity convergence revisited: A weighted distribution dynamics approach. Energy Policy 2012, 49, 383–399. [Google Scholar] [CrossRef]
- Ulucak, R.; Apergis, N. Does convergence really matter for the environment? An application based on club convergence and on the ecological footprint concept for the EU countries. Environ. Sci. Policy 2018, 80, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.; Sul, D. Transition Modeling and Econometric Convergence Tests. Econometrica 2007, 75, 1771–1855. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yu, Y.; Ma, C. Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity. Environ. Resour. Econ. 2018, 70, 107–130. [Google Scholar] [CrossRef]
- Sun, H.; Kporsu, A.K.; Taghizadeh-Hesary, F.; Edziah, B.K. Estimating environmental efficiency and convergence: 1980 to 2016. Energy 2020, 118224. [Google Scholar] [CrossRef]
- Han, L.; Han, B.; Shi, X.; Su, B.; Lv, X.; Lei, X. Energy efficiency convergence across countries in the context of China’s Belt and Road initiative. Appl. Energy 2018, 213, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, S.C.; Wang, H.-J.; Horncastle, A.P. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University Press: Cambridge, UK, 2015; ISBN 9781139342070. [Google Scholar]
- Battese, G.E.; Coelli, T.J. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J. Econom. 1988, 38, 387–399. [Google Scholar] [CrossRef]
- Greene, W. Fixed and random effects in stochastic frontier models. J. Product. Anal. 2005, 23, 7–32. [Google Scholar] [CrossRef] [Green Version]
- Greene, W. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. J. Econom. 2005, 126, 269–303. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Schmidt, P.; Wang, H.J. Consistent estimation of the fixed effects stochastic frontier model. J. Econom. 2014, 181, 65–76. [Google Scholar] [CrossRef]
- Adom, P.K.; Bekoe, W.; Amuakwa-mensah, F.; Mensah, J.T.; Botchway, E. Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics. Energy 2012, 47, 314–325. [Google Scholar] [CrossRef]
- Mi, Z.; Pan, S.; Yu, H.; Wei, Y. Potential impacts of industrial structure on energy consumption and CO2 emission: A case study of Beijing. J. Clean. Prod. 2015, 103, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Morikawa, M. Population density and efficiency in energy consumption: An empirical analysis of service establishments. Energy Econ. 2012, 34, 1617–1622. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Development Indicators; World Bank: Washington, DC, USA, 2014; ISBN 9781464801631. [Google Scholar]
- Su, B.; Ang, B.W.; Li, Y. Input-output and structural decomposition analysis of Singapore’s carbon emissions. Energy Policy 2017, 105, 484–492. [Google Scholar] [CrossRef]
- Pusnik, M.; Al-Mansour, F.; Sucic, B.; Cesen, M. Trends and prospects of energy efficiency development in Slovenian industry. Energy 2017, 136, 52–62. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of North American Free Trade Agreement. Natl. Bur. Econ. Res. 1991, 3914. Available online: https://www.nber.org/papers/w3914.pdf (accessed on 25 July 2020).
- Hübler, M. Energy saving technology diffusion via FDI and trade: A CGE model of China. Kiel Work. Pap. 2009, 1479. Available online: http://hdl.handle.net/10419/24875 (accessed on 25 July 2020).
- Sapkota, P.; Bastola, U. Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America. Energy Econ. 2017, 64, 206–212. [Google Scholar] [CrossRef]
- Osabuohien, E.S.; Efobi, U.R.; Gitau, C.M.W. External Intrusion, Internal Tragedy: Environmental Pollution and Multinational Corporations in Sub-Saharan Africa; Emerald Group Publishing Limited: Bingley, UK, 2013; Volume 12. [Google Scholar]
- López-Casero, A. Navigating U.S. Export Controls Requirements when Exporting Commercial Products from the U.S. to China; Nixon Peabody: New York, NY, USA, 2010. [Google Scholar]
Variables | Symbols | Definition | Source |
---|---|---|---|
Energy Demand | lnED | The natural logarithm of energy use | WDI |
Fuel price | lnPrice | The natural logarithm of real crude oil price measured in US$/barrel | BPE |
Gross Domestic Product | lnGDP | The natural log of GDP measured in constant US dollar. | WDI |
Population density | lnPD | The natural logarithm of population density computed as people per sq. km of land area | WDI |
Share of value from the Industry | Service | Value added by industry measured as share of gross domestic product | WDI |
Share of value from the Service sector | Indus | Value added by services measured as share of gross domestic product | WDI |
Per capita income | lnincome | The natural log of per capita income measured in constant US dollar. | WDI |
Trade | Trade | The sum of exports and imports measured as a share of gross domestic product. | WDI |
Foreign Direct Investment | FDI | Net inflows measures as percentage of GDP | WDI |
Underlying Energy Demand Trend | Trend | Underlying Energy Demand Trend (UEDT). | |
Energy Efficiency Index | EE | Total Energy Efficiency Index extracted from the K–H model |
Variable | Obs | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
lnED | 1248 | 7.28 | 0.98 | 4.75 | 9.40 |
lnPrice | 1248 | 3.91 | 0.56 | 2.95 | 4.80 |
lnGDP | 1209 | 24.45 | 1.74 | 20.30 | 30.03 |
lnPD | 1248 | 4.41 | 1.30 | 0.34 | 8.96 |
Service | 1241 | 48.80 | 10.74 | 11.35 | 95.80 |
Indus | 1187 | 32.14 | 11.44 | 9.37 | 74.61 |
lnIncome | 1207 | 7.976 | 1.395 | 4.553 | 10.950 |
FDI | 1145 | 4.328 | 8.358 | −43.463 | 198.074 |
Trade | 1197 | 93.928 | 54.916 | 15.675 | 441.604 |
Model Independent Variables | (1) Fixed Effect Model | (2) Consistent True Fixed Effect Model |
---|---|---|
lnPrice | −0.0685 *** | −0.0667 *** |
(0.0172) | (0.0171) | |
lnGDP | 0.323 *** | 0.337 *** |
(0.0194) | (0.0208) | |
lnPD | −0.150 *** | −0.131 *** |
(0.0463) | (0.0484) | |
Service | −0.00879 *** | −0.00914 *** |
(0.001) | (0.00121) | |
Indus | 0.00212 | 0.00190 |
(0.0015) | (0.00147) | |
Trend | −0.009 *** | −0.0107 *** |
(0.0019) | (0.00208) | |
Constant | 0.791 * | |
(0.471) | ||
sigma_u | 0.9499 | |
sigma_e | 0.1669 | |
Usigma Constant | ||
Vsigma Constant | ||
Sigma2 Constant | 0.0404 *** | |
(0.005) | ||
Lambda | 0.9881 *** | |
(0.252) | ||
Observations | 1185 | 1185 |
Cross−section | 48 | 48 |
Variable | Obs. | Mean | S. D | Min | Max |
---|---|---|---|---|---|
Persistent efficiency | |||||
FEM | 1185 | 0.204 | 0.193 | 0.019 | 1 |
K–H Model | 1185 | 0.204 | 0.193 | 0.019 | 1 |
K–L–H Model | 1185 | 0.465 | 0.195 | 0.112 | 0.802 |
Transient efficiency | |||||
CTFEM | 1185 | 0.895 | 0.038 | 0.626 | 0.978 |
K–H Model | 1185 | 0.934 | 0.016 | 0.806 | 0.974 |
K–L–H Model | 1185 | 0.934 | 0.016 | 0.806 | 0.974 |
Total efficiency | |||||
FEM×CTFEM | 1185 | 0.183 | 0.174 | 0.016 | 0.942 |
K–H Model | 1185 | 0.191 | 0.181 | 0.018 | 0.955 |
K–L–H Model | 1185 | 0.434 | 0.182 | 0.101 | 0.765 |
Regions | Persistent Energy Efficiency | Transient Energy Efficiency | Total Energy Efficiency | ||||||
---|---|---|---|---|---|---|---|---|---|
FEM | K–H | K–L–H | CTFEM | K–H | K–L–H | FEM*CTFEM | K–H | K–L–H | |
Central & Eastern Europe | 0.251 | 0.251 | 0.577 | 0.897 | 0.935 | 0.935 | 0.225 | 0.234 | 0.540 |
Central Asia | 0.233 | 0.233 | 0.554 | 0.895 | 0.935 | 0.935 | 0.209 | 0.218 | 0.518 |
Middle East & Africa | 0.198 | 0.198 | 0.499 | 0.893 | 0.934 | 0.934 | 0.177 | 0.185 | 0.465 |
South Asia | 0.184 | 0.184 | 0.475 | 0.894 | 0.933 | 0.933 | 0.165 | 0.172 | 0.443 |
Southeast Asia | 0.141 | 0.141 | 0.389 | 0.895 | 0.934 | 0.934 | 0.126 | 0.132 | 0.363 |
Northeast Asia | 0.189 | 0.189 | 0.365 | 0.896 | 0.935 | 0.935 | 0.169 | 0.177 | 0.341 |
Countries | Persistent Energy Efficiency | Transient Energy Efficiency | Total Energy Efficiency | ||||||
---|---|---|---|---|---|---|---|---|---|
FEM | K–H | K–L–H | CTFEM | K–H | K–L–H | FEM*CTFEM | K–H | K–L–H | |
Brunei Darussalam | 1.000 | 1.000 | 0.802 | 0.897 | 0.935 | 0.935 | 0.897 | 0.935 | 0.750 |
Singapore | 0.757 | 0.757 | 0.776 | 0.897 | 0.935 | 0.935 | 0.679 | 0.708 | 0.726 |
United Arab Emirates | 0.562 | 0.562 | 0.743 | 0.885 | 0.932 | 0.932 | 0.498 | 0.524 | 0.692 |
Estonia | 0.550 | 0.550 | 0.740 | 0.909 | 0.939 | 0.939 | 0.500 | 0.516 | 0.695 |
Slovenia | 0.390 | 0.390 | 0.691 | 0.911 | 0.933 | 0.933 | 0.355 | 0.364 | 0.645 |
Cyprus | 0.359 | 0.359 | 0.677 | 0.900 | 0.936 | 0.936 | 0.323 | 0.336 | 0.634 |
Czech Republic | 0.334 | 0.334 | 0.665 | 0.897 | 0.935 | 0.935 | 0.300 | 0.312 | 0.622 |
Slovak Republic | 0.322 | 0.322 | 0.658 | 0.888 | 0.938 | 0.937 | 0.286 | 0.302 | 0.617 |
Lithuania | 0.304 | 0.304 | 0.648 | 0.903 | 0.938 | 0.938 | 0.274 | 0.285 | 0.608 |
Oman | 0.301 | 0.301 | 0.646 | 0.894 | 0.934 | 0.934 | 0.269 | 0.281 | 0.604 |
Bulgaria | 0.294 | 0.294 | 0.642 | 0.898 | 0.935 | 0.935 | 0.264 | 0.275 | 0.600 |
Latvia | 0.268 | 0.268 | 0.624 | 0.904 | 0.937 | 0.937 | 0.243 | 0.251 | 0.584 |
Belarus | 0.267 | 0.267 | 0.623 | 0.898 | 0.935 | 0.935 | 0.240 | 0.250 | 0.583 |
Israel | 0.264 | 0.264 | 0.620 | 0.900 | 0.935 | 0.934 | 0.237 | 0.246 | 0.579 |
Lebanon | 0.245 | 0.245 | 0.605 | 0.899 | 0.935 | 0.935 | 0.220 | 0.229 | 0.566 |
Moldova | 0.234 | 0.234 | 0.595 | 0.893 | 0.938 | 0.938 | 0.209 | 0.219 | 0.558 |
Ukraine | 0.225 | 0.225 | 0.587 | 0.898 | 0.935 | 0.935 | 0.202 | 0.211 | 0.549 |
Hungary | 0.215 | 0.215 | 0.577 | 0.901 | 0.938 | 0.938 | 0.194 | 0.201 | 0.541 |
Kazakhstan | 0.214 | 0.214 | 0.576 | 0.896 | 0.936 | 0.936 | 0.192 | 0.201 | 0.539 |
Croatia | 0.214 | 0.214 | 0.576 | 0.909 | 0.933 | 0.933 | 0.194 | 0.200 | 0.537 |
Bosnia and Herzegovina | 0.196 | 0.196 | 0.555 | 0.859 | 0.913 | 0.912 | 0.166 | 0.179 | 0.507 |
Azerbaijan | 0.195 | 0.195 | 0.554 | 0.863 | 0.922 | 0.922 | 0.168 | 0.180 | 0.511 |
Saudi Arabia | 0.178 | 0.178 | 0.533 | 0.898 | 0.935 | 0.935 | 0.159 | 0.166 | 0.498 |
Georgia | 0.157 | 0.157 | 0.502 | 0.881 | 0.932 | 0.932 | 0.138 | 0.146 | 0.468 |
Jordan | 0.152 | 0.152 | 0.495 | 0.898 | 0.935 | 0.935 | 0.137 | 0.142 | 0.463 |
Mongolia | 0.152 | 0.152 | 0.494 | 0.898 | 0.935 | 0.935 | 0.136 | 0.142 | 0.462 |
Poland | 0.147 | 0.147 | 0.486 | 0.897 | 0.938 | 0.938 | 0.132 | 0.138 | 0.455 |
Romania | 0.142 | 0.142 | 0.478 | 0.893 | 0.934 | 0.934 | 0.127 | 0.133 | 0.446 |
Malaysia | 0.135 | 0.135 | 0.466 | 0.893 | 0.934 | 0.934 | 0.121 | 0.126 | 0.435 |
Russia | 0.130 | 0.130 | 0.455 | 0.898 | 0.936 | 0.936 | 0.117 | 0.122 | 0.426 |
Albania | 0.113 | 0.113 | 0.420 | 0.895 | 0.934 | 0.934 | 0.101 | 0.106 | 0.392 |
Iran | 0.112 | 0.112 | 0.417 | 0.900 | 0.932 | 0.932 | 0.101 | 0.104 | 0.389 |
Kyrgyz Republic | 0.111 | 0.111 | 0.416 | 0.890 | 0.933 | 0.933 | 0.099 | 0.104 | 0.388 |
Thailand | 0.083 | 0.083 | 0.343 | 0.886 | 0.932 | 0.932 | 0.073 | 0.077 | 0.320 |
Tajikistan | 0.075 | 0.075 | 0.321 | 0.884 | 0.930 | 0.930 | 0.066 | 0.070 | 0.299 |
Sri Lanka | 0.061 | 0.061 | 0.277 | 0.897 | 0.935 | 0.935 | 0.055 | 0.057 | 0.259 |
Turkey | 0.061 | 0.061 | 0.275 | 0.899 | 0.936 | 0.936 | 0.055 | 0.057 | 0.258 |
Nepal | 0.061 | 0.061 | 0.275 | 0.899 | 0.936 | 0.936 | 0.055 | 0.057 | 0.257 |
Cambodia | 0.049 | 0.049 | 0.234 | 0.904 | 0.935 | 0.934 | 0.045 | 0.046 | 0.219 |
Egypt, Arab Rep. | 0.047 | 0.047 | 0.227 | 0.896 | 0.935 | 0.935 | 0.042 | 0.044 | 0.212 |
Vietnam | 0.043 | 0.043 | 0.211 | 0.895 | 0.935 | 0.935 | 0.039 | 0.040 | 0.197 |
Philippines | 0.040 | 0.040 | 0.198 | 0.900 | 0.936 | 0.936 | 0.036 | 0.037 | 0.185 |
Pakistan | 0.038 | 0.038 | 0.193 | 0.900 | 0.936 | 0.936 | 0.035 | 0.036 | 0.181 |
Indonesia | 0.036 | 0.036 | 0.181 | 0.899 | 0.936 | 0.936 | 0.032 | 0.033 | 0.170 |
China | 0.033 | 0.033 | 0.172 | 0.892 | 0.933 | 0.933 | 0.030 | 0.031 | 0.160 |
Yemen, Rep. | 0.029 | 0.029 | 0.153 | 0.897 | 0.935 | 0.935 | 0.026 | 0.027 | 0.143 |
India | 0.021 | 0.021 | 0.117 | 0.897 | 0.935 | 0.935 | 0.018 | 0.019 | 0.110 |
Bangladesh | 0.019 | 0.019 | 0.112 | 0.893 | 0.934 | 0.934 | 0.017 | 0.018 | 0.105 |
Variables | Pooled OLS | Fixed Effect Model | |
---|---|---|---|
Without Controls | With Controls | ||
−0.00105 * | −0.183 *** | −0.157 *** | |
(0.0005) | (0.015) | (0.015) | |
FDI | −0.00023 | ||
(0.0002) | |||
Indus | −0.0051 *** | ||
(0.0019) | |||
Trade | 0.0039 *** | ||
(0.0011) | |||
Constant | −0.0007 | −0.171 *** | −0.150 *** |
(0.0005) | (0.014) | (0.0173) | |
Obs. | 1200 | 1200 | 1051 |
Number of ID | 48 | 48 | 48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Edziah, B.K.; Song, X.; Kporsu, A.K.; Taghizadeh-Hesary, F. Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis. Energies 2020, 13, 3837. https://doi.org/10.3390/en13153837
Sun H, Edziah BK, Song X, Kporsu AK, Taghizadeh-Hesary F. Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis. Energies. 2020; 13(15):3837. https://doi.org/10.3390/en13153837
Chicago/Turabian StyleSun, Huaping, Bless Kofi Edziah, Xiaoqian Song, Anthony Kwaku Kporsu, and Farhad Taghizadeh-Hesary. 2020. "Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis" Energies 13, no. 15: 3837. https://doi.org/10.3390/en13153837
APA StyleSun, H., Edziah, B. K., Song, X., Kporsu, A. K., & Taghizadeh-Hesary, F. (2020). Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis. Energies, 13(15), 3837. https://doi.org/10.3390/en13153837