Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique
Abstract
:1. Introduction
2. Problem Description
- An understanding of the effect of pollution severity, NSDD, humidity and temperature on arc inception voltage, flashover voltage and surface resistance through laboratory experiments.
- The implementation of machine earning algorithms such as ANN, Polynomial SVM (PSVM), Gaussian SVM (GSVM), Decision Tree (DT) and Least-Squares Boosting Ensemble (LSBE) to predict arc inception voltage, flashover voltage and surface resistance based on the experimental data.
- Accuracy evaluation of the proposed model with the actual measured dataset and also through bootstrapping methods using criteria such as Root Mean Squared Error (RMSE), Normalised RMSE (NRMSE), Mean Absolute Percentage Error (MAPE) and the Regression value (R).
3. Experimental Setup
4. Test Method
5. Machine Learning Algorithms
5.1. Bootstrap Method
5.2. Artificial Neural Network
5.3. Support Vector Machine
5.4. Decision Tree
5.5. Least-Squares Boosting Ensemble
6. Results and Discussions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Temperature (C) | Humidity (%) | NSDD (mg/cm) | ESDD (mg/cm) | SR(Mohm/cm) | IV(kV) | FV(kV) |
---|---|---|---|---|---|---|
5 | 70 | 0.75 | 0.05 | 0.33 | 8.35 | 11.9 |
5 | 70 | 0.75 | 0.1 | 0.285 | 6.3 | 10.7 |
5 | 70 | 0.75 | 0.2 | 0.247 | 5.16 | 8.1 |
5 | 70 | 0.75 | 0.4 | 0.2 | 4.2 | 5.6 |
10 | 70 | 0.75 | 0.05 | 0.323 | 8.1 | 11.45 |
10 | 70 | 0.75 | 0.1 | 0.28 | 6.2 | 10.3 |
10 | 70 | 0.75 | 0.2 | 0.24 | 5 | 7.56 |
10 | 70 | 0.75 | 0.4 | 0.19 | 4 | 5.4 |
15 | 70 | 0.75 | 0.05 | 0.317 | 7.9 | 10.8 |
15 | 70 | 0.75 | 0.1 | 0.273 | 6.02 | 9.83 |
15 | 70 | 0.75 | 0.2 | 0.231 | 4.85 | 7.31 |
15 | 70 | 0.75 | 0.4 | 0.179 | 3.84 | 5.12 |
20 | 70 | 0.75 | 0.05 | 0.31 | 7.67 | 10.6 |
20 | 70 | 0.75 | 0.1 | 0.268 | 5.85 | 9.39 |
20 | 70 | 0.75 | 0.2 | 0.225 | 4.71 | 6.8 |
20 | 70 | 0.75 | 0.4 | 0.172 | 3.68 | 4.75 |
10 | 70 | 0.1 | 0.05 | 0.392 | 11.2 | 14.3 |
10 | 70 | 0.1 | 0.1 | 0.356 | 9.3 | 13.5 |
10 | 70 | 0.1 | 0.2 | 0.32 | 7.8 | 12.17 |
10 | 70 | 0.1 | 0.4 | 0.27 | 6.65 | 10.1 |
10 | 70 | 0.3 | 0.05 | 0.37 | 10.2 | 13.38 |
10 | 70 | 0.3 | 0.1 | 0.33 | 8.12 | 12.64 |
10 | 70 | 0.3 | 0.2 | 0.29 | 6.9 | 11.3 |
10 | 70 | 0.3 | 0.4 | 0.25 | 5.8 | 8.86 |
10 | 70 | 0.5 | 0.05 | 0.351 | 9.15 | 12.52 |
10 | 70 | 0.5 | 0.1 | 0.31 | 7.35 | 11.38 |
10 | 70 | 0.5 | 0.2 | 0.268 | 6.1 | 10.2 |
10 | 70 | 0.5 | 0.4 | 0.22 | 5.05 | 7.8 |
10 | 70 | 0.75 | 0.05 | 0.323 | 8.1 | 11.45 |
10 | 70 | 0.75 | 0.1 | 0.28 | 6.2 | 10.3 |
10 | 70 | 0.75 | 0.2 | 0.24 | 5 | 7.5 |
10 | 70 | 0.75 | 0.4 | 0.19 | 4 | 5.4 |
10 | 50 | 0.75 | 0.05 | 0.35 | 8.5 | 11.45 |
10 | 50 | 0.75 | 0.1 | 0.31 | 6.45 | 10.3 |
10 | 50 | 0.75 | 0.2 | 0.261 | 5.2 | 7.56 |
10 | 50 | 0.75 | 0.4 | 0.215 | 4.2 | 5.4 |
10 | 70 | 0.75 | 0.05 | 0.323 | 7.9 | 10.82 |
10 | 70 | 0.75 | 0.1 | 0.28 | 5.8 | 9.66 |
10 | 70 | 0.75 | 0.2 | 0.24 | 4.75 | 7.45 |
10 | 70 | 0.75 | 0.4 | 0.19 | 3.87 | 4.86 |
10 | 90 | 0.75 | 0.05 | 0.29 | 7.1 | 10.43 |
10 | 90 | 0.75 | 0.1 | 0.25 | 5.3 | 9.12 |
10 | 90 | 0.75 | 0.2 | 0.206 | 4.2 | 6.38 |
10 | 90 | 0.75 | 0.4 | 0.167 | 3.4 | 4.7 |
References
- Li, Q.F.; Fan, Z.; Wu, Q.; Gao, J.; Su, Z.Y.; Zhou, W.J. Investigation of ice-covered transmission lines and analysis on transmission line failures caused by ice-coating in China. Power Syst. Technol. 2008, 32, 33–36. [Google Scholar]
- Kim, C.J.; Shin, J.H.; Yoo, M.H.; Lee, G.W. A study on the characterization of the incipient failure behavior of insulators in power distribution line. IEEE Trans. Power Deliv. 1999, 14, 519–524. [Google Scholar] [CrossRef]
- Yoshimura, N.; Kumagai, S.; Nishimura, S. Electrical and environmental aging of silicone rubber used in outdoor insulation. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 632–650. [Google Scholar] [CrossRef]
- Hussain, M.M.; Farokhi, S.; McMeekin, S.G.; Farzaneh, M. Risk assessment of failure of outdoor high voltage polluted insulators under combined stresses near shoreline. Energies 2017, 10, 1661. [Google Scholar] [CrossRef] [Green Version]
- Hackam, R. Outdoor HV composite polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 557–585. [Google Scholar] [CrossRef]
- Hampton, B. Flashover mechanism of polluted insulation. IET Digit. Libr. 1964, 5, 985–990. [Google Scholar]
- Fernando, M.; Gubanski, S. Ageing of silicone rubber insulators in coastal and inland tropical environment. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 326–333. [Google Scholar] [CrossRef]
- Amin, M.; Amin, S. Aging research on SIR and TPE insulators (an overview). Rev. Adv. Mater. Sci. 2014, 36, 29–39. [Google Scholar]
- Gorur, R.S.; Karady, G.G.; Jagota, A.; Shah, M.; Yates, A.M. Aging in silicone rubber used for outdoor insulation. IEEE Trans. Power Deliv. 1992, 7, 525–538. [Google Scholar] [CrossRef]
- Karady, G.G.; Shah, M.; Brown, R. Flashover mechanism of silicone rubber insulators used for outdoor insulation-I. IEEE Trans. Power Deliv. 1995, 10, 1965–1971. [Google Scholar] [CrossRef]
- Shah, M.; Karady, G.G.; Brown, R. Flashover mechanism of silicone rubber insulators used for outdoor insulation-II. IEEE Trans. Power Deliv. 1995, 10, 1972–1978. [Google Scholar] [CrossRef]
- Mughal, M.A.; Nekahi, A.; Khan, M.; Umer, F. Influence of Single and Multiple Dry Bands on Critical Flashover Voltage of Silicone Rubber Outdoor Insulators: Simulation and Experimental Study. Energies 2018, 11, 1335. [Google Scholar]
- Que, W.; Sebo, S.A. Electric field and potential distributions along non-ceramic insulators with water droplets. In Proceedings of the Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No. 01CH37264), Cincinnati, OH, USA, 18 October 2001; pp. 441–444. [Google Scholar]
- Guan, Z.; Wang, L.; Yang, B.; Liang, X.; Li, Z. Electric field analysis of water drop corona. IEEE Trans. Power Deliv. 2005, 20, 964–969. [Google Scholar] [CrossRef]
- Imano, A.M.; Beroual, A. Deformation of water droplets on solid surface in electric field. J. Colloid Interface Sci. 2006, 298, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Waters, R. Formation and characterization of dry bands in clean fog on polluted insulators. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 714–731. [Google Scholar]
- Arshad; Nekahi, A.; McMeekin, S.; Farzaneh, M. Influence of dry band width and location on flashover characteristics of silicone rubber insulators. In Proceedings of the 2016 IEEE Electrical Insulation Conference (EIC), Montreal, QC, Canada, 19–22 June 2016; pp. 73–76. [Google Scholar]
- Zhou, J.B.; Gao, B.; Zhang, Q.G. Dry band formation and its influence on electric field distribution along polluted insulator. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–5. [Google Scholar]
- Farzaneh, M.; Kienicki, J.; Martin, R. A laboratory investigation of the flashover performance of outdoor insulators covered with ice. In Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials (ICPADM), Brisbane, Queensland, Australia, 3–8 July 1994; Volume 2, pp. 483–486. [Google Scholar]
- Nekahi, A.; McMeekin, S.; Farzaneh, M. Investigating flashover behaviour of silicone rubber insulators under contaminated conditions. In Proceedings of the 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Ann Arbor, MI, USA, 18–21 October 2015; pp. 856–859. [Google Scholar]
- Nekahi, A.; McMeekin, S.; Farzaneh, M. Numerical computation of electric field and potential along silicone rubber insulators under contaminated and dry band conditions. 3D Res. 2016, 7, 25. [Google Scholar]
- Liu, Y.; Xia, B.; Du, B.; Farzaneh, M. Influence of Fine Metal Particles on Surface Discharge Characteristics of Outdoor Insulators. Energies 2016, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, R. Flashover voltage of high-voltage insulators with uniform surface-pollution films. IET Digit. Libr. 1969, 3, 457–465. [Google Scholar] [CrossRef]
- Mekhaldi, A.; Namane, D.; Bouazabia, S.; Beroual, A. Flashover of discontinuous pollution layer on HV insulators. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 900–906. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Zhang, Q.; Yang, X.; Yu, X.; Zhou, J. Pollution flashover calculation model based on characteristics of AC partial arc on top and bottom wet-polluted dielectric surfaces. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 1735–1746. [Google Scholar] [CrossRef]
- Hadjrioua, F.; Mahi, D.; Slama, M.E.A. Application of the analytical arc parameters on the dynamic modelling of HVDC flashover of polluted insulators. In Proceedings of the 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 3–6 November 2014; pp. 1–5. [Google Scholar]
- Dhahbi-Megriche, N.; Beroual, A. Predictive dynamic model of the leakage current and flashover voltage of discontinuously polluted insulators under ac voltage: Experimental validation. J. Phys. Appl. Phys. 2007, 40, 7782. [Google Scholar] [CrossRef]
- Hussain, M.M.; Chaudhary, M.A.; Razaq, A. Mechanism of Saline Deposition and Surface Flashover on High-Voltage Insulators near Shoreline: Mathematical Models and Experimental Validations. Energies 2019, 12, 3685. [Google Scholar] [CrossRef] [Green Version]
- Lambeth, P.; Schneider, H.; Beausejour, Y.; Dumora, D.; Kawamura, T.; Marrone, G.; Moran, J.; Naito, K.; Nigbor, R.; Sakich, J.; et al. Final report on the clean fog test for HVAC insulators. IEEE Trans. Power Deliv. 1987, 2, 1317–1326. [Google Scholar] [CrossRef]
- Venkataraman, S.; Gorur, R. Prediction of flashover voltage of non-ceramic insulators under contaminated conditions. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 862–869. [Google Scholar] [CrossRef]
- Gorur, R.; Schneider, H.; Cartwright, J.; Beausajour, Y.; Kondo, K.; Gubanski, S.; Hartings, R.; Shah, M.; McBride, J.; De Tourreil, C.; et al. Surface resistance measurements on nonceramic insulators. IEEE Trans. Power Deliv. 2001, 16, 801–805. [Google Scholar] [CrossRef]
- Gorur, R.; Subramanian, K. Use of surface resistance for assessing vulnerability of HV outdoor insulators to contamination flashover. In Proceedings of the 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Albuquerque, NM, USA, 19–22 October 2003; pp. 406–409. [Google Scholar]
- Gorur, R.S.; Olsen, R.; Crane, J.; Adams, T.; Jurney, J. Prediction of flashover voltage of insulators using low voltage surface resistance measurement. In Power System Engineering Research Center; Final Project Report; Arizona State University: Tempe, AZ, USA, 2006; pp. 154–163. [Google Scholar]
- Salam, M.; Al-Alawi, S.; Maqrashi, A. Prediction of equivalent salt deposit density of contaminated glass plates using artificial neural networks. J. Electrost. 2008, 66, 526–530. [Google Scholar] [CrossRef]
- Shuai, H.; Gong, Q. Insulator ESDD forecasting under complex climate conditions on the basis of LSSVM. In Proceedings of the 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Rende, Italy, 21–23 September 2009; pp. 313–317. [Google Scholar]
- Almad, A.; Ahmad, H.; Salam, M.; Ahmad, S. Regression technique for prediction of salt contamination severity on high voltage insulators. In Proceedings of the 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No. 00CH37132), Victoria, BC, Canada, 15–18 October 2000; Volume 1, pp. 218–221. [Google Scholar]
- Kontargyri, V.; Gialketsi, A.; Tsekouras, G.; Gonos, I.; Stathopulos, I. Design of an artificial neural network for the estimation of the flashover voltage on insulators. Electr. Power Syst. Res. 2007, 77, 1532–1540. [Google Scholar] [CrossRef]
- Proietti, A.; Leccese, F.; Caciotta, M.; Morresi, F.; Santamaria, U.; Malomo, C. A new dusts sensor for cultural heritage applications based on image processing. Sensors 2014, 14, 9813–9832. [Google Scholar] [CrossRef]
- Gençoğlu, M.; Cebeci, M. Investigation of pollution flashover on high voltage insulators using artificial neural network. Expert Syst. Appl. 2009, 36, 7338–7345. [Google Scholar] [CrossRef]
- Asimakopoulou, G.; Kontargyri, V.; Tsekouras, G.; Asimakopoulou, F.; Gonos, I.; Stathopulos, I. Artificial neural network optimisation methodology for the estimation of the critical flashover voltage on insulators. IET Sci. Meas. Technol. 2009, 3, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sun, C.; Sima, W.; Yang, Q.; Hu, J. Contamination level prediction of insulators based on the characteristics of leakage current. IEEE Trans. Power Deliv. 2009, 25, 417–424. [Google Scholar]
- Zegnini, B.; Belkheiri, M.; Mahi, D. Modeling flashover voltage (FOV) of polluted HV insulators using artificial neural networks (ANNs). In Proceedings of the 2009 International Conference on Electrical and Electronics Engineering-ELECO 2009, Bursa, Turkey, 5–8 November 2009; p. I-336. [Google Scholar]
- Bashir, N.; Ahmad, H. A neural network based method for the diagnosis of ageing insulators. In Proceedings of the 2009 IEEE Symposium on Industrial Electronics & Applications, Kuala Lumpur, Malaysia, 4–6 October 2009; Volume 1, pp. 41–46. [Google Scholar]
- El-Hag, A.H.; Jahromi, A.N.; Sanaye-Pasand, M. Prediction of leakage current of non-ceramic insulators in early aging period. Electr. Power Syst. Res. 2008, 78, 1686–1692. [Google Scholar] [CrossRef]
- Venkataraman, S.; Gorur, R. Non linear regression model to predict flashover of nonceramic insulators. In Proceedings of the 2006 38th North American Power Symposium, Carbondale, IL, USA, 17–19 September 2006; pp. 663–666. [Google Scholar]
- Venkataraman, S.; Gorur, R.; Mishra, A. Impact of weathering on flashover performance of nonceramic insulators. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1073–1080. [Google Scholar] [CrossRef]
- Arshad; Nekahi, A.; McMeekin, S.G.; Farzaneh, M. Flashover characteristics of silicone rubber sheets under various environmental conditions. Energies 2016, 9, 683. [Google Scholar]
- Arshad; Nekahi, A.; McMeekin, S.; Farzaneh, M. Measurement of surface resistance of silicone rubber sheets under polluted and dry band conditions. Electr. Eng. 2018, 100, 1729–1738. [Google Scholar]
- Lola, M.S.; Zainuddin, N.H.; Ramlee, M.N.A.; Sofyan, H. Double bootstrap control chart for monitoring sukuk volatility at Bursa Malaysia. J. Teknol. 2017, 79. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Hwang, S.O. A secure image encryption scheme based on chaotic maps and affine transformation. Multimed. Tools Appl. 2016, 75, 13951–13976. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
LSBE Parameters | Values |
---|---|
Minimum Leaf Size | 8 |
Tree Learners | 30 |
Learning rate, | 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad; Ahmad, J.; Tahir, A.; Stewart, B.G.; Nekahi, A. Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique. Energies 2020, 13, 3889. https://doi.org/10.3390/en13153889
Arshad, Ahmad J, Tahir A, Stewart BG, Nekahi A. Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique. Energies. 2020; 13(15):3889. https://doi.org/10.3390/en13153889
Chicago/Turabian StyleArshad, Jawad Ahmad, Ahsen Tahir, Brian G. Stewart, and Azam Nekahi. 2020. "Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique" Energies 13, no. 15: 3889. https://doi.org/10.3390/en13153889
APA StyleArshad, Ahmad, J., Tahir, A., Stewart, B. G., & Nekahi, A. (2020). Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique. Energies, 13(15), 3889. https://doi.org/10.3390/en13153889