Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization
Abstract
:1. Introduction
- A dynamic and efficient strategy—DEDIWPSO—was proposed to solve the premature convergence problem of conventional PSO, hence providing optimal, efficient, and accurate solutions for the parameter estimation problem;
- A Newton–Raphson method (NRM)-based computational intelligent (CI) approach was implemented to accurately estimate the current for each set of optimal parameters;
- Three case studies, (1) the RTC France solar cell, (2) the PWP201 Photo-watt module, and a practical test system JKM330P-72 (310 W) polycrystalline module under real environmental conditions were considered for the validation of the proposed approach;
- The obtained optimal results and statistical analysis were compared with other techniques available in the literature to present the effectiveness of the proposed approach.
2. Problem Formulation
2.1. Single-Diode Model
2.2. Double-Diode model
3. Proposed Methodology
4. Results and Discussions
4.1. Results for Solar Cell
4.1.1. Single-Diode Cell
4.1.2. Double-Diode Cell
4.2. Results for PV Module
4.2.1. Single-Diode Module
4.2.2. Double-Diode module
4.3. Results for Practical Test System
4.3.1. Single-Diode Module
4.3.2. Double-Diode model
4.4. Comparison of Results
5. Conclusions
- Convergence curve indicates that the DEDIWPSO has a fast speed of convergence;
- Comparison with other techniques reveals that the results obtained from the proposed approach are highly accurate and deserve sincere attention;
- Experimental results of the third case study show that the proposed approach is also highly accurate and reliable for estimating the parameters of a PV system, working under real environmental conditions;
- Standard deviation for each successful run reveals that DEDIWPSO upholds the stable capability of reaching an optimal global solution;
- Obtained results reveal that the single-diode model requires less computational cost but provides less accurate results, whereas the double-diode model is more complex because of its greater number of parameters, but it provides optimal results even at a low irradiance level;
- Results show that the proposed variant of PSO is a potential tool for solving PV parameter estimation and other optimization problems, while avoiding premature convergence.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Diode ideality factor | |
Ideality factor of diode 1 | |
Ideality factor of diode 2 | |
Personel acceleration coefficient | |
Social acceleration coefficient | |
Electron charge | |
Particle global best position | |
Calculated current | |
Measured current | |
Photon current | |
Diode saturation current | |
Saturation current of diode 1 | |
Saturation current of diode 2 | |
Boltzman constant | |
Number of I–V pairs | |
Particle personel best position | |
Performance index | |
Series resistance | |
Parrallel resistance | |
, | Random numbers |
Temperature in Kelvin | |
Particle velocity | |
Inertia weight | |
Particle position |
References
- Ahmed, A.; Nadeem, M.F.; Sajjad, I.A.; Bo, R.; Khan, I.A. Optimal Allocation of Wind DG with Time Varying Voltage Dependent Loads Using Bio-Inspired: Salp Swarm Algorithm. In Proceedings of the 3rd International conference on Computing, Mathematics and Engineering Technologies Idea to Innovsource Building a Knowledge Economy iCoMET 2020, Kahului, HI, USA, 29–30 January 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Khuong, P.M.; McKenna, R.; Fichtner, W. A cost-effective and transferable methodology for rooftop PV potential assessment in developing countries. Energies 2020, 13, 2501. [Google Scholar] [CrossRef]
- Vasiliev, M.; Nur-E-Alam, M.; Alameh, K. Recent developments in solar energy-harvesting technologies for building integration and distributed energy generation. Energies 2019, 12, 1080. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Bae, S.; Yu, Y.; Nam, Y. Experimental and numerical study on the cooling performance of fins and metal mesh attached on a photovoltaic module. Energies 2019, 13, 85. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Chen, X.; Jin, Y. Analysis of the primary constraint conditions of an efficient photovoltaic-thermoelectric hybrid system. Energies 2017, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Rasul, M.G. Recent developments in solar thermal desalination technologies: A review. Energies 2019, 12, 119. [Google Scholar] [CrossRef] [Green Version]
- Jelle, B.P. Building integrated photovoltaics: A concise description of the current state of the art and possible research pathways. Energies 2016, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Pathy, S.; Subramani, C.; Sridhar, R.; Thamizh Thentral, T.M.; Padmanaban, S. Nature-inspired MPPT algorithms for partially shaded PV systems: A comparative study. Energies 2019, 12, 1451. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Cao, Y.; Hao, Y.; Zhang, Z.; Liu, S.; Cao, F. Characteristic output of PV systems under partial shading or mismatch conditions. Sol. Energy 2015, 112, 41–54. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Oliva, D. Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers. Manag. 2018, 171, 1843–1859. [Google Scholar] [CrossRef]
- Messaoud, R.B. Extraction of uncertain parameters of single and double diode model of a photovoltaic panel using Salp Swarm algorithm. Meas. J. Int. Meas. Confed. 2020, 154, 107446. [Google Scholar] [CrossRef]
- Gnetchejo, P.J.; Ndjakomo Essiane, S.; Ele, P.; Wamkeue, R.; Mbadjoun Wapet, D.; Perabi Ngoffe, S. Important notes on parameter estimation of solar photovoltaic cell. Energy Convers. Manag. 2019, 197, 111870. [Google Scholar] [CrossRef]
- Pourmousa, N.; Ebrahimi, S.M.; Malekzadeh, M.; Alizadeh, M. Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization Algorithm. Sol. Energy 2019, 180, 180–191. [Google Scholar] [CrossRef]
- Alam, D.F.; Yousri, D.A.; Eteiba, M.B. Flower Pollination Algorithm based solar PV parameter estimation. Energy Convers. Manag. 2015, 101, 410–422. [Google Scholar] [CrossRef]
- Fathy, A.; Rezk, H. Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renew. Energy 2017, 111, 307–320. [Google Scholar] [CrossRef]
- Jordehi, A.R. Parameter estimation of solar photovoltaic (PV) cells: A review. Renew. Sustain. Energy Rev. 2016, 61, 354–371. [Google Scholar] [CrossRef]
- Khursheed, M.U.N.; Nadeem, M.F.; Khalil, A.; Sajjad, I.A.; Raza, A.; Iqbal, M.Q.; Bo, R.; Rehman, W.U. Review of Flower Pollination Algorithm: Applications and Variants. In Proceedings of the 2020 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 22–23 February 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Chouder, A.; Silvestre, S.; Sadaoui, N.; Rahmani, L. Modeling and simulation of a grid connected PV system based on the evaluation of main PV module parameters. Simul. Model. Pract. Theory 2012, 20, 46–58. [Google Scholar] [CrossRef]
- Hadj Arab, A.; Chenlo, F.; Benghanem, M. Loss-of-load probability of photovoltaic water pumping systems. Sol. Energy 2004, 76, 713–723. [Google Scholar] [CrossRef]
- Et-torabi, K.; Nassar-eddine, I.; Obbadi, A.; Errami, Y.; Rmaily, R.; Sahnoun, S.; El fajri, A.; Agunaou, M. Parameters estimation of the single and double diode photovoltaic models using a Gauss–Seidel algorithm and analytical method: A comparative study. Energy Convers. Manag. 2017, 148, 1041–1054. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Zhang, X.; Yu, T.; Yao, W.; Shu, H.; Zeng, F.; Sun, L. Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification. Energy Convers. Manag. 2020, 208, 112595. [Google Scholar] [CrossRef]
- Nayak, B.; Mohapatra, A.; Mohanty, K.B. Parameter estimation of single diode PV module based on GWO algorithm. Renew. Energy Focus 2019, 30, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Yu, K. Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Sol. Energy 2019, 180, 192–206. [Google Scholar] [CrossRef]
- Easwarakhanthan, T.; Bottin, J.; Bouhouch, I.; Boutrit, C. Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers. Int. J. Sol. Energy 1986, 4, 1–12. [Google Scholar] [CrossRef]
- Long, W.; Cai, S.; Jiao, J.; Xu, M.; Wu, T. A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers. Manag. 2020, 203, 112243. [Google Scholar] [CrossRef]
- Oliva, D.; Cuevas, E.; Pajares, G. Parameter identification of solar cells using artificial bee colony optimization. Energy 2014, 72, 93–102. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy 2013, 102, 943–949. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z.; Mekhilef, S.; Shamsudin, A. Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Appl. Energy 2012, 99, 297–308. [Google Scholar] [CrossRef]
- Gong, W.; Cai, Z. Parameter extraction of solar cell models using repaired adaptive differential evolution. Sol. Energy 2013, 94, 209–220. [Google Scholar] [CrossRef]
- Ma, J.; Ting, T.O.; Man, K.L.; Zhang, N.; Guan, S.U.; Wong, P.W.H. Parameter estimation of photovoltaic models via cuckoo search. J. Appl. Math. 2013, 2013, 10–12. [Google Scholar] [CrossRef]
- Guo, L.; Meng, Z.; Sun, Y.; Wang, L. Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers. Manag. 2016, 108, 520–528. [Google Scholar] [CrossRef]
- Kiani, A.T.; Faisal Nadeem, M.; Ahmed, A.; Sajjad, I.A.; Raza, A.; Khan, I.A. Chaotic Inertia Weight Particle Swarm Optimization (CIWPSO): An Efficient Technique for Solar Cell Parameter Estimation. In Proceedings of the 3rd International conference on Computing, Mathematics and Engineering Technologies Idea to Innovsource Building a Knowledge Economy iCoMET 2020, Kahului, HI, USA, 29–30 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Jordehi, A.R. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules. Energy Convers. Manag. 2016, 129, 262–274. [Google Scholar] [CrossRef]
- Rezaee Jordehi, A. Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Sol. Energy 2018, 159, 78–87. [Google Scholar] [CrossRef]
- Nunes, H.G.G.; Pombo, J.A.N.; Mariano, S.J.P.S.; Calado, M.R.A.; Felippe de Souza, J.A.M. A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization. Appl. Energy 2018, 211, 774–791. [Google Scholar] [CrossRef]
- Ahmed, A.; Faisal, M.; Ali, I.; Bo, R.; Khan, I.A. Sustainable Energy, Grids and Networks Probabilistic generation model for optimal allocation of wind DG in distribution systems with time varying load models. Sustain. Energy Grids Netw. 2020, 22, 100358. [Google Scholar] [CrossRef]
- Chauhan, P.; Deep, K.; Pant, M. Novel inertia weight strategies for particle swarm optimization. Memetic Comput. 2013, 5, 229–251. [Google Scholar] [CrossRef]
- Gnetchejo, P.J.; Essiane, S.N.; Ele, P.; Wamkeue, R.; Wapet, D.M.; Ngoffe, S.P. Enhanced Vibrating Particles System Algorithm for Parameters Estimation of Photovoltaic System. J. Power Energy Eng. 2019, 7, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.E.; El-Hameed, M.A.; El-Fergany, A.A.; El-Arini, M.M. Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustain. Energy Technol. Assess. 2016, 17, 68–76. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Meng, Z. An improved explicit double-diode model of solar cells: Fitness verification and parameter extraction. Energy Convers. Manag. 2018, 169, 345–358. [Google Scholar] [CrossRef]
- Premkumar, M.; Babu, T.S.; Umashankar, S.; Sowmya, R. A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik Stuttg. 2020, 208, 164559. [Google Scholar] [CrossRef]
- Chen, X.; Xu, B.; Mei, C.; Ding, Y.; Li, K. Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 2018, 212, 1578–1588. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y. Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers. Manag. 2017, 144, 53–68. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Inf. Sci. N. Y. 2012, 183, 1–15. [Google Scholar] [CrossRef]
- Liang, J.J.; Qin, A.K.; Member, S.; Suganthan, P.N.; Member, S.; Baskar, S. Comprehensive learning PSO for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [Google Scholar] [CrossRef]
- Chen, X.; Yu, K.; Du, W.; Zhao, W.; Liu, G. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy 2016, 99, 170–180. [Google Scholar] [CrossRef]
- Chen, H.; Jiao, S.; Heidari, A.A.; Wang, M.; Chen, X.; Zhao, X. An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers. Manag. 2019, 195, 927–942. [Google Scholar] [CrossRef]
Obtained RMSE and Parameters | Computational Cost | ||||||
---|---|---|---|---|---|---|---|
Best Parameters | RMSE | Iteration | Time (s) | ||||
0.76078 | Maximum | Maximum | 9163 | Maximum | 109 | ||
Minimum | Minimum | 2356 | Minimum | 76 | |||
1.47559 | Mean | Mean | 8829 | Mean | 93 | ||
0.03654 | Std | ||||||
52.8898 |
Algorithm | Maximum | Minimum | Mean | Std |
---|---|---|---|---|
DEDIWPSO | ||||
GCPSO [35] | ||||
TVACPSO [33] | ||||
ELPSO [34] | ||||
CPSO [31] | ||||
TLABC [42] | ||||
BFPA [43] | ||||
TLBO [44] | ||||
ABC [26] | ||||
CLPSO [45] | ||||
GOTLBO [46] | ||||
CS [30] |
Sr. Number | Voltage | IAE | ||
---|---|---|---|---|
1 | 0.2057 | 0.764 | 0.764149 | 0.000149 |
2 | 0.1291 | 0.762 | 0.762702 | 0.000702 |
3 | 0.0588 | 0.7605 | 0.761374 | 0.000874 |
4 | 0.0057 | 0.7605 | 0.760155 | 0.000345 |
5 | 0.0646 | 0.76 | 0.759039 | 0.000961 |
6 | 0.1185 | 0.759 | 0.758011 | 0.000989 |
7 | 0.1678 | 0.757 | 0.757046 | |
8 | 0.2132 | 0.757 | 0.756085 | 0.000915 |
9 | 0.2545 | 0.7555 | 0.755022 | 0.000478 |
10 | 0.2924 | 0.754 | 0.753597 | 0.000403 |
11 | 0.3269 | 0.7505 | 0.751327 | 0.000827 |
12 | 0.3585 | 0.7465 | 0.747305 | 0.000805 |
13 | 0.3873 | 0.7385 | 0.740085 | 0.001585 |
14 | 0.4137 | 0.728 | 0.727426 | 0.000574 |
15 | 0.4373 | 0.7065 | 0.707026 | 0.000526 |
16 | 0.459 | 0.6755 | 0.6754 | |
17 | 0.4784 | 0.632 | 0.630998 | 0.001002 |
18 | 0.496 | 0.573 | 0.572175 | 0.000825 |
19 | 0.5119 | 0.499 | 0.499539 | 0.000539 |
20 | 0.5265 | 0.413 | 0.413485 | 0.000485 |
21 | 0.5398 | 0.3165 | 0.317162 | 0.000662 |
22 | 0.5521 | 0.212 | 0.212017 | |
23 | 0.5633 | 0.1035 | 0.102637 | 0.000863 |
24 | 0.5736 | 0.01 | 0.0093 | 0.000702 |
25 | 0.5833 | 0.123 | 0.12436 | 0.001361 |
26 | 0.59 | 0.21 | 0.2091 | 0.000898 |
Obtained RMSE and Parameters | COMPUTATIONAL COST | ||||||
---|---|---|---|---|---|---|---|
Best Parameters | RMSE | Iteration | Time (s) | ||||
0.76082 | Maximum | Maximum | 10,000 | Maximum | 201 | ||
1.35233 | Minimum | Minimum | 9998 | Minimum | 197 | ||
1.402796 | Mean | Mean | 9999 | Mean | 199 | ||
8.011757 | Std | ||||||
2.499999 | |||||||
0.037955 | |||||||
60.93531 |
Algorithm | Maximum | Minimum | Mean | Std |
---|---|---|---|---|
DEDIWPSO | ||||
GCPSO [35] | ||||
ELPSO [34] | ||||
TVACPSO [33] | ||||
CPSO [31] | ||||
ISCA [47] | ||||
BFPA [43] | ||||
ABC [26] | ||||
TLABC [42] | ||||
TLBO [44] | ||||
CLPSO [45] | ||||
GOTLBO [46] | ||||
CS [30] |
Sr. Number | Voltage | IAE | ||
---|---|---|---|---|
1 | 0.2057 | 0.764 | 0.763737 | 0.000263 |
2 | 0.1291 | 0.762 | 0.762479 | 0.000479 |
3 | 0.0588 | 0.7605 | 0.761323 | 0.000823 |
4 | 0.0057 | 0.7605 | 0.760257 | 0.000243 |
5 | 0.0646 | 0.76 | 0.75927 | 0.00073 |
6 | 0.1185 | 0.759 | 0.758339 | 0.000661 |
7 | 0.1678 | 0.757 | 0.757427 | 0.000427 |
8 | 0.2132 | 0.757 | 0.756462 | 0.000538 |
9 | 0.2545 | 0.7555 | 0.755323 | 0.000177 |
10 | 0.2924 | 0.754 | 0.753746 | 0.000254 |
11 | 0.3269 | 0.7505 | 0.751267 | 0.000767 |
12 | 0.3585 | 0.7465 | 0.747022 | 0.000522 |
13 | 0.3873 | 0.7385 | 0.739636 | 0.001136 |
14 | 0.4137 | 0.728 | 0.726941 | 0.001059 |
15 | 0.4373 | 0.7065 | 0.706665 | 0.000165 |
16 | 0.459 | 0.6755 | 0.675291 | 0.000209 |
17 | 0.4784 | 0.632 | 0.631156 | 0.000844 |
18 | 0.496 | 0.573 | 0.572502 | 0.000498 |
19 | 0.5119 | 0.499 | 0.499872 | 0.000872 |
20 | 0.5265 | 0.413 | 0.413675 | 0.000675 |
21 | 0.5398 | 0.3165 | 0.317138 | 0.000638 |
22 | 0.5521 | 0.212 | 0.211801 | 0.000199 |
23 | 0.5633 | 0.1035 | 0.102334 | 0.001166 |
24 | 0.5736 | 0.01 | 0.00953 | 0.000467 |
25 | 0.5833 | 0.123 | 0.12435 | 0.001345 |
26 | 0.59 | 0.21 | 0.20878 | 0.001218 |
Obtained RMSE and Parameters | Computational Cost | ||||||
---|---|---|---|---|---|---|---|
Best Parameters | RMSE | Iteration | Time (s) | ||||
1.03235 | Maximum | Maximum | 9466 | Maximum | 110 | ||
2.49999 | Minimum | Minimum | 3546 | Minimum | 65 | ||
1.31659 | Mean | Mean | 7059 | Mean | 95 | ||
1.24054 | Std | ||||||
748.323 |
Algorithm | Maximum | Minimum | Mean | Std |
---|---|---|---|---|
DEDIWPSO | ||||
GCPSO [35] | ||||
TVACPSO [33] | ||||
CPSO [31] | ||||
GWO [25] | ||||
BFPA [43] | ||||
TLABC [42] | ||||
TLBO [44] |
Sr. Number | Voltage | IAE | ||
---|---|---|---|---|
1 | 1.9426 | 1.0345 | 1.033242 | 0.001258 |
2 | 0.1248 | 1.0315 | 1.030478 | 0.001022 |
3 | 1.8093 | 1.03 | 1.028211 | 0.001789 |
4 | 3.3511 | 1.026 | 1.026093 | |
5 | 4.7622 | 1.022 | 1.02404 | 0.00204 |
6 | 6.0538 | 1.018 | 1.021878 | 0.003878 |
7 | 7.2364 | 1.0155 | 1.019269 | 0.003769 |
8 | 8.3189 | 1.014 | 1.015591 | 0.001591 |
9 | 9.3097 | 1.01 | 1.009786 | 0.000214 |
10 | 10.2163 | 1.0035 | 1.000208 | 0.003292 |
11 | 11.0449 | 0.988 | 0.984576 | 0.003424 |
12 | 11.8018 | 0.963 | 0.96009 | 0.00291 |
13 | 12.4929 | 0.9255 | 0.923857 | 0.001643 |
14 | 13.1231 | 0.8725 | 0.873621 | 0.001121 |
15 | 13.6983 | 0.8075 | 0.808298 | 0.000798 |
16 | 14.2221 | 0.7265 | 0.728648 | 0.002148 |
17 | 14.6995 | 0.6345 | 0.636704 | 0.002204 |
18 | 15.1346 | 0.5345 | 0.535455 | 0.000955 |
19 | 15.5311 | 0.4275 | 0.428182 | 0.000682 |
20 | 15.8929 | 0.3185 | 0.317799 | 0.000701 |
21 | 16.2229 | 0.2085 | 0.206939 | 0.001561 |
22 | 16.5241 | 0.101 | 0.097578 | 0.003422 |
23 | 16.7987 | 0.008 | 0.00864 | 0.000639 |
24 | 17.0499 | 0.111 | 0.11099 | |
25 | 17.2793 | 0.209 | 0.20857 | 0.000425 |
26 | 17.4885 | 0.303 | 0.30084 | 0.002164 |
Obtained RMSE and Parameters | Computational Cost | ||||||
---|---|---|---|---|---|---|---|
Best Parameters | RMSE | Iteration | Time (s) | ||||
1.032357 | Maximum | Maximum | 10,000 | Maximum | 199 | ||
Minimum | Minimum | 4605 | Minimum | 78 | |||
1.317132 | Mean | Mean | 8593 | Mean | 83 | ||
2.50 | Std | ||||||
2.499999 | |||||||
1.240547 | |||||||
748.3235 |
Sr. Number | Voltage | IAE | ||
---|---|---|---|---|
1 | 1.9426 | 1.0345 | 1.033242 | 0.001258 |
2 | 0.1248 | 1.0315 | 1.030478 | 0.001022 |
3 | 1.8093 | 1.03 | 1.028211 | 0.001789 |
4 | 3.3511 | 1.026 | 1.026093 | |
5 | 4.7622 | 1.022 | 1.02404 | 0.00204 |
6 | 6.0538 | 1.018 | 1.021878 | 0.003878 |
7 | 7.2364 | 1.0155 | 1.019269 | 0.003769 |
8 | 8.3189 | 1.014 | 1.015591 | 0.001591 |
9 | 9.3097 | 1.01 | 1.009786 | 0.000214 |
10 | 10.2163 | 1.0035 | 1.000208 | 0.003292 |
11 | 11.0449 | 0.988 | 0.984576 | 0.003424 |
12 | 11.8018 | 0.963 | 0.96009 | 0.00291 |
13 | 12.4929 | 0.9255 | 0.923857 | 0.001643 |
14 | 13.1231 | 0.8725 | 0.873621 | 0.001121 |
15 | 13.6983 | 0.8075 | 0.808298 | 0.000798 |
16 | 14.2221 | 0.7265 | 0.728648 | 0.002148 |
17 | 14.6995 | 0.6345 | 0.636704 | 0.002204 |
18 | 15.1346 | 0.5345 | 0.535455 | 0.000955 |
19 | 15.5311 | 0.4275 | 0.428182 | 0.000682 |
20 | 15.8929 | 0.3185 | 0.317799 | 0.000701 |
21 | 16.2229 | 0.2085 | 0.206939 | 0.001561 |
22 | 16.5241 | 0.101 | 0.097578 | 0.003422 |
23 | 16.7987 | 0.008 | 0.00864 | 0.000639 |
24 | 17.0499 | 0.111 | 0.11099 | |
25 | 17.2793 | 0.209 | 0.20857 | 0.000425 |
26 | 17.4885 | 0.303 | 0.30084 | 0.002164 |
Best Parameters | 1000 W/m2 at 47 °C | 800 W/m2 at 44 °C | 600 W/m2 at 42 °C | 400 W/m2 at 36 °C | 200 W/m2 at 27 °C |
---|---|---|---|---|---|
9.882387 | 8.193303 | 5.897388 | 3.693211 | 1.955859 | |
3.788971 | 1.285490 | 9.999999 | |||
1.290927 | 1.515014 | 1.377876 | 1.150867 | 1.689369 | |
0.241926 | 0.142890 | 0.315671 | 0.788494 | 0.302527 | |
467.5155 | 89.44717 | 217.6296 | 159.4358 | 177.7895 | |
RMSE | 0.043113 | 0.054986 | 0.022270 | 0.035303 | 0.018150 |
Std |
Experimental Curves | RMSE | Iteration | Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
1000 W/m2 at 47 °C | 0.043113 | 0.043113 | 0.043113 | 9901 | 1030 | 7291 | 110 | 98 | 100 |
800 W/m2 at 44 °C | 0.054986 | 0.054986 | 0.054986 | 10,000 | 2199 | 8437 | 171 | 137 | 140 |
600 W/m2 at 42 °C | 0.022270 | 0.022270 | 0.022270 | 10,000 | 2018 | 9120 | 187 | 103 | 146 |
400 W/m2 at 36 °C | 0.035303 | 0.035303 | 0.035303 | 8990 | 943 | 6345 | 116 | 98 | 99 |
200 W/m2 at 27 °C | 0.018045 | 0.018045 | 0.018045 | 9989 | 850 | 5231 | 130 | 85 | 90 |
Sr. Number | Voltage | IAE | ||
---|---|---|---|---|
1 | 0 | 9.82804 | 9.873348 | 0.045308 |
2 | 1.775741 | 9.829438 | 9.870487 | 0.041048 |
3 | 2.996557 | 9.86563 | 9.868516 | 0.002886 |
4 | 4.661311 | 9.866937 | 9.86582 | 0.001117 |
5 | 6.548038 | 9.868426 | 9.862749 | 0.005677 |
6 | 9.100658 | 9.870432 | 9.858545 | 0.011887 |
7 | 10.54341 | 9.871567 | 9.856127 | 0.01544 |
8 | 11.5423 | 9.872357 | 9.854426 | 0.017932 |
9 | 13.09608 | 9.873583 | 9.851714 | 0.021869 |
10 | 15.75972 | 9.875681 | 9.846759 | 0.028922 |
11 | 16.98047 | 9.876643 | 9.844271 | 0.032372 |
12 | 18.86718 | 9.878122 | 9.839958 | 0.038164 |
13 | 20.53193 | 9.844211 | 9.835384 | 0.008827 |
14 | 21.6418 | 9.845082 | 9.83169 | 0.013392 |
15 | 23.63949 | 9.846663 | 9.822868 | 0.023794 |
16 | 25.85922 | 9.777958 | 9.807041 | 0.029084 |
17 | 27.52397 | 9.744036 | 9.787061 | 0.043025 |
18 | 29.74362 | 9.675341 | 9.738099 | 0.062759 |
19 | 30.96446 | 9.641074 | 9.691175 | 0.0501 |
20 | 32.07423 | 9.606717 | 9.627424 | 0.020707 |
21 | 35.51472 | 9.25717 | 9.161358 | 0.095812 |
22 | 37.84543 | 8.378353 | 8.339642 | 0.038712 |
23 | 40.17605 | 6.583672 | 6.6936 | 0.109928 |
24 | 42.06276 | 4.542054 | 4.512557 | 0.029497 |
25 | 43.61653 | 2.147913 | 2.092031 | 0.055882 |
26 | 44.7264 | 0 | 0.035605 | 0.035605 |
Best Parameters | 1000 W/m2 at 47 °C | 800 W/m2 at 44 °C | 600 W/m2 at 42 °C | 400 W/m2 at 36 °C | 200 W/m2 at 27 °C |
---|---|---|---|---|---|
9.878221 | 5.897388 | 5.897388 | 3.692697 | 1.954250 | |
1.285489 | 1.285488 | 9.999999 | 8.691569 | ||
1.168923 | 1.377876 | 1.377876 | 2.499999 | 2.093038 | |
9.99796 | 9.999999 | ||||
1.913882 | 1.377570 | 2.4999931 | 1.135372 | 1.683647 | |
1.168923 | 0.315671 | 0.3156716 | 0.796159 | 0.259395 | |
610.505844 | 217.6297 | 217.62956 | 161.5022 | 182.6477 | |
RMSE | 0.042377 | 0.043298 | 0.022270 | 0.035292 | 0.018041 |
Std |
Experimental Curves | RMSE | Iteration | Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
1000 W/m2 at 47 °C | 0.042419 | 0.042377 | 0.04310 | 10,000 | 2098 | 7912 | 132 | 100 | 101 |
800 W/m2 at 44 °C | 0.043299 | 0.043298 | 0.04329 | 10,000 | 2254 | 9185 | 189 | 144 | 145 |
600 W/m2 at 42 °C | 0.022270 | 0.022270 | 0.022270 | 10,000 | 3287 | 9657 | 190 | 133 | 155 |
400 W/m2 at 36 °C | 0.035292 | 0.035292 | 0.035292 | 10,000 | 1489 | 6991 | 176 | 101 | 110 |
200 W/m2 at 27 °C | 0.018041 | 0.018041 | 0.018041 | 10,000 | 1991 | 6173 | 143 | 99 | 120 |
Sr. Number | Voltage | IAE | ||
---|---|---|---|---|
1 | 0 | 9.82804 | 9.877276 | 0.049236 |
2 | 1.775741 | 9.829438 | 9.873479 | 0.044041 |
3 | 2.996557 | 9.86563 | 9.870868 | 0.005238 |
4 | 4.661311 | 9.866937 | 9.867307 | 0.00037 |
5 | 6.548038 | 9.868426 | 9.863269 | 0.005157 |
6 | 9.100658 | 9.870432 | 9.857797 | 0.012635 |
7 | 10.54341 | 9.871567 | 9.854696 | 0.016871 |
8 | 11.5423 | 9.872357 | 9.852541 | 0.019817 |
9 | 13.09608 | 9.873583 | 9.849169 | 0.024414 |
10 | 15.75972 | 9.875681 | 9.843275 | 0.032405 |
11 | 16.98047 | 9.876643 | 9.840478 | 0.036166 |
12 | 18.86718 | 9.878122 | 9.835905 | 0.042217 |
13 | 20.53193 | 9.844211 | 9.831401 | 0.012809 |
14 | 21.6418 | 9.845082 | 9.827958 | 0.017124 |
15 | 23.63949 | 9.846663 | 9.8201 | 0.026563 |
16 | 25.85922 | 9.777958 | 9.80625 | 0.028293 |
17 | 27.52397 | 9.744036 | 9.788374 | 0.044338 |
18 | 29.74362 | 9.675341 | 9.742626 | 0.067285 |
19 | 30.96446 | 9.641074 | 9.697229 | 0.056155 |
20 | 32.07423 | 9.606717 | 9.634318 | 0.027602 |
21 | 35.51472 | 9.25717 | 9.164077 | 0.093093 |
22 | 37.84543 | 8.378353 | 8.335111 | 0.043242 |
23 | 40.17605 | 6.583672 | 6.689338 | 0.105666 |
24 | 42.06276 | 4.542054 | 4.516072 | 0.025982 |
25 | 43.61653 | 2.147913 | 2.096856 | 0.051057 |
26 | 44.7264 | 0 | 0.031569 | 0.031569 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiani, A.T.; Nadeem, M.F.; Ahmed, A.; Khan, I.; Elavarasan, R.M.; Das, N. Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization. Energies 2020, 13, 4037. https://doi.org/10.3390/en13154037
Kiani AT, Nadeem MF, Ahmed A, Khan I, Elavarasan RM, Das N. Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization. Energies. 2020; 13(15):4037. https://doi.org/10.3390/en13154037
Chicago/Turabian StyleKiani, Arooj Tariq, Muhammad Faisal Nadeem, Ali Ahmed, Irfan Khan, Rajvikram Madurai Elavarasan, and Narottam Das. 2020. "Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization" Energies 13, no. 15: 4037. https://doi.org/10.3390/en13154037
APA StyleKiani, A. T., Nadeem, M. F., Ahmed, A., Khan, I., Elavarasan, R. M., & Das, N. (2020). Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization. Energies, 13(15), 4037. https://doi.org/10.3390/en13154037