Performance Assessment of an NH3/LiNO3 Bubble Plate Absorber Applying a Semi-Empirical Model and Artificial Neural Networks
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Setup
2.2. Semi-Empirical Model
- Model in one dimension and steady-state conditions,
- Pressure drop is negligible,
- Equal heat and mass transfer areas,
- Refrigerant temperature equal to the inlet solution temperature,
- Adiabatic exterior border.
2.2.1. Discretized Governing Equations and Correlations
2.2.2. Model Resolution
- Input of the absorber geometrical characteristics.
- Input of inlet operating conditions such as: TSol(n), xSol(n), mSol(n), PSol(n), mVap(n), TCw, VCw(n), and PCw(n).
- The model guesses an initial outlet water-side temperature TCw(n).
- Evaluation of the first control volume:
- ○
- Estimation of thermodynamic properties.
- ○
- Estimation of ShSol, km, FAB and mass transfer balances in the control volume.
- ○
- Estimation of αSol, αCw, TSol(n + 1), TCw(n + 1), and energy balances.
The model guesses TSol(n + 1), carries out energy balances, and calculates TCw(n + 1). If balances are close, the simulation runs on the next control volume, else, a new TSol(n + 1) is assumed. TSol(n + 1) is set by applying the secant method. - When the simulation reaches the last control volume, the calculated TCw(n + 1) is compared to the actual TCw. The simulation finishes if values are equal, else, a new TCw(n) is guessed, and the simulation starts again from the first control volume. TCw(n) is estimated by applying the secant method.
2.3. Artificial Neural Networks Model
3. Results and Discussion
3.1. Heat and Mass Transfer Correlations
3.2. Semi-Empirical Model Results
3.3. Artificial Neural Network Results
3.4. Heat and Mass Transfer Rates Comparison
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | heat transfer area, m2 |
Ap | Pass area, m2 |
Cp | heat capacity, kJ·kg−1·K−1 |
D | diameter, m |
dl | differential length, m |
differential thermal load, kW | |
dTa | differential transfer area, m2 |
e | wall thickness, m |
F | NH3 absorption mass flux, kg·m−2·s−1 |
h | enthalpy, kJ·kg−1 |
Km | mass transfer coefficient, m·h−1 |
LMTD | logarithmic mean temperature difference, °C |
LMXD | logarithmic mean concentration difference |
mass flow rate, kg·s−1 | |
MSE | mean square error |
Nu | Nusselt number |
NV | Needle valve |
P | pressure, kPa |
Pr | Prandtl number |
Pw | wet perimeter, m |
Q | thermal load per unit of area, kW·m−2 |
R | resistance |
Re | Reynolds number |
Sc | Schmidt number |
Sh | Sherwood number |
T | temperature, °C |
U | overall heat transfer coefficient, kW·m−2·K−1 |
V | volumetric flow rate, m3·h−1 |
x | NH3 concentration, kgNH3·kg−1NH3/LiNO3 |
Subscripts
AB | absorber |
Cw | cooling water |
Eq | equilibrium |
Exp | experimental result |
h | hydraulic |
In | absorber inlet |
LiNO3 | Lithium nitrate |
m | average |
NH3 | ammonia |
Out | absorber outlet |
Sat | saturation state |
Sol | solution of NH3/LiNO3 |
Steel | stainless steel |
Vap | ammonia vapour |
Greek Letters
λ | thermal conductivity, kW·m−1·K−1 |
α | heat transfer coefficient, kW·m−2·K−1 |
References
- Amaris, C.; Vallès, M.; Bourouis, M. Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl. Energy 2018, 231, 826–853. [Google Scholar] [CrossRef]
- Aggarwal, M.K.; Agarwal, R.S. Thermodynamic properties of lithium nitrate-ammonia mixtures. Int. J. Energy Res. 1986, 10, 59–68. [Google Scholar] [CrossRef]
- Infante Ferreira, C.A. Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions. Sol. Energy 1984, 32, 231–236. [Google Scholar] [CrossRef]
- Abdulateef, J.M.; Sopian, K.; Alghoul, M.A. Optimum design for solar absorption refrigeration systems and comparison of the performances using ammonia-water, ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions. Int. J. Mech. Mater. Eng. 2008, 3, 17–24. [Google Scholar]
- Infante Ferreira, C.A. Operating characteristics of NH3–LiNO3 and NH3–NaSCN absorption refrigeration machines. In Proceedings of the 19th Int. Congr. Refrig, the Hague, The Netherlands, 20–25 August 1995; pp. 321–328. [Google Scholar]
- Ayala, R.; Frías, J.L.; Lam, L.; Heard, C.L.; Holland, F.A. Experimental assessment of an ammonia/lithium nitrate absorption cooler operated on low temperature geothermal energy. Heat Recover. Syst. CHP 1994, 14, 437–446. [Google Scholar] [CrossRef]
- Heard, C.L.; Ayala, R.; Best, R. An experimental comparison of an absorption refrigerator using ammonia/water and ammonia/lithium nitrate. In Proceedings of the International Sorption Heat Pump Conference, Montreal, QC, Canada, 17–20 September 1996; pp. 245–252. [Google Scholar]
- Oronel, C.; Amaris, C.; Bourouis, M.; Vallès, M. Heat and mass transfer in a bubble plate absorber with NH3/LiNO3 and NH3/(LiNO3+ H2O) mixtures. Int. J. Therm. Sci. 2013, 63. [Google Scholar] [CrossRef]
- Amaris, C.; Bourouis, M.; Vallès, M. Effect of advanced surfaces on the ammonia absorption process with NH3/LiNO3 in a tubular bubble absorber. Int. J. Heat Mass Transf. 2014, 72. [Google Scholar] [CrossRef]
- Amaris, C.; Bourouis, M.; Vallès, M. Passive intensification of the ammonia absorption process with NH3/LiNO3using carbon nanotubes and advanced surfaces in a tubular bubble absorber. Energy 2014, 68, 519–528. [Google Scholar] [CrossRef]
- Kang, Y.T.; Akisawa, A.; Kashiwagi, T. Analytical investigation of two different absorption modes: Falling film and bubble types. Int. J. Refrig. 2000, 23, 430–443. [Google Scholar] [CrossRef]
- Castro, J.; Oliet, C.; Rodríguez, I.; Oliva, A. Comparison of the performance of falling film and bubble absorbers for air-cooled absorption systems. Int. J. Therm. Sci. 2009, 48, 1355–1366. [Google Scholar] [CrossRef] [Green Version]
- Infante Ferreira, C.A. Combined momentum, heat and mass transfer in vertical slug flow absorbers. Int. J. Refrig. 1985, 8, 326–334. [Google Scholar] [CrossRef]
- Cerezo, J.; Best, R.; Romero, R.J. A study of a bubble absorber using a plate heat exchanger with NH3–H2O, NH3–LiNO3 and NH3–NaSCN. Appl. Therm. Eng. 2011, 31, 1869–1876. [Google Scholar] [CrossRef]
- Herbine, G.S.; Perez-Blanco, H. Model of an ammonia-water bubble absorber. ASHRAE Trans. 1995, 101, 1324–1334. [Google Scholar]
- Fernández-Seara, J.; Sieres, J.; Rodríguez, C.; Vázquez, M. Ammonia–water absorption in vertical tubular absorbers. Int. J. Therm. Sci. 2005, 44, 277–288. [Google Scholar] [CrossRef]
- Fernández-Seara, J.; Uhía, F.J.; Sieres, J. Analysis of an air cooled ammonia–water vertical tubular absorber. Int. J. Therm. Sci. 2007, 46, 93–103. [Google Scholar] [CrossRef]
- Kang, Y.T.; Christensen, R.N.; Kashiwagi, T. Ammonia-Water bubble absorber with a plate heat exchanger. Int. J. Refrig. 1998, 104, 956–966. [Google Scholar]
- Lee, J.-C.; Lee, K.-B.; Chun, B.-H.; Lee, C.H.; Ha, J.J.; Kim, S.H. A study on numerical simulations and experiments for mass transfer in bubble mode absorber of ammonia and water. Int. J. Refrig. 2003, 26, 551–558. [Google Scholar] [CrossRef]
- Cerezo, J.; Best, R.; Bourouis, M.; Coronas, A. Comparison of numerical and experimental performance criteria of an ammonia–water bubble absorber using plate heat exchangers. Int. J. Heat Mass Transf. 2010, 53, 3379–3386. [Google Scholar] [CrossRef]
- Wang, M.; He, L.; Infante Ferreira, C.A. Ammonia absorption in ionic liquids-based mixtures in plate heat exchangers studied by a semi-empirical heat and mass transfer framework. Int. J. Heat Mass Transf. 2019, 134, 1302–1317. [Google Scholar] [CrossRef]
- Sujatha, K.S.; Mani, A.; Srinivasa Murthy, S. Finite element analysis of a bubble absorber. Int. J. Numer. Methods Heat Fluid Flow 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Sujatha, K.S.; Mani, A.; Srinivasa, M.S. Analysis of a bubble absorber working with R22 and five organic absorbents. Heat Mass Transf. Stoffuebertragung 1997, 32, 255–259. [Google Scholar] [CrossRef]
- Merrill, T.L.; Perez-Blanco, H. Combined heat and mass transfer during bubble absorption in binary solutions. Int. J. Heat Mass Transf. 1997, 40, 589–603. [Google Scholar] [CrossRef]
- Terasaka, K.; Oka, J.; Tsuge, H. Ammonia absorption from a bubble expanding at a submerged orifice into water. Chem. Eng. Sci. 2002, 57, 3757–3765. [Google Scholar] [CrossRef]
- Kim, J.-K.; Park, C.W.; Kang, Y.T. The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film H2O/LiBr absorber. Int. J. Refrig. 2003, 26, 575–585. [Google Scholar] [CrossRef]
- Elperin, T.; Fominykh, A. Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber. Chem. Eng. Sci. 2003, 58, 3555–3564. [Google Scholar] [CrossRef]
- Suresh, M.; Mani, A. Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory. Int. J. Heat Mass Transf. 2010, 53, 2813–2825. [Google Scholar] [CrossRef]
- Staicovici, M.D. A non-Equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part II—Modeling of the NH3/H2O bubble absorption, analytical study of absorption and experiments. Int. J. Heat Mass Transf. 2000, 43, 4175–4188. [Google Scholar] [CrossRef]
- Staicovici, M.D. A non-Equilibrium phenomenological theory of the mass and heat transfer in physical and chemical interactions: Part I—Application to NH3/H2O and other working systems. Int. J. Heat Mass Transf. 2000, 43, 4153–4173. [Google Scholar] [CrossRef]
- Kaji, R.; Azzopardi, B.J.; Lucas, D. Investigation of flow development of co-current gas–liquid vertical slug flow. Int. J. Multiph. Flow 2009, 35, 335–348. [Google Scholar] [CrossRef]
- Muniz, M.; Sommerfeld, M. On the force competition in bubble columns: A numerical study. Int. J. Multiph. Flow 2020, 128. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 2000, 5, 373–401. [Google Scholar] [CrossRef]
- Mohanraj, M.; Jayaraj, S.; Muraleedharan, C. Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review. Renew. Sustain. Energy Rev. 2012, 16, 1340–1358. [Google Scholar] [CrossRef]
- Sözen, A.; Akçayol, M.A. Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle. Appl. Energy 2004, 79, 309–325. [Google Scholar] [CrossRef]
- Manohar, H.J.; Saravanan, R.; Renganarayanan, S. Modelling of steam fired double effect vapour absorption chiller using neural network. Energy Convers. Manag. 2006, 47, 2202–2210. [Google Scholar] [CrossRef]
- Chow, T.T.; Zhang, G.Q.; Lin, Z.; Song, C.L. Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build. 2002, 34, 103–109. [Google Scholar] [CrossRef]
- Hernández, J.A.; Juárez-Romero, D.; Morales, L.I.; Siqueiros, J. COP prediction for the integration of a water purification process in a heat transformer: With and without energy recycling. Desalination 2008, 219, 66–80. [Google Scholar] [CrossRef]
- Labus, J.; Bruno, J.C.; Coronas, A. Performance analysis of small capacity absorption chillers by using different modeling methods. Appl. Therm. Eng. 2013, 58, 305–313. [Google Scholar] [CrossRef]
- Álvarez, M.E.; Hernández, J.A.; Bourouis, M. Modelling the performance parameters of a horizontal falling film absorber with aqueous (lithium, potassium, sodium) nitrate solution using artificial neural networks. Energy 2016, 102, 313–323. [Google Scholar] [CrossRef]
- Amaris, C. Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes for NH3/LiNO3 Absorption Chillers. Ph.D. Thesis, Universitat Rovira i Virgili, Tarragona, Spain, 2013. [Google Scholar]
- Libotean, S.; Salavera, D.; Valles, M.; Esteve, X.; Coronas, A. Vapor-liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K. J. Chem. Eng. Data 2007, 52, 1050–1055. [Google Scholar] [CrossRef]
- Libotean, S.; Martín, A.; Salavera, D.; Valles, M.; Esteve, X.; Coronas, A. Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K. J. Chem. Eng. Data 2008, 53, 2383–2388. [Google Scholar] [CrossRef]
- Cuenca, Y.; Vernet, A.; Vallès, M. Thermal conductivity enhancement of the binary mixture (NH3+ LiNO3) by the addition of CNTs. Int. J. Refrig. 2014, 41, 113–120. [Google Scholar] [CrossRef]
- Haltenberger, W. Enthalpy-Concentration charts from vapor pressure data. Ind. Eng. Chem. 1939, 31, 783–786. [Google Scholar] [CrossRef]
- McNeely, L.A. Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 1979, 85, 413–434. [Google Scholar]
- Infante Ferreira, C.A. Vertical Tubular Absorbers for Ammonia—Salt Absorption Refrigeration. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1985. [Google Scholar]
- Despagne, F. Neural networks in multivariate calibration. Analyst 1998, 123. [Google Scholar] [CrossRef] [PubMed]
- Cerezo, J. Estudio Del Proceso De Absorción Con Amoníaco-Agua en Intercambiadores De Placas Para Equipos de Refrigeración Por Absorción. Ph.D. Thesis, Universitat Rovira i Virgili, Tarragona, Spain, 2006. [Google Scholar]
- Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Technical Note 1297; Diane Publishing: Darby, PA, USA, 1994. [Google Scholar]
Plate Heat Exchanger | |
---|---|
Corrugation | Type H |
Length, m | 0.53 |
Width, m | 0.112 |
Area of heat exchange, m2 | 0.1 |
Hydraulic diameter of the channels, m | 0.004 |
Thickness of the plate, m | 0.0004 |
Parameters | Range |
---|---|
Solution temperature, °C | 45 |
Water-side temperature, °C | 35, 40 |
Ammonia mass fraction in solution, kgNH3·kg−1NH3/LiNO3 | 0.45 |
Solution-side pressure, kPa | 510 |
Solution-side mass flow, kg·h−1 | 10–70 |
Water volumetric flow, m3·h−1 | 0.130–0.450 |
Hidden Layer | ||||||
Matrix of Weights (IWj,i) | Bias (b1,j) | |||||
4.59 | −6.04 × 10−1 | 6.11 × 10−1 | −4.61 × 10−1 | 4.04 | 1.36 | −4.11 |
3.12 | 1.06 | 1.19 | 4.85 × 10−1 | 2.86 | 4.94 | 1.57 |
5.60 | 2.14 | 4.92 × 10−1 | 4.80 × 10−1 | 2.61 | 3.86 | −1.33 |
2.17 | 1.17 | −2.49 × 10−1 | −6.02 × 10−1 | −4.86 × 10−1 | 5.10 × 10−1 | 6.52 × 10−1 |
1.51 | 6.00 | 2.16 | 4.76 | 4.87 | 6.90 × 10−1 | 1.14 × 101 |
Output Layer | ||||||
Matrix of Weights (LWo,j) | Bias (b2,o) | |||||
−4.14 × 10−4 | 1.52 × 10−3 | 5.26 × 10−5 | 3.74 × 10−3 | −3.90 × 10−3 | 5.62 × 10−3 | |
−3.34 × 10−1 | 4.22 × 10−1 | −1.31 × 10−1 | 1.18 | 1.66 | 1.83 | |
3.45 | −4.09 × 10−1 | 4.62 × 10−1 | 5.53 × 10−1 | −8.43 × 10−1 | 6.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaris, C.; Alvarez, M.E.; Vallès, M.; Bourouis, M. Performance Assessment of an NH3/LiNO3 Bubble Plate Absorber Applying a Semi-Empirical Model and Artificial Neural Networks. Energies 2020, 13, 4313. https://doi.org/10.3390/en13174313
Amaris C, Alvarez ME, Vallès M, Bourouis M. Performance Assessment of an NH3/LiNO3 Bubble Plate Absorber Applying a Semi-Empirical Model and Artificial Neural Networks. Energies. 2020; 13(17):4313. https://doi.org/10.3390/en13174313
Chicago/Turabian StyleAmaris, Carlos, Maria E. Alvarez, Manel Vallès, and Mahmoud Bourouis. 2020. "Performance Assessment of an NH3/LiNO3 Bubble Plate Absorber Applying a Semi-Empirical Model and Artificial Neural Networks" Energies 13, no. 17: 4313. https://doi.org/10.3390/en13174313
APA StyleAmaris, C., Alvarez, M. E., Vallès, M., & Bourouis, M. (2020). Performance Assessment of an NH3/LiNO3 Bubble Plate Absorber Applying a Semi-Empirical Model and Artificial Neural Networks. Energies, 13(17), 4313. https://doi.org/10.3390/en13174313