Comparative of Power Calculation Methods for Single-Phase Systems under Sinusoidal and Non-Sinusoidal Operation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Frame Methods for Single-Phase Systems
2.1.1. Time Delay Method
2.1.2. Time Delay Integrator Method
2.1.3. All-Pass Filter Method
2.1.4. State Observer Method
2.1.5. Hilbert Transform Method
2.1.6. Method Using Mathematical Operations
2.2. Power Calculation in the αβ0 Stationary Reference Frame
2.3. Power Calculation in the dq0 Rotating Reference Frame
3. Experimental Results and Discussion
3.1. Experimental Validation: Active and Reactive Power Calculation for an RL Load
3.2. Experimental Validation: Active and Reactive Power Calculation for a Non-Linear Load
3.3. Calculation Time of Active and Reactive Power
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riverso, S.; Tucci, M.; Vasquez, J.C.; Guerrero, J.M.; Ferrari-Trecate, G. Stabilizing plug-and-play regulators and secondary coordinated control for AC islanded microgrids with bus-connected topology. Appl. Energy 2018, 210, 914–924. [Google Scholar] [CrossRef]
- Dasgupta, S.; Sahoo, S.K.; Panda, S.K.; Amaratunga, G.A.J. Single-phase inverter-control techniques for interfacing renewable energy sources with microgrid-Part II: Series-connected inverter topology to mitigate voltage-related problems along with active power flow control. IEEE Trans. Power Electron. 2011, 26, 732–746. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Blaabjerg, F. Reactive power injection strategies for single-phase photovoltaic systems considering grid requirements. IEEE Trans. Ind. Appl. 2014, 50, 4065–4076. [Google Scholar] [CrossRef] [Green Version]
- Systems, G.D.G.; Khajehoddin, S.A.; Karimi-ghartemani, M.; Member, S. A power control method with simple structure and fast dynamic response for single-phase. IEEE Trans. Power Electron. 2013, 28, 221–233. [Google Scholar]
- Willems, J.L.; Fellow, L. Budeanu’s reactive power and related concepts revisited. IEEE Trans. Instrum. Meas. 2011, 60, 1182–1186. [Google Scholar] [CrossRef]
- Wang, X.; Harnefors, L.; Blaabjerg, F. Unified impedance model of grid-connected voltage-source converters. IEEE Trans. Power Electron. 2018, 33, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Vieira, D.; Shayani, R.A.; Aurélio, M.; de Oliveira, G.; Member, S. Reactive power billing under nonsinusoidal conditions for low-voltage systems. IEEE Trans. Instrum. Meas. 2017, 66, 2004–2011. [Google Scholar] [CrossRef]
- Wu, W.; Mu, X.; Xu, Q.; Mu, X.; Ji, F.; Bao, J.; Ouyang, Z. Effect of frequency offset on power measurement error in digital input electricity meters. IEEE Trans. Instrum. Meas. 2018, 67, 559–568. [Google Scholar] [CrossRef]
- Gallo, D.; Landi, C.; Pasquino, N.; Polese, N. A new methodological approach to quality assurance of energy meters under non-sinusoidal conditions. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference Proceedings, Sorrento, Italy, 24–27 April 2006; pp. 1626–1631. [Google Scholar]
- Yoon, W.; Devaney, M.J. Reactive power measurement using the wavelet transform. IEEE Trans. Instrum. Meas. 2000, 49, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Balci, M.E.; Hocaoglu, M.H. Quantitative comparison of power decompositions. Electr. Power Syst. Res. 2008, 78, 318–329. [Google Scholar] [CrossRef]
- Budeanu, C. Reactive and fictitious powers. Rum. Natl. Inst. 1927, 2, 127–138. [Google Scholar]
- Fryze, S. Effective reactive and apparent powers in circuits with nonsinusoidal waveforms. Electrotehn. Zeitshri 1932, 53, 25–27. [Google Scholar]
- Czarnecki, L.S. What is wrong with the Budeanu concept of reactive and distortion power and why it should be abandoned. IEEE Trans. Instrum. Meas. 1987, IM, 834–837. [Google Scholar] [CrossRef]
- Akagi, H.; Watanabe, E.H.; Aredes, M. The instantaneous power theory. In Instantaneous Power Theory and Applications to Power Conditioning, 2nd ed.; IEEE: Piscataway, NJ, USA, 2017; pp. 37–109. [Google Scholar]
- Saitou, M.; Shimizu, T. Generalized theory of instantaneous active and reactive powers in single-phase circuits based on hilbert transform. In Proceedings of the 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference, Cairns, Australia, 23–27 June 2002; pp. 1419–1424. [Google Scholar]
- Ranjbaran, A.; Ebadian, M. A power sharing scheme for voltage unbalance and harmonics compensation in an islanded microgrid. Electr. Power Syst. Res. 2018, 155, 153–163. [Google Scholar] [CrossRef]
- Chatterjee, A.; Mohanty, K.; Kommukuri, V.S.; Thakre, K. Design and experimental investigation of digital model predictive current controller for single phase grid integrated photovoltaic systems. Renew. Energy 2017, 108, 438–448. [Google Scholar] [CrossRef]
- Al-Alaoui, M.A. Using fractional delay to control the magnitudes and phases of integrators and differentiators. IET Signal Process 2007, 1, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Haon, Y.; Wang, X.; Blazzbjerg, F.; Zhuo, F. Impedance analysis of SOGI-FLL-based grid synchronization. IEEE Trans. Power Electron. 2017, 32, 7409–7413. [Google Scholar]
- Dc, S.; Converters, A.C.; Karimi-ghartemani, M.; Member, S. Universal integrated synchronization and control. IEEE Trans. Power Electron. 2015, 30, 1544–1557. [Google Scholar]
- Filho, R.M.D.S. Contribuição ao Controle Digital do Paralelismo sem Comunicação de Sistemas de Energia Ininterrupta; Universidade Federal de Minas Gerais: Minas Gerais, Brazil, 2009. [Google Scholar]
- Chaturvedi, B.; Maheshwari, S. An ideal voltage-mode all-pass filter and its application. J. Commun. Comput. 2012, 9, 613–623. [Google Scholar]
- Golestan, S.; Joorabian, M.; Rastegar, H.; Roshan, A.; Guerrero, J.M. Droop based control of parallel-connected single-phase inverters in D-Q rotating frame. In Proceedings of the 2009 IEEE International Conference on Industrial Technology, Gippsland, Australia, 10–13 February 2009; pp. 1–6. [Google Scholar]
- Saritha, B.; Janakiraman, P.A. An observer for three-phase current estimation using nonuniform current samples. IEEE Trans. Power Electron. 2007, 22, 686–692. [Google Scholar] [CrossRef]
- Tavakoli, A.; Sanjari, M.J.; Kohansal, M.; Gharehpetian, G.B. An innovative power calculation method to improve power sharing in VSI based micro grid. In Proceedings of the Iranian Conference on Smart Grids, Tehran, Iran, 24 May 2012; pp. 3–7. [Google Scholar]
- Botteron, F.; Pinheiro, H. A three-phase ups that complies with the standard IEC 62040-3. IEEE Trans. Ind. Electron. 2007, 54, 2120–2136. [Google Scholar] [CrossRef]
- Buraimoh, E.; Davidson, I.E.; Martinez-Rodrigo, F. Fault ride-through enhancement of grid supporting inverter-based microgrid using delayed signal cancellation algorithm secondary control. Energies 2019, 12, 3994. [Google Scholar] [CrossRef] [Green Version]
- Langella, R.; Testa, A.; Alii, E. 519-2014-IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE: New York, NY, USA, 2014; pp. 1–29. [Google Scholar]
- IEEE-SA. 1459-2010-IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions; IEEE: New York, NY, USA, 2010; pp. 1–50. [Google Scholar]
Feature | Parameter | Values |
---|---|---|
f | fundamental frequency | 60 Hz |
fsw | switching frequency | 1080 Hz |
fs | Sampling frequency | 20160 Hz |
Lf | filter inductance | 2.7 mH |
Cf | filter capacitance | 9.4 µF |
L | inductive load | 18.8 mH |
fc | non-linear load crest factor | 2.9 |
RL | resistive load | 64.2 Ω |
Method/ Component | State Observer | αβ Method | DQ Method | All-Pass Filter | ||||
P(W) | Q(VAR) | P(W) | Q(VAR) | P(W) | Q(VAR) | P(W) | Q(VAR) | |
F | 187.5 | 47.19 | 186.3 | 44.61 | 186.7 | 46.86 | 186.8 | 46.76 |
F + 3rd | 193.9 | 49.82 | 193.6 | 48.90 | 194.3 | 52.30 | 193.8 | 43.20 |
F + 3rd + 5th | 200.0 | 41.43 | 206.3 | 55.37 | 206.4 | 56.77 | 207.2 | 39.88 |
F + 3rd + 5th + 7th | 217.1 | 21.41 | 217.3 | 61.92 | 217.5 | 60.75 | 217.7 | 34.86 |
Method/ Component | Mathematical Operations | αβ Method with Filter | Mathematical Operations with Filter | Fluke 1730 Measurement | ||||
P(W) | Q(VAR) | P(W) | Q(VAR) | P(W) | Q(VAR) | P(W) | Q(VAR) | |
F | 185.2 | 46.85 | 186.3 | 44.87 | 185.0 | 46.64 | 190.5 | 55.04 |
F + 3rd | 227.9 | 64.33 | 194.0 | 49.26 | 228.5 | 64.73 | 190.5 | 89.40 |
F + 3rd + 5th | 309.4 | 83.72 | 206.6 | 55.09 | 307.8 | 84.03 | 190.5 | 124.5 |
F + 3rd + 5th + 7th | 405.6 | 100.5 | 217.6 | 61.42 | 405.1 | 100.5 | 190.5 | 154.7 |
Method/ Component | State Observer | αβ Method | DQ Method | All-Pass Filter | |||||||||
P % | Q % | P % | Q % | P % | Q % | P % | Q % | ||||||
F | 3.130 | 14.267 | 3.712 | 18.93 | 3.519 | 14.85 | 3.467 | 15.04 | |||||
F + 3rd | 0.191 | 44.26 | 0.048 | 45.23 | 0.387 | 41.49 | 0.126 | 51.65 | |||||
F + 3rd + 5th | 6.477 | 66.71 | 6.587 | 55.55 | 6.648 | 54.40 | 7.068 | 67.96 | |||||
F + 3rd + 5th + 7th | 12.20 | 86.16 | 12.30 | 59.98 | 12.41 | 60.7 | 12.50 | 67.96 | |||||
Method/ Component | Mathematical Operations | αβ Method with Filter | Mathematical Operations with Filter | ||||||||||
P % | Q % | P % | Q % | P % | Q % | ||||||||
F | 4.314 | 14.8 | 3.745 | 18.47 | 4.373 | 15.25 | |||||||
F + 3rd | 17.76 | 28.04 | 0.261 | 44.89 | 18.07 | 27.59 | |||||||
F + 3rd + 5th | 59.8 | 32.75 | 6.789 | 55.75 | 59.05 | 32.50 | |||||||
F + 3rd + 5th + 7th | 109.5 | 35.00 | 12.46 | 60.30 | 109.30 | 34.99 |
State Observer | αβ Method | DQ Method | All-Pass Filter | ||||
P(W) | Q(VAR) | P(W) | Q(VAR) | P(W) | Q(VAR) | P(W) | Q(VAR) |
202.1 | 14.81 | 194.9 | 129.3 | 199.9 | 19.09 | 199.4 | 27.17 |
Mathematical Operations | αβ Method with filter | Mathematical Operations with filter | Fluke 1730 Measurement | ||||
P(W) | Q(VAR) | P(W) | Q(VAR) | P(W) | Q(VAR) | P(W) | Q(VAR) |
131.7 | 2.113 | 198.7 | 127.7 | 148.2 | 3.201 | 199.3 | 220.6 |
Mathematical. Operations | αβ Method with Filter | Mathematical Operations with Filter | |||||
P % | Q % | P % | Q % | P % | Q % | ||
23.20 | 107.7 | 2.970 | 371.2 | 23.20 | 111.8 | ||
State Observer | αβ Method | DQ Method | All-Pass Filter | ||||
P % | Q % | P % | Q % | P % | Q % | P % | Q % |
4.740 | 45.35 | 1.000 | 377.0 | 3.590 | 29.58 | 3.350 | 0.220 |
Method | Time |
---|---|
All-pass filter | s |
State Observer | s |
Mathematical Operations | s |
αβ method | s |
DQ method | s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chica Leal, A.d.J.; Trujillo Rodríguez, C.L.; Santamaria, F. Comparative of Power Calculation Methods for Single-Phase Systems under Sinusoidal and Non-Sinusoidal Operation. Energies 2020, 13, 4322. https://doi.org/10.3390/en13174322
Chica Leal AdJ, Trujillo Rodríguez CL, Santamaria F. Comparative of Power Calculation Methods for Single-Phase Systems under Sinusoidal and Non-Sinusoidal Operation. Energies. 2020; 13(17):4322. https://doi.org/10.3390/en13174322
Chicago/Turabian StyleChica Leal, Alonso de Jesús, César Leonardo Trujillo Rodríguez, and Francisco Santamaria. 2020. "Comparative of Power Calculation Methods for Single-Phase Systems under Sinusoidal and Non-Sinusoidal Operation" Energies 13, no. 17: 4322. https://doi.org/10.3390/en13174322
APA StyleChica Leal, A. d. J., Trujillo Rodríguez, C. L., & Santamaria, F. (2020). Comparative of Power Calculation Methods for Single-Phase Systems under Sinusoidal and Non-Sinusoidal Operation. Energies, 13(17), 4322. https://doi.org/10.3390/en13174322