Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models
Abstract
:1. Introduction
2. ANN-Based Air Handling Unit and Absorption Chiller Prediction Models
2.1. ANN Model for Predicting Energy Consumption
2.2. Collection of AHU and Absorption Chiller Operational Data
3. Prediction Condition for ANN Model
3.1. Input Values
3.2. Structural and Learning Parameters for ANN Models
3.3. Preprocessing and Training Size
3.4. Performance Evaluation Indicators for Predictive Models
4. Results and Discussion
4.1. Accuracy of Prediction Models
4.2. Energy Consumption Forecast Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Energy Agency. Transition to Sustainable Buildings: Strategies and Opportunities to 2050; International Energy Agency: Paris, France, 2013. [Google Scholar]
- Loukaidou, K.; Michopoulos, A.; Zachariadis, T. Nearly-zero energy buildings: Cost-optimal analysis of building envelope characteristics. Proced. Environ. Sci. 2017, 38, 20–27. [Google Scholar] [CrossRef]
- Lizana, J.; Chacartegui, R.; Barrios-Padura, A.; Valverde, J.M. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 2017, 203, 219–239. [Google Scholar] [CrossRef]
- Peng, T.M.; Hubele, N.F.; Karady, G.G. An adaptive neural network approach to one-week ahead load forecasting. IEEE Trans. Power Syst. 1993, 8, 1195–1203. [Google Scholar] [CrossRef]
- Yan, C.; Yao, J. Application of ANN for the prediction of building energy consumption at different climate zones with HDD and CDD. In Proceedings of the 2010 2nd International Conference on Future Computer and Communication, Wuhan, China, 21–24 May 2010; Volume 3, pp. V3-286–V3-289. [Google Scholar]
- Roldán-Blay, C.; Escrivá-Escrivá, G.; Álvarez-Bel, C.; Roldán-Porta, C.; Rodríguez-García, J. Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model. Energy Build. 2013, 60, 38–46. [Google Scholar] [CrossRef]
- Turhan, C.; Kazanasmaz, T.; Uygun, I.E.; Ekmen, K.E.; Akkurt, G.G. Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation. Energy Build. 2014, 85, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Ferlito, S.; Atrigna, M.; Graditi, G.; De Vito, S.; Salvato, M.; Buonanno, A.; Di Francia, G. Predictive models for building’s energy consumption: An Artificial Neural Network (ANN) approach. In Proceedings of the 2015 XVIII AISEM Annual Conference, Trento, Italy, 3–5 February 2015; pp. 1–4. [Google Scholar]
- Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Trees vs. Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy Build. 2017, 147, 77–89. [Google Scholar] [CrossRef]
- Li, Z.; Dai, J.; Chen, H.; Lin, B. An ANN-based fast building energy consumption prediction method for complex architectural form at the early design stage. Build. Simul. 2019, 12, 665–681. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Q.; Yuan, T.-H.; Yang, F. Effect of input variables on cooling load prediction accuracy of an office building. Appl. Therm. Eng. 2018, 128, 225–234. [Google Scholar] [CrossRef]
- Koschwitz, D.; Frisch, J.; van Treeck, C. Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX recurrent neural network: A comparative study on district scale. Energy 2018, 165, 134–142. [Google Scholar] [CrossRef]
- Niu, F.; O’Neill, Z.; Zuo, W.; Li, Y. Assessment of different data-driven algorithms for AHU energy consumption predictions. In Proceedings of the 14th Conference of International Building Performance Simulation Association, Hyderabad, India, 7–9 December 2015. [Google Scholar]
- Le Cam, M.; Daoud, A.; Zmeureanu, R. Forecasting electric demand of supply fan using data mining techniques. Energy 2016, 101, 541–557. [Google Scholar] [CrossRef]
- Adnan, W.N.W.M.; Dahlan, N.Y.; Musirin, I. Modeling baseline electrical energy use of chiller system by artificial neural network. In Proceedings of the 2016 IEEE International Conference on Power and Energy (PECon), Melaka, Malaysia, 28–29 November 2016; pp. 500–505. [Google Scholar]
- Lazrak, A.; Fraisse, G.; Leconte, A.; Souyri, B.; Papillon, P. Energy Consumption Estimation in Different Climates of a Solar Combisystem Combined with an Absorption Chiller. In Proceedings of the Solar World Congress 2015, Daegu, Korea, 8–12 November 2015. [Google Scholar]
- Kim, J.H.; Seong, N.C.; Choi, W. Modeling and optimizing a chiller system using a machine learning algorithm. Energies 2019, 12, 2860. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Seong, N.C.; Choi, W. Cooling load forecasting via predictive optimization of a nonlinear autoregressive exogenous (NARX) neural network model. Sustainability 2019, 11, 6535. [Google Scholar] [CrossRef] [Green Version]
- Boussaada, Z.; Curea, O.; Remaci, A.; Haritza, C.R.; Najiba, M.B. A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation. Energies 2018, 11, 620. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.G.B.; Cuéllar, M.P.; Calvo-Flores, M.D.; Jiménez, M.D.C.P. An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies 2016, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Patra, P.K.; Sahoo, S.S. Prediction of global solar radiation using nonlinear autoregressive network win exogenous inputs (NARX). In Proceedings of the 39th National System Conference, Noida, India, 14–16 December 2015. [Google Scholar]
- ASHRAE. Measurement of Energy and Demand Saving; ASHRAE: New York, NY, USA, 2012. [Google Scholar]
- Webster, L.J.; Bradford, J.M.V. Guidelines: Measurement and Verification for Federal Energy Projects; version 3.0; Technical Report; U.S. Department of Energy Federal Energy Management Program: Washington, DC, USA, 2008.
- Efficiency Valuation Organization. International Performance Measurement & Verification Protocol; EVO: North Georgia, AL, USA, 2016. [Google Scholar]
- Singh, S. Understanding the Bias-Variance Tradeoff. Available online: https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229 (accessed on 24 August 2020).
Division | Condition |
---|---|
Number of hidden layers | 1 |
Number of neurons | 5 |
Learning rate | 0.0001 |
Epochs | 50 |
Calibration Type | Index | ASHRAE Guidelines 14 [22] | FEMP [23] | IPMVP [24] |
Monthly | MBE monthly | ±5% | ±5% | ±20% |
CV(RMSE) monthly | 15% | 15% | - | |
Hourly | MBE hourly | ±10% | ±10% | ±5% |
CV(RMSE) hourly | 30% | 30% | 20% |
Training Size (%) | Error Rate (%) | |||
---|---|---|---|---|
Average | Standard Deviation | |||
Training | Testing | Training | Testing | |
50 | 6.03 | 11.24 | 28.82 | 38.96 |
60 | 8.46 | 15.20 | 30.60 | 46.47 |
70 | 8.92 | 10.87 | 30.31 | 25.33 |
80 | 9.65 | 14.76 | 30.03 | 30.12 |
90 | 8.08 | 12.82 | 26.53 | 22.53 |
Training Size (%) | Error Rate (%) | ||
---|---|---|---|
Training | Testing | Total | |
50 | 1.11 | 0.17 | 0.47 |
60 | 0.67 | 1.36 | 0.95 |
70 | 0.22 | 0.42 | 0.28 |
80 | 0.85 | 0.68 | 0.82 |
90 | 0.85 | 2.44 | 1.01 |
Training Size (%) | Error Rate (%) | |||
---|---|---|---|---|
Average | Standard Deviation | |||
Training | Testing | Training | Testing | |
50 | 19.73 | 27.38 | 27.30 | 15.02 |
60 | 22.08 | 27.41 | 26.55 | 24.38 |
70 | 23.45 | 26.49 | 28.62 | 14.97 |
80 | 21.29 | 25.95 | 18.31 | 15.18 |
90 | 24.35 | 28.54 | 20.90 | 12.76 |
Training Size (%) | Error Rate (%) | ||
---|---|---|---|
Training | Testing | Total | |
50 | 0.78 | 15.18 | 6.39 |
60 | 2.12 | 12.69 | 3.18 |
70 | 0.22 | 14.17 | 3.58 |
80 | 0.92 | 11.67 | 1.29 |
90 | 2.07 | 14.69 | 0.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Seong, N.-C.; Choi, W. Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models. Energies 2020, 13, 4361. https://doi.org/10.3390/en13174361
Kim J-H, Seong N-C, Choi W. Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models. Energies. 2020; 13(17):4361. https://doi.org/10.3390/en13174361
Chicago/Turabian StyleKim, Jee-Heon, Nam-Chul Seong, and Wonchang Choi. 2020. "Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models" Energies 13, no. 17: 4361. https://doi.org/10.3390/en13174361
APA StyleKim, J. -H., Seong, N. -C., & Choi, W. (2020). Forecasting the Energy Consumption of an Actual Air Handling Unit and Absorption Chiller Using ANN Models. Energies, 13(17), 4361. https://doi.org/10.3390/en13174361