A Modified ABC-SQP-Based Combined Approach for the Optimization of a Parallel Hybrid Electric Vehicle
Abstract
:1. Introduction
2. Literature Review
3. Parallel HEV Configuration and Control Parameter Optimization Targets
3.1. Driving Cycles
3.2. Control Strategy
- The motor is utilized in all driving torque, when the vehicle is operated in certain minimum speed.
- The motor is utilized for torque assist at the operating speed of engine, when the required torque is greater than max torque which is delivered by the engine.
- Through regenerative braking, the motor charges the batteries.
- The motor will be used to produce the required torque when the engine runs inefficiently for a required engine torque at the given speed. Also, the engine shuts off at this condition.
- When there is low-battery SOC condition, the motor will charge the battery through the excess torque provided by the engine.
3.3. Vehicle Configuration for Optimization
3.4. Details on SQP-Hessian Approach
- Generation of feasible points.
- Detection of the feasible point in which the convergence takes place with number of iterative sequences.
3.5. Heuristic Approach
Modified Artificial Bee Colony (MABC)-Based Optimisation
- Step 1. New food sources are computed in the Employee bee phase.
- Step 2. Location of the food sources is updated based on their amount of nectar in the Onlooker Bee phase.
- Step 3. Search the new food sources in place of rejected food sources in the Scout bee phase.
- Step 4. Remember the best food source identified so far.
- Step 5. End.
4. Simulation and Analysis
4.1. Modified Artificial Bee Colony Algorithm (MABC) FTP Driving Cycle
4.2. Modified Artificial Bee Colony + Sequential Programming Algorithm (MABC + SQP) FTP Driving Cycle
4.3. Modified Artificial Bee Colony Algorithm (MABC) ECE EUDC Driving Cycle
4.4. Modified Artificial Bee Colony Algorithm (MABC + SQP) ECE EUDC Driving Cycle
4.5. Inference
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
General | |
---|---|
ABC | Artificial Bee Colony |
ADVISOR | Advanced Vehicle Simulator |
CO | Carbon Monoxide |
EACS | Electric Assist Control Strategy |
ECE-EUDC | Economic commission Europe – Extra Urban Driving Cycle |
FC | Fuel Consumption |
FTP | Federal Test Procedure |
HC | Hydrocarbons |
HEV | Hybrid Electric Vehicle |
ICE | Internal Combustion Engine |
NEDC | New European Driving Cycle |
NOX | Oxides of Nitrogen |
NREL | National Renewable Energy Laboratory |
PMP | Pontryagins Minimum Principle |
PNGV | Partnership for a New Generation of Vehicles |
PSO | Particle Swarm Optimization |
SI | Spark Ignition |
SOC | State of Charge |
SQP | Sequential Quadratic Programming |
UDDS | Urban Dynamometer Driving Schedule |
VRLA | Valve Regulated Lead Acid |
Notations | |
α | Distance to constraint boundaries in SQP |
d^k | Search direction variable for SQP |
λK | Lagrange multipliers |
L(x, λ) | Lagrangian function |
Pmot | Motor Mechanical power (W) |
Pengine | Engine power (W) |
Pengine_max_power | Maximum Engine power (W) |
References
- Zhang, P.; Yan, F.; Du, C. A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics. Renew. Sustain. Energy Rev. 2015, 48, 88–104. [Google Scholar] [CrossRef]
- Sebastien, D.; Lauber, J.; Marie, T.; Rimaux, J. Control of Parallel Hybrid Powertrain: Optimal Control. IEEE Trans. Veh. Technol. 2004, 53, 772–781. [Google Scholar]
- Tony, M.; Wipke, K. Modelling Grid-Connected Hybrid Electric Vehicles Using ADVISOR. In Proceedings of the Sixteenth Annual Battery Conference on Applications and Advances, Long Beach, CA, USA, 12 January 2001. [Google Scholar]
- Wu, X.; Guifang, G.; Xu, J.; Cao, B. Application of Parallel Chaos Optimization Algorithm for Plug-in Hybrid Electric Vehicle Design. Int. J. Bifurc. Chaos 2014, 24. [Google Scholar] [CrossRef]
- Chirag, D. Design and Optimization of Hybrid Electric Vehicle Drivetrain and Control Strategy Parameters Using Evolutionary Algorithms. Master’s Thesis, Concordia University, Montréal, QC, Canada, 2010. [Google Scholar]
- Valerie, J.H.; Wipke, K.B.; Rausen, D.J. HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emission. Soc. Automot. Eng. 2000. [Google Scholar] [CrossRef] [Green Version]
- Enang, W.; Bannister, C.; Brace, C.; Vagg, C. Modelling and Heuristic control of a Parallel Hybrid Electric Vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 1494–1513. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, C.S.; Subramanian, S.C. Design and analysis of a parallel hybrid electric vehicle for Indian conditions. In Proceedings of the IEEE International Transportation Electrification Conference (ITEC), Chennai, India, 27–29 August 2015. [Google Scholar]
- Long, V.T.; Nhan, N.V. Bees algorithm based optimisation of component size and control strategy parameters for parallel hybrid electric vehicles. Int. J. Automot. Technol. 2012, 13, 1177–1183. [Google Scholar] [CrossRef]
- Keith, B.W.; Mathew, R.C. Using an Advanced Vehicle Simulator (ADVISOR) to Guide Hybrid Vehicle Propulsion System Development; National Renewable Energy Laboratory: Golden, CO, USA, 2014. [Google Scholar]
- Tousif, A. Hybrid Electric Vehicles: The Next Big Thing in Fuel Crisis and Reduced Pollution; MECH 6340, Energy Management I Term Project Report; Dalhousie University: Halifax, NS, Canada, 2015. [Google Scholar]
- Namwook, K.; Sukwon, C.; Huei, P. Optimal Control of Hybrid Electric Vehicles Based on Pontryagin’s Minimum Principle. Control Syst. Technol. IEEE Trans. 2011, 19, 1279–1287. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhang, C.H.; Cui, N.X. PSO Algorithm-Based Parameter Optimization for HEV Powertrain and Its Control Strategy. Int. J. Automot. Technol. 2008, 9, 53–69. [Google Scholar] [CrossRef]
- Powell, M.J.D. A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. In Numerical Analysis; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 630, pp. 144–157. [Google Scholar]
- Neubauer, J.; Wood, E. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicle. In Proceedings of the SAE World Congress and Exhibition, NREL/CP-5400-57503, Detroit, MI, USA, 16–18 April 2013. [Google Scholar]
- Montazeri-Gh, M.; Poursamad, A. Application of Genetic Algorithm for Simultaneous Optimization of HEV Component Sizing and Control Strategy. Int. J. Altern. Propuls. 2006, 1, 63–78. [Google Scholar]
- Wipke, K.B.; Cuddy, M.R.; Burch, S.D. ADVISOR 2.1: A User-Friendly Advanced Power Train Simulation Using a Combined Backward/Forward Approach. IEEE Trans. Veh. Technol. 1999, 48, 1751–1761. [Google Scholar] [CrossRef]
- Shuo, Z.; Xiong, R. Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming. Appl. Energy 2015, 155, 68–78. [Google Scholar]
- Long, V.T.; Packianather, M.S. Application of a Pheromone-Based Bees Algorithm as an Optimizer Within a Multidisciplinary Design Optimization System for Power train Component Sizing and Control Parameters for Hybrid E-Vehicles. Int. J. Transp. Eng. Technol. 2015, 1–9. [Google Scholar] [CrossRef]
- Gowrishankar, T.; Nirmal, K.A. Improving The Performance of A Parallel Hybrid Electric Vehicle By Heuristic Control Method. J. Electr. Eng. 2018, 18, 236–247. [Google Scholar]
- Barlow, T.J.; Latham, S.; McCrae, I.S.; Boulter, P.G. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle Emissions; Published Project Report PPR354; TRL Limited: London, UK, 2009. [Google Scholar]
- Rizzoni, G.; Pisu, P.; Calo, E. Control strategies for parallel hybrid electric vehicles. In Proceedings of the IFAC Symposium on Advanced Automotive Control, Sydney, Australia, 6–8 September 2004; Volume 37, pp. 495–500. [Google Scholar]
- Mahdiyeh, E. Gradient Based Artificial Bee Colony Algorithm. Int. J. Ind. Electron. Electr. Eng. 2016, 4, 50–54. [Google Scholar]
- Bufu, H.; Wang, Z.; Xu, Y. Multi-Objective Genetic Algorithm for Hybrid Electric Vehicle Parameter Optimization. In Proceedings of the International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006. [Google Scholar]
- Yuce, B.; Packianather, M.S.; Mastrocinque, E.; Pham, D.T.; Lambiase, A. Honey Bees Inspired Optimization Method: The Bees Algorithm. Insects 2013, 4, 646–662. [Google Scholar] [CrossRef] [PubMed]
- Jinling, W.; Wen, L. Study of Control Strategy Parameters and Component Sizing in Hybrid Electric Vehicles Using Particle Swarm Optimization. In Proceedings of the EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Los Angeles, CA, USA, 6–9 May 2012. [Google Scholar]
- Guopu, Z.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 2010, 217, 3166–3173. [Google Scholar] [CrossRef]
- Subramani, P.; Rajendran, G.B.; Sengupta, J.; Pérez de Prado, R.; Divakarachari, P.B. A Block Bi-Diagonalization-Based Pre-Coding for Indoor Multiple-Input-Multiple-Output-Visible Light Communication System. Energies 2020, 13, 3466. [Google Scholar] [CrossRef]
Vehicle Parameters | Description |
---|---|
Type of the Engine | SI Engine Geo 1.0 L (41 kW) |
Mass (m) of the Vehicle | 592 kg |
Power train | Parallel Hybrid |
Efficiency of the motor | 92% |
Motor | AC Induction motor Westinghouse, 75 kW |
Fuel converter efficiency | 34% |
Transmission | 5-Speed Manual Transmission |
Radius of the Wheel, Rw | 0.282 m |
Coefficient of drag, Cd | 0.335 |
Frontal area, Af | 2.0 m2 |
Parameter | Definition |
---|---|
Input Variables | |
CS_hi_soc | Highest battery State of Charge (SOC) value desired |
CS_lo_soc | Lowest battery State of Charge value desired |
CS_EL_Speed_lo | At low SOC, vehicle speed below which vehicle runs as pure electric |
CS_EL_Speed_hi | At high SOC, vehicle speed below which vehicle runs as pure electric |
CS_off_trq_frac | Minimum torque threshold at which the engine will SHUT OFF when commanded at lower torque |
CS_min_trq_frac | Minimum torque threshold at which motor acts as a generator and the engine operates at low threshold torque |
CS_charge_torque | An alternator like torque loading on the engine in order to recharge the battery pack |
ESS_module_number | Number of battery modules in a pack |
FC_torque_scale | Scaling factor for torque range of ICE |
MC_torque_scale | Torque scaling factor of Electric Motor |
Output Variables | |
FC (mpg) | Fuel Consumption of the vehicle in mpg |
HC (g/mile) | HC emission of the vehicle in grams/mile |
CO (g/mile) | CO emission of the vehicle in grams/mile |
NOx (g/mile) | NOx emission of the vehicle in grams/mile |
FTP Driving Cycle MABC | ||||||
---|---|---|---|---|---|---|
Items | Case 1 | Case 2 | Case 3 | Case 4 | Initial Value | |
Variables | FC_torque_scale | 1.351 | 1.400 | 1.400 | 1.458 | 1.349 |
MC_torquescale | 0.714 | 0.783 | 1.100 | 1.076 | 1.182 | |
ESS_modulenumber | 27.741 | 30.000 | 27.000 | 28.000 | 30.000 | |
CS_ELSpeed_lo | 4.195 | 7.000 | 3.000 | 1.000 | 3.000 | |
CS_ELSpeed_hi | 19.595 | 23.000 | 31.000 | 18.000 | 20.000 | |
CS_min_trq_frac | 0.442 | 0.800 | 0.317 | 0.311 | 0.218 | |
CS_off_trq_frac | 0.051 | 0.069 | 0.050 | 0.139 | 0.137 | |
CS_lo_soc | 0.540 | 0.570 | 0.507 | 0.500 | 0.567 | |
CS_hi_soc | 0.753 | 0.650 | 0.617 | 0.680 | 0.695 | |
CS_charge torque | 13.890 | 31.000 | 25.000 | 31.000 | 31.000 | |
Constraints | Grade (%) | 8.547 | 8.322 | 8.260 | 8.891 | 7.200 |
0–60 mph time (s) | 8.080 | 7.976 | 8.453 | 8.152 | 8.400 | |
40–60 mph time(s) | 3.796 | 3.730 | 4.097 | 3.886 | 4.000 | |
0–85 mph (s) | 15.493 | 15.281 | 16.571 | 15.754 | 16.300 | |
Max speed (mph) | 129.02 | 129.960 | 126.200 | 129.030 | 127.000 | |
Max accel (ft/s2) | 16.400 | 16.400 | 16.400 | 16.400 | 16.400 | |
Distance in 5 s (ft) | 183.355 | 184.330 | 182.510 | 184.167 | 183.700 | |
Objective | FC (mpg) | 35.890 | 35.600 | 33.701 | 33.958 | 32.200 |
HC (g/mile) | 0.539 | 0.574 | 0.571 | 0.587 | 0.564 | |
CO (g/mile) | 2.236 | 2.639 | 2.504 | 2.519 | 3.244 | |
NOx (g/mile) | 0.418 | 0.460 | 0.459 | 0.457 | 0.471 |
FTP Driving Cycle, MABC + SQP | ||||||
---|---|---|---|---|---|---|
Items | Case 1 | Case 2 | Case 3 | Case 4 | Initial Value | |
Variables | FC_torque_scale | 1.400 | 1.351 | 1.400 | 1.458 | 1.349 |
MC_torquescale | 0.783 | 0.714 | 1.100 | 1.076 | 1.182 | |
ESS_modulenumber | 29.010 | 27.741 | 27.000 | 28.000 | 30.000 | |
CS_ELSpeed_lo | 7.000 | 4.195 | 3.000 | 1.000 | 3.000 | |
CS_ELSpeed_hi | 23.000 | 19.595 | 31.000 | 18.000 | 20.000 | |
CS_min_trq_frac | 0.485 | 0.442 | 0.317 | 0.311 | 0.218 | |
CS_off_trq_frac | 0.069 | 0.051 | 0.050 | 0.139 | 0.137 | |
CS_lo_soc | 0.381 | 0.540 | 0.507 | 0.500 | 0.567 | |
CS_hi_soc | 0.660 | 0.753 | 0.617 | 0.680 | 0.695 | |
CS_charge torque | 31.00 | 13.890 | 25.000 | 31.000 | 31.000 | |
Constraints | Grade (%) | 8.964 | 8.547 | 8.260 | 8.891 | 7.200 |
0–60 mph time (s) | 8.515 | 8.080 | 8.453 | 8.152 | 8.400 | |
40–60 mph time (s) | 4.105 | 3.796 | 4.097 | 3.886 | 4.000 | |
0–85 mph (s) | 16.68 | 15.493 | 16.571 | 15.754 | 16.300 | |
Max speed (mph) | 125.551 | 129.02 | 126.200 | 129.030 | 127.000 | |
Max accel (ft/s2) | 16.4 | 16.400 | 16.400 | 16.400 | 16.400 | |
Distance in 5 s (ft) | 181.133 | 183.355 | 182.510 | 184.167 | 183.700 | |
Objective | FC (mpg) | 36.098 | 35.890 | 33.701 | 33.958 | 32.200 |
HC (g/mile) | 0.578 | 0.539 | 0.571 | 0.587 | 0.564 | |
CO (g/mile) | 2.625 | 2.236 | 2.504 | 2.519 | 3.244 | |
NOx (g/mile) | 0.465 | 0.418 | 0.459 | 0.457 | 0.471 |
ECE EUDC Driving Cycle MABC | ||||||
---|---|---|---|---|---|---|
Items | Case 1 | Case 2 | Case 3 | Case 4 | Initial Value | |
Variables | FC_torque_scale | 1.190 | 1.200 | 1.300 | 1.210 | 1.349 |
MC_torquescale | 0.783 | 0.811 | 0.700 | 0.834 | 1.182 | |
ESS_modulenumber | 30.000 | 30.000 | 23.000 | 28.000 | 30.000 | |
CS_ELSpeed_lo | 8.000 | 8.000 | 4.330 | 6.751 | 3.000 | |
CS_ELSpeed_hi | 11.000 | 11.000 | 30.000 | 19.665 | 20.000 | |
CS_min_trq_frac | 0.100 | 0.723 | 0.246 | 0.534 | 0.218 | |
CS_off_trq_frac | 0.183 | 0.183 | 0.211 | 0.162 | 0.137 | |
CS_lo_soc | 0.520 | 0.516 | 0.223 | 0.158 | 0.567 | |
CS_hi_soc | 0.850 | 0.845 | 0.727 | 0.611 | 0.695 | |
CS_charge torque | 36.000 | 35.000 | 5.200 | 39.118 | 31.000 | |
Constraints | Grade (%) | 7.565 | 7.606 | 9.075 | 8.015 | 7.200 |
0–60 mph time (s) | 8.964 | 8.954 | 9.221 | 9.704 | 8.400 | |
40–60 mph time (s) | 4.451 | 4.444 | 4.595 | 4.934 | 4.000 | |
0–85 mph (s) | 18.105 | 18.071 | 18.675 | 19.935 | 16.300 | |
Max speed (mph) | 120.456 | 120.678 | 119.172 | 119.385 | 127.000 | |
Max accel (ft/s2) | 16.4 | 16.4 | 16.4 | 16.4 | 16.400 | |
Distance in 5 s (ft) | 180.665 | 180.761 | 178.23 | 176.349 | 183.700 | |
Objective | FC (mpg) | 33.558 | 33.357 | 29.291 | 32.667 | 28.600 |
HC (g/mile) | 0.724 | 0.729 | 0.736 | 0.736 | 0.768 | |
CO (g/mile) | 3.148 | 3.124 | 2.566 | 3.735 | 3.157 | |
NOx (g/mile) | 0.482 | 0.486 | 0.436 | 0.508 | 0.495 |
ECE-EUDC Driving Cycle, MABC + SQP | ||||||
---|---|---|---|---|---|---|
Items | Case 1 | Case 2 | Case 3 | Case 4 | Initial Value | |
Variables | FC_torque_scale | 1.050 | 1.200 | 1.198 | 1.300 | 1.349 |
MC_torquescale | 0.967 | 0.548 | 0.832 | 0.700 | 1.182 | |
ESS_modulenumber | 29.010 | 22.971 | 28.950 | 29.000 | 30.000 | |
CS_ELSpeed_lo | 4.000 | 4.302 | 6.979 | 7.6000 | 3.000 | |
CS_ELSpeed_hi | 19.000 | 29.955 | 12.920 | 14.000 | 20.000 | |
CS_min_trq_frac | 0.485 | 0.444 | 0.331 | 0.678 | 0.218 | |
CS_off_trq_frac | 0.154 | 0.090 | 0.086 | 0.110 | 0.137 | |
CS_lo_soc | 0.567 | 0.386 | 0.322 | 0.523 | 0.567 | |
CS_hi_soc | 0.844 | 0.742 | 0.730 | 0.727 | 0.695 | |
CS_charge torque | 31.000 | 15.822 | 29.994 | 32.000 | 31.000 | |
Constraints | Grade (%) | 73.340 | 8.076 | 7.810 | 8.097 | 7.200 |
0–60 mph time (s) | 8.889 | 9.066 | 8.879 | 8.141 | 8.400 | |
40–60 mph time (s) | 4.378 | 4.463 | 4.374 | 3.842 | 4.000 | |
0–85 mph (s) | 17.883 | 18.221 | 17.745 | 15.677 | 16.300 | |
Max speed (mph) | 119.905 | 119.268 | 121.298 | 127.922 | 127.000 | |
Max accel (ft/s2) | 16.400 | 16.400 | 16.400 | 16.400 | 16.400 | |
Distance in 5 s (ft) | 179.700 | 177.819 | 180.179 | 180.179 | 183.700 | |
Objective | FC (mpg) | 34.484 | 34.447 | 32.048 | 32.048 | 28.600 |
HC (g/mile) | 0.621 | 0.713 | 0.690 | 0.690 | 0.768 | |
CO (g/mile) | 3.183 | 2.705 | 2.905 | 2.905 | 3.157 | |
NOx (g/mile) | 0.442 | 0.459 | 0.470 | 0.470 | 0.495 |
Items | BABC Case 1 | MABC Case 1 | MABC + SQP Case 1 | Initial Value | |
---|---|---|---|---|---|
Variables | FC_torque_scale | 1.500 | 1.351 | 1.400 | 1.349 |
MC_torquescale | 0.783 | 0.714 | 0.783 | 1.182 | |
ESS_modulenumber | 30.000 | 27.741 | 29.010 | 30.000 | |
CS_ELSpeed_lo | 8.000 | 4.195 | 7.000 | 3.000 | |
CS_ELSpeed_hi | 22.000 | 19.595 | 23.000 | 20.000 | |
CS_min_trq_frac | 0.800 | 0.442 | 0.485 | 0.218 | |
CS_off_trq_frac | 0.069 | 0.051 | 0.069 | 0.137 | |
CS_lo_soc | 0.570 | 0.540 | 0.381 | 0.567 | |
CS_hi_soc | 0.650 | 0.753 | 0.660 | 0.695 | |
CS_charge torque | 31.000 | 13.890 | 31.00 | 31.000 | |
Constraints | Grade (%) | 9.057 | 8.547 | 8.964 | 7.200 |
0–60 mph time (s) | 7.841 | 8.735 | 8.515 | 8.400 | |
40–60 mph time(s) | 3.633 | 4.287 | 4.105 | 4.000 | |
0–85 mph (s) | 14.882 | 17.381 | 16.68 | 16.300 | |
Max speed (mph) | 131.01 | 123.16 | 125.551 | 127.000 | |
Max accel (ft/s2) | 16.400 | 16.400 | 16.4 | 16.400 | |
Distance in 5 s (ft) | 185.04 | 181.75 | 181.133 | 183.700 | |
Objective | FC (mpg) | 34.857 | 35.890 | 36.098 | 32.200 |
HC (g/mile) | 0.605 | 0.539 | 0.578 | 0.564 | |
CO (g/mile) | 2.522 | 2.236 | 2.625 | 3.244 | |
NOx (g/mile) | 0.472 | 0.418 | 0.465 | 0.471 |
Items | BABC Case 1 | MABC Case 1 | MABC + SQP Case 1 | Initial Value | |
---|---|---|---|---|---|
Variables | FC_torque_scale | 1.315 | 1.190 | 1.050 | 1.349 |
MC_torquescale | 0.952 | 0.783 | 0.967 | 1.182 | |
ESS_modulenumber | 29.000 | 30.000 | 29.010 | 30.000 | |
CS_ELSpeed_lo | 7.000 | 8.000 | 4.000 | 3.000 | |
CS_ELSpeed_hi | 12.902 | 11.000 | 19.000 | 20.000 | |
CS_min_trq_frac | 0.259 | 0.100 | 0.485 | 0.218 | |
CS_off_trq_frac | 0.002 | 0.183 | 0.154 | 0.137 | |
CS_lo_soc | 0.261 | 0.520 | 0.567 | 0.567 | |
CS_hi_soc | 0.655 | 0.850 | 0.844 | 0.695 | |
CS_charge torque | 30.000 | 36.000 | 31.000 | 31.000 | |
Constraints | Grade (%) | 8.526 | 7.565 | 73.340 | 7.200 |
0–60 mph time (s) | 9.231 | 8.964 | 8.889 | 8.400 | |
40–60 mph time (s) | 4.614 | 4.451 | 4.378 | 4.000 | |
0–85 mph (s) | 18.618 | 18.105 | 17.883 | 16.300 | |
Max speed (mph) | 120.897 | 120.456 | 119.905 | 127.000 | |
Max accel (ft/s2) | 16.4 | 16.400 | 16.400 | 16.400 | |
Distance in 5 s (ft) | 178.297 | 180.665 | 179.700 | 183.700 | |
Objective | FC (mpg) | 30.387 | 33.558 | 34.484 | 28.600 |
HC (g/mile) | 0.74 | 0.724 | 0.621 | 0.768 | |
CO (g/mile) | 2.857 | 3.148 | 3.183 | 3.157 | |
NOx (g/mile) | 0.474 | 0.482 | 0.442 | 0.495 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shivappriya, S.N.; Karthikeyan, S.; Prabu, S.; Pérez de Prado, R.; Parameshachari, B.D. A Modified ABC-SQP-Based Combined Approach for the Optimization of a Parallel Hybrid Electric Vehicle. Energies 2020, 13, 4529. https://doi.org/10.3390/en13174529
Shivappriya SN, Karthikeyan S, Prabu S, Pérez de Prado R, Parameshachari BD. A Modified ABC-SQP-Based Combined Approach for the Optimization of a Parallel Hybrid Electric Vehicle. Energies. 2020; 13(17):4529. https://doi.org/10.3390/en13174529
Chicago/Turabian StyleShivappriya, S. N., S. Karthikeyan, S. Prabu, R. Pérez de Prado, and B. D. Parameshachari. 2020. "A Modified ABC-SQP-Based Combined Approach for the Optimization of a Parallel Hybrid Electric Vehicle" Energies 13, no. 17: 4529. https://doi.org/10.3390/en13174529
APA StyleShivappriya, S. N., Karthikeyan, S., Prabu, S., Pérez de Prado, R., & Parameshachari, B. D. (2020). A Modified ABC-SQP-Based Combined Approach for the Optimization of a Parallel Hybrid Electric Vehicle. Energies, 13(17), 4529. https://doi.org/10.3390/en13174529