An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter
Abstract
:1. Introduction
2. Battery Modeling
2.1. Equivalent Circuit Model (ECM)
2.2. Second-Order Autoregressive Exogenous (ARX) Model for Parameter Identification
3. Dynamic Parameter Identification Algorithm Using the Autoregressive Exogenous Model
4. Proposed SOC Estimation Algorithm Using a Combination of UKF and PF
4.1. Unscented Kalman Filter Based SOC Estimation
- 1.
- Determination of Scaling and Weights:Primary, secondary, and scaling parameters:α, β, κ (default)Length of state vector: nScaling parameter:Weight vector:
- 2.
- Initialization:
- 3.
- Generation of the Sigma-point:Error covariance matrix square root:Sigma-point:
- 4.
- Prediction transformation:State update:Mean of the predicted state:Covariance matrix of the predicted state:
- 5.
- Observation transformationPropagation of sigma-point through observation:Update the output:Covariance matrix of the predicted output:Covariance matrix of the predicted state and output:
- 6.
- Measurement updateKalman gain:State estimation measurement update:Error covariance measurement update:
4.2. Particle Filter Based SOC Estimation
- 1.
- Initialization: Randomly draw N initial particles for SOC.Draw particles x0i~p(x0); i = 1,2,…N.
- 2.
- Sampling and weight calculation: From the distribution, the particles are sampled and updated with new observation information, and then a new sample is obtained.Likelihood calculation:Assigning particle a weight:Calculation of the Distribution:Normalization of the weight:
- 3.
- Resampling:Resampling when effective sample size Neff is under the threshold:Replacing current set by a new one:
- 4.
- State prediction:
4.3. Combined SOC Estimation Method by Using UKF and PF
5. Experimental Results and Verification
5.1. Battery Test Bench
5.2. Experimental Results and Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier, M. LiFePO4/polymer/natural graphite: Low cost Li-ion batteries. Electrochim. Acta 2004, 50, 263–270. [Google Scholar] [CrossRef]
- Mi, C.; Cao, G.; Zhao, X. Low-cost, one-step process for synthesis of carbon coated LiFePO4 cathode. Mater. Lett. 2005, 59, 127–130. [Google Scholar] [CrossRef]
- Striebel, K.; Shim, J.; Sierra, A.; Yang, H.; Song, X.; Kostecki, R.; McCarthy, K. The development of low cost LiFePO4-based high power lithium-ion batteries. J. Power Sources 2005, 146, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ouyang, M.; Lu, L.; Li, J.; Han, X.; Xu, L.; Ma, H.; Dollmeyer, T.A.; Freyermuth, V. Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model. Appl. Energy 2013, 111, 571–580. [Google Scholar] [CrossRef]
- Barai, A.; Widanage, W.D.; Marco, J.; Mcgordon, A.; Jennings, P. A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells. J. Power Sources 2015, 295, 99–107. [Google Scholar] [CrossRef]
- Dong, G.; Wei, J.; Zhang, C.; Chen, Z. Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method. Appl. Energy 2016, 162, 163–171. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Guo, H.; Li, S. Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Convers. Manag. 2012, 64, 113–121. [Google Scholar] [CrossRef]
- Waag, W.; Käbitz, S.; Sauer, D.U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl. Energy 2013, 102, 885–897. [Google Scholar] [CrossRef]
- Shuo, T.; Munan, H.; Minggao, O. An Experimental Study and Nonlinear Modeling of Discharge Behavior of Valve-Regulated Lead Acid Batteries. IEEE Trans. Energy Convers. 2009, 24, 452–458. [Google Scholar] [CrossRef]
- Xiong, R.; Sun, F.; He, H.; Nguyen, T.D. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy 2013, 63, 295–308. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Wan, E.A.; van der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs—Part 2. Modeling and identification. J. Power Sources 2004, 134, 262–276. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, Z. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter. J. Power Sources 2015, 279, 306–311. [Google Scholar] [CrossRef]
- Chan, H.L. A new battery model for use with battery energy storage systems and electric vehicles power systems. In Proceedings of the IEEE Symposium on Power Engineering Society Winter Meeting, Singapore, 23–27 January 2000; Volume 1, pp. 470–475. [Google Scholar]
- Ziyad, M.; Margaret, A.; William, A. A mathematical model for lead-acid batteries. IEEE Trans. Energy Convers. 1992, 7, 93–98. [Google Scholar]
- Hongwen, H.; Rui, X.; Xiaowei, Z.; Fenchun, S.; Jinxin, F. State-ofcharge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model. IEEE Trans. Veh. Technol. 2011, 60, 1461–1469. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Fan, J. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies 2011, 4, 582–598. [Google Scholar] [CrossRef]
- Roscher, M.A.; Sauer, D.U. Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries. J. Power Sources 2011, 196, 331–336. [Google Scholar] [CrossRef]
- Duong, V.H.; Tran, N.T.; Choi, W.; Kim, D. State Estimation Technique for VRLA Batteries for Automotive Applications. J. Power Electron. 2016, 16, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Keesman, K.J. System Identification—An Introduction; Springer: London, UK, 2011; pp. 1–13. [Google Scholar]
- Jiang, J.; Zhang, Y. A revisit to block and recursive least squares for parameter estimation. Comput. Electr. Eng. 2004, 30, 403–416. [Google Scholar] [CrossRef]
- Tran, N.; Khan, A.B.; Choi, W. State of Charge and State of Health Estimation of AGM VRLA Batteries by Employing a Dual Extended Kalman Filter and an ARX Model for Online Parameter Estimation. Energies 2017, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Xia, B.Z.; Sun, W. A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter. J. Power Sources 2014, 270, 619–626. [Google Scholar] [CrossRef]
- Walker, E.; Rayman, S.; White, R.E. Comparison of a particle filter and other state estimation methods for prognostics of lithium-ion batteries. J. Power Source 2015, 287, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Miao, Q.; Xie, L.; Cui, H.; Liang, W.; Pecht, M. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 2013, 53, 805–810. [Google Scholar] [CrossRef]
- Guo, X.; Kang, L.; Yao, Y.; Huang, Z.; Li, W. Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm. Energies 2016, 9, 100. [Google Scholar] [CrossRef]
- Kim, S.; Choi, W. Selection Criteria for Supercapacitors Based on Performance Evaluations. J. Power Electron. 2012, 12, 223–231. [Google Scholar] [CrossRef] [Green Version]
Model | 38120S |
---|---|
Chemical Composition | LiFePO4 |
Nominal Capacity | 10 Ah |
Maximum Charge Voltage | 3.65 V |
Nominal Voltage | 3.2 V |
Cut-off Voltage | 2.0 V |
Charge Method | CC-CV |
Standard Charge Current | 5 A 30 A Max |
Max. Discharge Current | 10 A recommended, 30 A (Max. continuous discharge rate), 100 Amp (<30 s) |
Operation Temperature | Charge: 0–45 °C (32–113 °F) Discharge: −20–65 °C (−4–149 °F) |
Cycle Performance | >2000 (80% of initial capacity at 0.2 C rate, IEC standard) |
Method | Proposed | UKF | AUKF |
---|---|---|---|
Root mean square error, RMSE (%) | 0.769 | 1.856 | 1.013 |
Maximum absolute error, MAE (%) | 0.823 | 2.478 | 1.228 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-T.; Khan, A.B.; Ko, Y.; Choi, W. An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter. Energies 2020, 13, 4536. https://doi.org/10.3390/en13174536
Nguyen T-T, Khan AB, Ko Y, Choi W. An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter. Energies. 2020; 13(17):4536. https://doi.org/10.3390/en13174536
Chicago/Turabian StyleNguyen, Thanh-Tung, Abdul Basit Khan, Younghwi Ko, and Woojin Choi. 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter" Energies 13, no. 17: 4536. https://doi.org/10.3390/en13174536
APA StyleNguyen, T. -T., Khan, A. B., Ko, Y., & Choi, W. (2020). An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter. Energies, 13(17), 4536. https://doi.org/10.3390/en13174536