Thermophysical Properties Characterization of Sulphoaluminate Cement Mortars Incorporating Phase Change Material for Thermal Energy Storage
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of SCTESM
2.2.1. Preparation of SSPCM
2.2.2. Preparation of SCTESM
2.3. Test Methods
2.3.1. Latent Heat
2.3.2. Thermal Stability
2.3.3. Thermal Conductivity
2.3.4. Volume Change
2.3.5. Latent Heat Storage Performance
2.3.6. Thermoregulating Performance
2.3.7. Mechanical Properties
3. Results and Discussion
3.1. Latent Heat of Paraffin, SSPCM, and SCTESM
3.2. Thermal Stability of SSPCM, SCM, and SCTESM
3.3. Thermal Conductivity of SCTESM
3.4. Volume Stability of SCTESM
3.5. Latent Heat Storage Properties
3.6. Thermoregulating Performance of SCTESM
3.7. Mechanical Properties of SCTESM
4. Conclusions
- (1)
- SSPCM composite has a peak melting temperature and latent heat of 25.5 °C and 99.99 J/g, respectively. LSCM test results show that paraffin can be well encapsulated into the multilayer space network formed by LDPE. A 50% mass fraction of SSPCM with respect to cement can be contained within the cement mortar, resulting in SCTESM with a peak melting temperature and a latent heat of 21.2 °C and 12.8 J/g, respectively.
- (2)
- Due to the negligible volume shrinkage of the sulphoaluminate cement mortar, the SCTESM has excellent volume stability and SSPCM particles can be tightly integrated with the mortar matrix. The volume shrinkage of SCTESM decreases with increasing SSPCM mass fraction. Compared with SCM, the maximum volume shrinkage of SCTESM-C5 is reduced by 48.4%. TGA results suggest that SCTESM has excellent thermal stability below 145 °C.
- (3)
- Since the paraffin has the lower thermal conductivity, larger SSPCM dosages resulted in more significant decreases in thermal conductivity. The thermal conductivity of SCTESM decreases from 0.9324 to 0.5755 Wm−1 K−1 with the SSPCM mass fraction increasing from 0 to 50 wt.%. A strong linear relationship between thermal conductivity and SSPCM dosages is proposed.
- (4)
- SCTESM has a significant effect of smoothing room temperature fluctuations, and the temperature adjustment ability of SCTESM is positively correlated with its SSPCM content. Compared with SCM, SSPCM-C5 reduces indoor air temperature fluctuation range by 6.2 °C. These results indicate that SCTESM has promising applications in improving the indoor temperature stability.
- (5)
- SCTESM has the properties of high early strength, such that the compressive strengths of SCTESM-C5 at 1, 3, and 7 days are 67.5%, 78.3%, and 86.7% of that of 28-day compressive strength, respectively. However, as the dosage of SSPCM increases, the compressive and flexural strength of SCTESM decreases. This phenomenon was explained with a new modified Bolomey equation that demonstrated that SSPCM particles behave like voids in SCTESM.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lotfabadi, P.; Alibaba, H.Z.; Arfaei, A. Sustainability; as a combination of parametric patterns and bionic strategies. Renew. Sustain. Energy Rev. 2016, 57, 1337–1346. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I. Intelligent multi-objective optimization for building energy and comfort management. J. King Saud Univ.-Eng. Sci. 2018, 30, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Hu, N.; Hu, P.; Lei, F.; Li, S. Experiment study on thermal performance of building integrated with double layers shape-stabilized phase change material wallboard. Energy 2019, 167, 1164–1180. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Kao, H.; Tan, J. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers. Manag. 2011, 52, 3275–3281. [Google Scholar] [CrossRef]
- Feliński, P.; Sekret, R. Experimental study of evacuated tube collector/storage system containing paraffin as a PCM. Energy 2016, 114, 1063–1072. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Q.; Zhang, S.; Zhang, C.; Feng, J. Porous silica matrices infiltrated with PCM for thermal protection purposes. Ceram. Int. 2013, 39, 5247–5253. [Google Scholar] [CrossRef]
- Memon, S.A.; Cui, H.; Lo, T.Y.; Li, Q. Development of structural–functional integrated concrete with macro-encapsulated PCM for thermal energy storage. Appl. Energy 2015, 150, 245–257. [Google Scholar] [CrossRef]
- Qian, T.; Li, J. Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage. Energy 2018, 142, 234–249. [Google Scholar] [CrossRef]
- Jamekhorshid, A.; Sadrameli, S.M.; Farid, M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 2014, 31, 531–542. [Google Scholar] [CrossRef]
- Sánchez-Silva, L.; Rodriguez, J.F.; Romero, A.; Borreguero, A.; Carmona, M.; Sánchez, P. Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chem. Eng. J. 2010, 157, 7. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Lin, K.P.; Yang, R.; Di, H.F.; Jiang, Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 2006, 38, 1262–1269. [Google Scholar] [CrossRef]
- Tang, Y.; Su, D.; Huang, X.; Alva, G.; Liu, L.; Fang, G. Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity. Appl. Energy 2016, 180, 116–129. [Google Scholar] [CrossRef]
- Lo, K.-W.; Lin, K.-L.; Cheng, T.-W.; Chang, Y.-M.; Lan, J.-Y. Effect of nano-SiO2 on the alkali-activated characteristics of spent catalyst metakaolin-based geopolymers. Constr. Build. Mater. 2017, 143, 455–463. [Google Scholar] [CrossRef]
- Cui, H.; Tang, W.; Qin, Q.; Xing, F.; Liao, W.; Wen, H. Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball. Appl. Energy 2017, 185, 107–118. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Ali, M.B.; Saidur, R.; Hossain, M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Song, Z.; Shi, C.; Zhang, A. Improvement of workability and early strength of calcium sulphoaluminate cement at various temperature by chemical admixtures. Constr. Build. Mater. 2018, 160, 427–439. [Google Scholar] [CrossRef]
- Zhang, G.; Li, G.; Li, Y. Effects of superplasticizers and retarders on the fluidity and strength of sulphoaluminate cement. Constr. Build. Mater. 2016, 126, 44–54. [Google Scholar] [CrossRef]
- Winnefeld, F.; Lothenbach, B. Hydration of calcium sulfoaluminate cements—Experimental findings and thermodynamic modelling. Cem. Concr. Res. 2010, 40, 1239–1247. [Google Scholar] [CrossRef]
- Sun, K.; Zhou, X.; Gong, C.; Ding, Y.; Lu, L. Influence of paste thickness on coated aggregates on properties of high-density sulphoaluminate cement concrete. Constr. Build. Mater. 2016, 115, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Liu, Q.G.Y.; Wang, Y.; Chen, Y.; Liu, Y.; Liu, J. Experimental study on heating characteristics and parameter optimization of transpired solar collectors. Appl. Energy 2019, 238, 13. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl. Energy 2013, 105, 229–237. [Google Scholar] [CrossRef]
- Sang, G.; Cao, Y.; Fan, M.; Lu, G.; Zhu, Y.; Zhao, Q.; Cui, X. Development of a novel sulphoalumitate cement-based composite combing fine steel fibers and phase change materials for thermal energy storage. Energy Build. 2019, 183, 75–85. [Google Scholar] [CrossRef]
- Cui, H.; Liao, W.; Mi, X.; Lo, T.Y.; Chen, D. Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials. Energy Build. 2015, 105, 273–284. [Google Scholar] [CrossRef]
- Cui, H.; Feng, T.; Yang, H.; Bao, X.; Tang, W.; Fu, J. Experimental study of carbon fiber reinforced alkali-activated slag composites with micro-encapsulated PCM for energy storage. Constr. Build. Mater. 2018, 161, 442–451. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, F.; Cui, H.-Z.; Chen, D.-Z.; Ouyang, X.; Xu, S.-Z.; Wang, J.-X.; Huang, Y.-T.; Zuo, J.-D.; Tang, J.-N. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties. Appl. Energy 2016, 170, 130–139. [Google Scholar] [CrossRef]
- Yin, D.; Ma, L.; Liu, J.; Zhang, Q. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell. Energy 2014, 64, 575–581. [Google Scholar] [CrossRef]
- Dsilva Winfred Rufuss, D.; Iniyan, S.; Suganthi, L.; Davies, P.A. Low mass fraction impregnation with graphene oxide (GO) enhances thermo-physical properties of paraffin for heat storage applications. Thermochim. Acta 2017, 655, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Memon, S.A.; Liao, W.; Yang, S.; Cui, H.; Shah, S.F.A. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials. Materials 2015, 8, 499–518. [Google Scholar] [CrossRef]
- Wang, P.L.N.; Xu, L.; Zhang, G. Hydration Characteristics and Strength Development of Sulphoaluminate Cement Cured at Low Temperature. J. Chin. Ceram. Soc. 2017, 45, 7. [Google Scholar]
- Oya, T.; Nomura, T.; Tsubota, M.; Okinaka, N.; Akiyama, T. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl. Therm. Eng. 2013, 61, 825–828. [Google Scholar] [CrossRef]
- Lecompte, T.; Le Bideau, P.; Glouannec, P.; Nörtershäuser, D.; Le Masson, S. Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material. Energy Build. 2015, 94, 52–60. [Google Scholar] [CrossRef]
- Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M. The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials. Cem. Concr. Compos. 2009, 31, 731–743. [Google Scholar] [CrossRef]
- Qiu, X.; Song, G.; Chu, X.; Li, X.; Tang, G. Microencapsulated n-alkane with p(n-butyl methacrylate-co-methacrylic acid) shell as phase change materials for thermal energy storage. Sol. Energy 2013, 91, 212–220. [Google Scholar] [CrossRef]
- Amaral, C.; Vicente, R.; Marques, P.A.A.P.; Barros-Timmons, A. Phase change materials and carbon nanostructures for thermal energy storage: A literature review. Renew. Sustain. Energy Rev. 2017, 79, 1212–1228. [Google Scholar] [CrossRef]
Group | Cement/g | Sand/g | SSPCM/g | SSPCM/wt% | Water/g | Superplasticizer/g |
---|---|---|---|---|---|---|
SCM | 800 | 800 | 0 | 0 | 360.0 | 0.48 |
SCTESM-C2 | 700 | 700 | 140 | 20 | 315.0 | 0.63 |
SCTESM-C3 | 650 | 650 | 195 | 30 | 292.5 | 1.36 |
SCTESM-C4 | 600 | 600 | 240 | 40 | 270.0 | 1.80 |
SCTESM-C5 | 550 | 550 | 275 | 50 | 247.5 | 4.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Du, X.; Cao, Y.; Sang, G.; Zhang, Y.; Zhang, L.; Zhu, Y. Thermophysical Properties Characterization of Sulphoaluminate Cement Mortars Incorporating Phase Change Material for Thermal Energy Storage. Energies 2020, 13, 5024. https://doi.org/10.3390/en13195024
Cui X, Du X, Cao Y, Sang G, Zhang Y, Zhang L, Zhu Y. Thermophysical Properties Characterization of Sulphoaluminate Cement Mortars Incorporating Phase Change Material for Thermal Energy Storage. Energies. 2020; 13(19):5024. https://doi.org/10.3390/en13195024
Chicago/Turabian StyleCui, Xiaoling, Xiaoyun Du, Yanzhou Cao, Guochen Sang, Yangkai Zhang, Lei Zhang, and Yiyun Zhu. 2020. "Thermophysical Properties Characterization of Sulphoaluminate Cement Mortars Incorporating Phase Change Material for Thermal Energy Storage" Energies 13, no. 19: 5024. https://doi.org/10.3390/en13195024
APA StyleCui, X., Du, X., Cao, Y., Sang, G., Zhang, Y., Zhang, L., & Zhu, Y. (2020). Thermophysical Properties Characterization of Sulphoaluminate Cement Mortars Incorporating Phase Change Material for Thermal Energy Storage. Energies, 13(19), 5024. https://doi.org/10.3390/en13195024